室内分布系统互调干扰问题排查与整治B

室内分布系统互调干扰问题排查与整治B
室内分布系统互调干扰问题排查与整治B

室内分布系统无源互调干扰问题排查与整治

张需溥 黄逊清 杭州紫光网络技术有限公司

[摘要]室内覆盖系统无源互调干扰已经成为影响客户感知的重要因素,文章介绍了无源互调干扰判断方法、互调干扰问题站点排查与整治案例分析、及室内覆盖降低互调建议三部分内容。

[关键词]室内分布 无源互调 干扰 排查

1.互调干扰已成为影响室分网络质量的重要因素

室内覆盖是目前移动电话网络吸收话务量、解决深度覆盖并提升用户感受的主要手段,与目前2G网络主要业务量来自于室外的情况不同,3G网络的主要业务量来自于室内。NTTDoCoMo的3G商用网络用户分布统计数据显示,大约70%的业务量来自于室内,室内区域良好覆盖是网络质量的重要体现,是运营商获取竞争优势的关键因素,从根本上体现了移动网络的服务水平。室分系统主要的干扰主要包括四部分,无源互调干扰、C网对G网干扰(C 网阻塞和杂散)、同邻频干扰及直放站、干放有源干扰。

相比无源互调干扰,其他三种干扰广泛被认知由此引发的问题比较容易整治。有源器件,譬如功放和混频器产生的互调,始终是研发工程师关心的,而知道十年前,大部分射频工程师很少提及无源器件产生的无源互调。但是随着移动通信新频率的不断规划、大功率发射机应用和接收灵敏度要求的不断提高,无源互调产生的互调干扰日益严重,因此也越来越被运营商、系统制造商及器件制造商所关注。

由无源器件(如同轴电缆、波导、连接器及合路器和天线等)的非线性产生的互调称为无源互调(PIM)[ 1][2],在无源器件中基本有两种无源非线性:接触非线性和材料非线性。前者为具有非线性电流/电压行为的接触,如松动、氧化和腐蚀连接是典型的例子;后者是指具有非线性特性的材料,如铁磁材料和碳纤维。无源互调干扰最早出现在卫星通信中,二十世纪七、八十年代,国外不少卫星因无缘互调问题而影响整星性能,如FLTSATCOM(美国舰队通信卫星)的3阶和MARECS(欧洲海事通信卫星)的43阶互调产物都落入接收频带,引起严重干扰问题。

任何的无源器件都存在非线性,仅仅在功率不大时可以考虑无源器件为线性。一般通信系统中往往包含多个频率信号,取最简单情况,假设有两路信号F1/F2同时作用于非线性无源器件,输出信号要包含F1及F2各种频率组合mF1±nF2(m,n为整数不同时为0)。当m±n为奇数时,并且m‐n=1 (或n‐m=1)的情况下,新产生频率落到或则靠近接收频带,可能会影响系统灵敏度。通常把2F2‐F1或2F1‐F2两种频率组合产生的互调干扰成为三阶互调干扰,把3F2‐2F1或3F1‐2F2两种频率的组合成为5阶互调。一般情况下随着阶数增加互调电平降低,如图1 所示,三、五七阶干扰电平最大,在室分系统中需要考虑。但是各阶数之间没有固定关系。

图1 载波信号及无源互调干扰频谱分布

无源互调表征有两种方法,一种是绝对功率电平表示法,用以dBm为单位互调产物电平值来表示,另外一种是相对功率电平表示法,即用互调产物绝对功率电平与一个输入载波功率电平的差值来表示,单位为dBcIEC 62037建议实验端口处采用2×20W(43dBm)功率,这一标准已被业界广泛采用。譬如基站天线互调要求一般为-107dBm@2×43dBm,等同于-150dBc@2×43dBm。

2.互调干扰判断方法

无源互调干扰是下行大功率信号产生落到上行互调产物从而影响上行接收,互调产物具有两大特点;

1)互调产物的大小决定与下行输出功率大小,下行功率越强互调越明显;

2)互调产物电平随阶数升高而降低,越靠近发射带内互调产物电平越高;

因此,无源互调从干扰带话统数据上看,一定是忙时干扰带高而闲时干扰带低,即干扰带等级比例忙闲时有较大差距。此外,各载频的干扰带等级还有差异,大致趋势应该是频点配置高的载频干扰带相对较高。

2.1 无源互调干扰判断方法一

根据话统数据确定的疑似互调干扰小区,利用基站闲时空闲时隙测试功能进一步确认。闲时空闲时隙测试一般选择在凌晨进行,此时所有配置载频满功率发射,并与往日的干扰带话统对比观察干扰带的变化。如果发送空闲时隙后干扰带较往日明显抬升则可判断为存在无源互调干扰。

2.2 无源互调干扰判断方法二

用频谱仪测试信源侧主分集上行信号,要求测试在不断网状态下进行,可以利用低互调测试耦合器接入系统耦合部分上行信号进行频谱测试,同时对小区内各载频进行空闲时隙测试,存在无源互调干扰的小区的频谱在上行频段具有左低右高的特点,如图2所示。且由于无源互调干扰与发射功率大小强相关,空闲时隙测试前后的频谱应有明显差别。

图2 无源互调干扰频谱特征

2.3 无源互调干扰判断方法三

判断方法一、二为定性判断方法,具体要判断室分系统是否存在互调干扰,还是依靠专用互调测试仪表,断网进行测试,具体测试方法见第3部分排查案例。尽管判断方法一、二不能精确进行互调判断,但是其意义依然重大。无源器件是 “哑”设备,一旦安装到室分现场,很难实现主动监控。互调测试只能在断网状态下检测,面对巨大规模的用户,拉网式逐个室分站点排查不仅费时费力,而且频繁断网会对手机终端用户造成不良影响,因此此种方式不能被接受,判断方法一可以在保证天馈系统正常的前提下,如何寻找有效方法,缩小互调干扰小区范围。

互调测量必须首先测量空间频谱。以中国移动GSM900网络为例,移动GSM基站周围往往存在电信CDMA基站,

如果直接用互调仪进行互调测量,在存在外部干扰的情况下会导致测量结果不准确,杭州紫光致力于天馈系统现场测量仪表开发,根据2年多时间天馈排查经验,专门为中国移动通信市场设计的便携式多功能互调测试仪,不仅具备互调功能,还有频谱功能,完全满足天馈系统及室分系统排查的需要。

图3 杭州紫光多功能互调测试仪

3.室分系统无源互调排查案例

3.1系统原理图

某室分系统某小区系统原图如图4所示,这是一个GSM/DCS合路系统,其中GSM网络忙时干扰带指标较高。根据2.1的互调判断方法,发现利用空闲时隙扫描功能进行全功率发射时,干扰带指标提高,初步判断为互调干扰。

图4 某商业广场室分系统原理图

3.2测试步骤

1)通知网管中心关闭需要测试的小区,待小区完全关闭后进行后续操作;

2)断开天馈线与基站(TX/RX)的连接;

3)用低互调电缆通过低互调转接器将频谱仪与机架顶馈线口连接,测量当前小区的上行通带(890-915MHz)平均干扰电平,如果平均干扰电平低于-105 dBm,则可以进行互调测试;

4)最后启动无源互调测试,分别对天馈系统测试反射互调。如 若天馈系统存在互调干扰(工程经验值5阶互

调大于-95dBm),可采用分段定位方法,具体方法参考文献[4]。

经测试该站点天馈系统反射互调发现,天馈系统5阶反射互调为-58.5dBm,该站点通过分段故障定位测试排查了3dB电桥和40耦合器的故障,且1/2跳线接头制作不良也引起互调干扰,具体测试数据参考表1。

表1 某商业广场反射互调测试数据

端口测试内容3阶互调

(dBm)

5阶互调

(dBm)

整改后5阶

互调(dBm)

测试说明

TX/RX 天馈系统 -42.7 -58.5 存在互调干扰

TX/RX 架顶1/2跳线 -45.2 -54.3 -131.6 重新制作室内1/2跳线接头

TX/RX3dB电桥 -55.3 -75.5 -110.8 3dB电桥故障,更换后符合要求

TX/RX整改后天馈系统 -75.8 -102.3经整改后该天馈系统无互调干扰

RX天馈系统 -65.2 -71.7 存在互调干扰

RX 架顶1/2跳线 -95.2 -114.3无互调干扰

RX 40dB耦合器 -58.4 -73.2 -103.1 40dB耦合器故障,更换后符合要求

RX 整改后天馈系统 -85.8 -113.1经整改后该天馈系统无互调干扰

3.3 指标对比

该小区通过对分布系统互调干扰的排查和器件替换后,在上行质差切换和上行平均干扰电平得到十分明显的改善,如图5及图6所示。

图5 上行质差切换整治前后变化

图6 上行平均干扰电平整治前后变化

4.降低室内覆盖互调干扰的建议

4.1提高器件性能要求降低互调干扰

器件性能是网络质量的基础,室分无源器件性能典型问题包括两类,一类是器件故障,另外一类是器件关键指标恶化,尤其是无源互调指标。器件性能下降比较隐蔽,一直以来都难以有效进行监控和评估,因此使用高性能无源器件并保证器件性能是控制干扰的有效切入点。

建议室分无源器件功分/耦合器及电桥,互调要求为‐150dBc@43d B m,具体参考下表1。另外考虑未来系统兼容升级需要及室分系统替换复杂性和困难性,强烈建议功分耦合器等宽频带器件,其工作频宽从800‐2500MHz 拓宽为700‐2700MHz,目前中国移动正在2600‐2700MHz频带进行TD LTE 试点,因此将带宽拓宽到2700 MHz非常有必要。

表2 室内分布高品质无源器件性能要求

器件名称 型号规格 互调要求 接头 备 注

耦合器 700-2700MHz

5/6/7/10/15/20/30

/40/50dB

-150dBc DIN/N

功分器 700-2700MHz

2/3/4/功分

-150dBc DIN/N

移动GSM滤波器 890-909/935-954 -150dBc DIN

3dB电桥 700-2700 -150dBc DIN/N 2进2出/2进1出

多频合路器 -150dBc DIN

连接器 -150dBc DIN 有力矩要求

连接器 -150dBc N 有力矩要求

100W负载 -150dBc DIN/N

室分系统是典型的分支结构,越靠近信源,功率越高,越远离信源,功率越低。而无源互调干扰与功率直接相关,如果由于种种限制(经济或者场地)导致不能对所有室分无源器件进行替换,至少要保证对靠近信源处无源器件进行更换,按照室内覆盖功率分配链路计算,对所有承受功率可能大于2W的无源器件必需替换高性能器件。

表格2中‐150dBc@2×43dBm的意义是无源器件输入43dBm(20W)两路连续波(0W)信号,产生的三阶互调要求小于-107dBm(或150dBc)。因为无源干扰电平与功率相关,在2W输入功率情况下其产生的三阶互调电平远小于-107dBm,大约在-127 dBm以下。这样看来对于下行链路承受功率大于2W的器件互调要求满足‐150dBc@2×43dBm,似乎有矛盾。真实原因在于互调测试是按照单频连续波进行,而真实网络上传输的信号是具有一定带宽的调制信号,假设信号带宽为B,其产生的K阶互调信号的频谱宽度为KB[ 3],譬如GSM信号为200K,其产生的三阶互调信号带宽为600K,五阶互调信号带宽为1000K,如图7所示。

图7 无源互调干扰频谱扩展

目前GSM网络承载很高的话务量,一般室内覆盖都采用多载波的频点配置,这样多个互调信号会叠加覆盖整个接收带内。N路具有一定峰均比的信号叠加(平均功率Pa,峰值功率Pp),遵循以下原则,平均功率直接线性相加叠加等于nPa,而峰值功率按照平方率叠加即n2Pa。很多室内覆盖网络都可以观察到这种现象,当逐步增加载频数时,其接收带内底噪会明显提升。图8为用频谱仪实测互调干扰的一个频谱波形,可以看到接收带内底噪整个都被抬了起来,而且越靠近发射频带,底噪抬得越高。

为避免多载频调制信号产生叠加互调干扰信号影响接收,必需严格要求器件互调性能,参考国外室外覆盖要求,150dBc@2×43dBm是比较合适的指标,不能再降低。

图8 互调干扰导致接收带内底噪抬升

2.2 工程施工规范化

施工过程中的工程质量问题,主要包括两方面问题,一方面是是接头制作质量,仍然需要进一步提高。很多室内分步互调干扰站点当中,很多不利都是由接头制作质量问题引起的,比较常见的如接头制作松动导致接触不良,接头内导体过长,接头内外导体连接(俗称皮包芯),接头内导体未磨平等。特别是接头内导体未磨平这种情况,需要引起特别重视,线缆内导体被斜口箝剪断,但未被打磨,从而使线缆的线性度变差,引起互调干扰。图9发现的未磨平的接头,可以看到内导体边缘极不平整,中心有一明显一字小突起,为斜口箝剪切所致。图10为某站点发现的问题接头,可以看到为跳线内心顶端有一尖形突起,显然是由于跳线内芯保留过长,接头制作时又用力旋转,内芯与接头摩擦所致。

图9 未磨平的问题接头 图10 内芯过长的问题接头 工程质量问题的另外一方面是接头没有用力矩扳手拧紧。互调产生激励互调最主要有两类,一类是材料非线性,另外一个是接触非线性。如果接头没有拧紧会导致接触非线性出现,从而导致大的互调干扰出现,现网中很多互调问题都是由于接头没有拧紧导致,其比例甚至超过接头制作不良。互调与驻波比指标是完全不同的两个指标,两者之间没有直接关系,驻波比指标与接头是否拧紧关系不大,只要内外导体接触上,即使不紧密,测试结果基本上也是正确的。目前室分站点工程验收电路参数基本只测量驻波比,为方便调整替换,工程施工中很大接头都是用手拧紧,这样操作导致驻波比测试通过,而设计互调指标存在很大问题。接头没有拧紧的另外一个极端是过紧,用于室分接头很多是圆形接头,没有办法用力矩扳手,导致施工中很多使用大力钳拧紧接头,用力过大导致内导体损害或者产生碎屑,会严重影响互调性能。规范操作是要求所有接头都是六角形的,按照接头类型按照一定力矩拧紧接头,我们建议7/16接头使用17.5N 力矩扳手,N 形接头使用5N 力矩扳手。

图11 7/16与N 型力矩扳手

4.2 频点规划规避互调干扰

中国移动GSM 网络/DCS 网络互调干扰计算如表所示,对于GSM 网络,对于19M 移动GSM 系统,其三阶互调干扰不落到接收带内,但是五阶互调干扰会落到接收带内,排查互调问题是必须考虑五阶互调影响。移动DCS 网络,只有七、九阶互调会落到接收带内,一般情况其干扰电平较弱,可以不予考虑。

表3 中国移动GSM/DCS 系统互调干扰分析

下行 接收 935

954

890 909 结论

IM3 916 973

IM5 897 992 存在互调干扰 IM7 878 1011 中国移动GSM900

IM9

859 1030 7阶、9阶互调较弱 中国移动

1805

18301710

1735

IM3 1780 1855 IM5 1755 1880 互调干扰未落入上行

IM7 1730 1905 DCS1800

IM9

1705

1930

7阶、9阶互调较弱

当室分系统无法对问题器件进行升级替换时,可以考虑频点规划降低互调干扰。我们将移动GSM 19M 频段分为A,B,C 三段,使用原则如下:

1)单独使用A、B 或C 段频点资源,不会产生5阶互调; 2)B 段与C 段可组合使用,不会产生5阶互调; 3)A 段与B 段可组合使用;不会产生5阶互调;

4)A 段与

C

段组合使用时,产生反射互调的概率较大。

图12 中国移动19M GSM 系统频段划分

5. 结论

根据互调干扰产生机理,影响室分系统互调干扰信号大小的因素主要有两个: 1)进入天馈系统的载波个数,载波数越多,互调产物就越多,互调干扰就越大。

2)每个载波进入天馈系统的功率,功率越大,互调产物的幅度就越大,互调干扰就越大。

要从根本上解决互调问题,必须从提高器件性能入手,只有通过使用高性能无源器件,同时加以规范施工才能从根本上解决无源互调干扰问题。根据现场多载波调制信号使用要求,强烈建议室分无源器件功分/耦合器及电桥,互调要求为‐150dBc@43dBm ,尤其是靠近信源部分。

参考文献

[1]王辉球.无源互调问题的初步研究.西安:航天工业总公司504研究所,1997

[2]W.David. Passive Intermodulation Distortion in Connectors, Cable and Cable Assemblies. Microwave&RF, 2001,3 [3]Sami Hienonen. STUDIES ON MICROWA VE ANTENNAS: PASSIVE INTERMODULATION DISTORTION IN ANTENNA TRUCTURES AND DESIGN OF MICROSTRIP ANTENNA ELEMENTS. Dissertation for the degree of Doctor,2005

[4]基站天馈系统干扰排查作业指导,黄逊清,2010.12, https://www.360docs.net/doc/a814183759.html,/pim/index.asp

【作者简介】

张需溥:毕业于上海大学,工学博士,现为杭州紫光网络技术有限公司仪表事业部总经理,主要进行天线与电磁波传播、射频电路技术、天馈现场测量等领域的研究工作。

黄逊清:工程师,毕业于大庆石油学院,通信工程专业,现任杭州紫光网络技术有限公仪表事业部技术服务总监,负责互调仪产品技术服务工作,主要从事移动通信基站天馈系统性能评估和上行干扰网络优化项目。

互调干扰原理介绍及分析

一、互调干扰原理 互调干扰是在多个载频的大功率信号条件下,由于部件本身非线性引起信号互调,如果互调产物落入接收频段,将会干扰正常通信。分为有源互调与无源互调,无源互调(PIM)特性通常是接头、馈线、天线和滤波器等无源部件在多个载波的大功率信号条件下,由于部件本身存在非线性而引起的互调效应。通常认为这些无源部件是线性的,但是在大功率条件下,无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不同材料金属的接触;相同材料的接触表面不光滑;连接处不紧密;存在磁性物质;天馈老化;跳线接头氧化等。有源互调一般指信号在合路器进行合路时其互调交调产物落在接收频带内,导致小区高干扰。 当两个射频信号输入到一个非线性元件中,或者通过一个存在不连续性的传输介质时,将因为这种非线性而产生一系列新的频率分量,新产生信号的频率分量满足如下频率关系,设输入的两个信号的频率为f1,f2(绝对频率),产生的互调产物如下: 三阶互调:2F1-F2,2F2-F1 互调产物带宽为600K 五阶互调:3F1-2F2,3F2-2F1 互调产物带宽为1M 七阶互调:4F1-3F2,4F2-3F1 互调产物带宽为1.4M 九阶互调:5F1-4F2,5F2-4F1 互调产物带宽为1.8M 其中阶数越低,互调产物分量约高,互调产物带宽为源信号带宽(GSM为200K)*阶数 中国移动互调分量如下表所示:

对于GSM900频段,对上行造成严重干扰的主要是五阶和七阶互调产物,对于1800频段,主要为七阶和九阶互调。由于GSM900频段传输损耗小,且较低阶的互调产物就能落在上行频带内,故出现互调干扰几率要远大于1800频段。 二、互调干扰特点对网络产生影响 互调干扰产物随信号源功率增大而明显增加,一般信号功率增加1dB,互调产物往往增加3dB。互调干扰的典型特征是小区业务量较小时,此时因发射功率较低,互调产物电平低,上行干扰不明显;当小区业务量较大时,互调产物随发生功率升高而明显抬升,小区出现严重上行干扰,即体现出上行干扰带变化随小区业务量变化而随之改变的特征。 互调干扰作为一类上行干扰,对用户感知和无线接通率、上行语音质量、掉话率、切换成功率等重要KPI指标产生严重影响。 三、互调干扰判断方法 业界对互调干扰的判断方法一般如下: 1、首先检查小区干扰带4~5级占比是否随业务量变化而明显变化,如小区忙时上行干扰严重而小区闲时上行干扰不明显,则存在互调干扰的可能性较大。 2、如果小区存在上行干扰时,降低小区发射功率或通过参数调整将小区下用户切走,小区干扰带明显降低,则说明小区存在互调干扰。 为方便互调干扰定位,华为在维护台上引入开启空闲BURST操作。开启空闲BURST后,基站在空闲的信道上也会发送空闲突发脉冲,摸拟大量用户占用场景,使所有载频都满功率发射。在小区空闲场景,开启空闲BURST后,上行干扰带4~5级占比明显增加,则说明小区存在互调干扰。 四、互调干扰定位及处理 现网基站和分布系统可能产生互调的节点:

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

高干扰小区排查方法全解

高干扰小区排查方法 1.概述 目前GSM干扰主要来自网内和网外的干扰。网内干扰主要是频率资源有限,频率复用越紧密,网络容量越大,复用距离越小,干扰就越大;网外干扰主要来自GSM往外的干扰,如干扰器、雷达等产生影响。干扰的大小是影响网络的关键因素,对通话质量、掉话、切换、拥塞均有显著影响。 经筛选,目前石家庄网络共177个小区存在4-5级干扰,如下: 目前7个小区存在外部干扰,需要用相关的扫频设备进行扫频;134个宏站存在频点或者互调干扰,可修改频点或者携带相关设备仪器进行天馈排查;另外36个室分小区存在互调干扰,需要排查室分干放设备,小区列表如下: 干扰小区列表.xls 2.干扰排查 目前干扰发现主要是测试和华为OMC操作台。上行干扰是BTS在空闲时可以利用一幀中的空闲时隙对其TRX所用频点的上行频率进行扫描,并统计到五个等级干扰带中,通过WEB LMT可实时观察目前载频干扰带分布和等级,在话统可以提取出五个等级的干扰带的统计。石家庄现网中统计4-5级干扰带所占比例,4-5级干扰带比例越高,则小区的干扰越强。

3.干扰处理流程 根据上图,在OMC的操作台的话统统计中统计4-5级干扰带比例,确定小区是否存在上行干扰。在凌晨时段定时发空闲的Burst后,根据干扰带变化和最近一段时间中全天的走势和强度,以及所有干扰小区的分布区域,初步确定是否存在外部干扰,如果确定外部干扰,则要对外部干扰区域进行扫频。 如果确定不是外部干扰,可通过iManager Nastar检查该小区的频点,从频点的干扰程度和复用程度判定是否修改频点。确定不是频点干扰后,可将干扰定位为设备的互调干扰,根据互调干扰定位方法进行分析。 3.1.外部干扰小区排查 观察话统统计,SJGH0115师大图书馆在早忙时8点干扰突然上升,通过对比前天的干扰带指标,干扰是突发出现,对用户的通话质量造成了一定的影响,该站掉话次数明显增加。下图为造成干扰的区域:

[VIP专享]NT-CQT与室内分布系统(IBS)优化工作流程

CQT and Inbuilding System Optimisation Work Process 通信质量拨打测试(CQT)与室内分布系统(IBS)优化工作流程 1.Introduction 简介 This document outlines the CQT and Inbuilding Systems optimisation procedure for the CMCC network in Xi’an. 本文件概述了西安移动通信公司的CQT 与室内分布系统优化工作流程。 The CQT Methodology defined by the CMCC HQ is to benchmark the network performance as perceived by customers inside a building. 由CMCC总部所制定的CQT测试方法主要是用来评估室内用户可感知的网络的性能。 The CQT process/result itself is somewhat subjective and is not a basis for in-depth analysis of the network due to the lack of samples and engineering data. CQT的测试过程/结果本身由于缺乏客观的工程数据和足够的采样,并非基于对网络 性能的全方位的深入分析,所以在某种程度上是比较主观的,有一定的局限性。 To ensure its success, the CQT for a building should be performed after the surrounding or in building cells have been thoroughly optimised. 为保证CQT测试的成功,对某一楼内的CQT测试应该在对其楼内或者其周围小区的全面优化之后进行。 The optimisation procedure outline here is to ensure an acceptable level of network performance inside buildings where there are dedicated IBS providing dominant coverage. 本用户流程是为了保证主要由室内分布系统提供覆盖的建筑物内的网络性能能达到 一个可以令人接受的水平。 For buildings where coverage is provided by Macro cells, apply normal optimization procedures. 对于那些已被宏小区覆盖的建筑物内的网络性能,适用常规的优化流程。 2.Candidate Buildings 候选建筑 In con-junction with CMCC, select a certain number of buildings per month for optimization/CQT. The resource scheduling should be balanced that with Drive Test work loads. 移动通信公司每月选定一定数目的建筑物(CQT候选点)供进行的CQT测试和优化, 确定需调查的CQT候选点时,应注意其测试和优化工作量要与路测的工作量相平衡、合理搭配。

室内分布系统的工作原理及技术要求

室内分布系统的工作原理及技术要求

一、室内分布系统原理 (1) 1.概述 (1) 2.室内分布系统组网 (2) 3.CDMA与GSM共用信号分布系统的组网 (9) 4.多系统共用信号分布系统组网 (11) 5.室内分布系统的监控 (1) 6.共用信号分布系统组网时系统间的干扰协调 (2) 二、室内分布系统的技术要求 ............................................................................... 错误!未定义书签。 1.系统技术指标 ................................................................................................... 错误!未定义书签。 2.天馈线及无源器件技术指标 ........................................................................... 错误!未定义书签。 三、室内分布系统的相关技术 ............................................................................... 错误!未定义书签。 1.室内分布系统的室内电磁传播模型 ............................................................... 错误!未定义书签。 2.室内分布系统的噪声分析 ............................................................................... 错误!未定义书签。 3、室内分布系统的上下行平衡 ......................................................................... 错误!未定义书签。 四、室内分布系统的工程建设 ............................................................................... 错误!未定义书签。 五、室内分布系统综合考评 ................................................................................... 错误!未定义书签。

上行干扰排查

上行干扰排查 近年来,各移动网络规模发展非常迅速,一方面,为了应对由于市场资费调整带来的话务压力,在某些人口密集地区(如商业区、大学城)出现了较多的大配置基站,基站分布变密;另一方面,为了解决网络弱覆盖以及投诉,网络中建设了大量的分布系统和直放站。这样,在解决网络覆盖和话务的同时也带来了其他一些问题,其中上行干扰问题显得较为突出,直接导致了网络质量的下降和用户投诉量的增加。本文基于干扰的排查提出一些方法及总结。 1.1 干扰分类 GSM系统的干扰按照频段有上行干扰和下行干扰之分,此次项目主要针对上行干扰进行排查和处理。根据我们目前在实际工作中所遇到的干扰类型,主要有以下几种情况: 直放站干扰 直放站干扰是网络优化过程中最常见的干扰之一。直放站有宽频直放站和选频直放站。宽频直放站实际上是一个宽频放大器,它将整个移动上行或下行频带放大,实现信号覆盖。宽频直放站有合法直放站和非法直放站之分,合法直放站由于设置不好,造成对基站干扰,但较多的宽频直放站干扰为非法私自安装的直放站,这是因为劣质宽频直放站价格便宜,在人口密度大,信号覆盖不好的场所经常私自安装。宽频直放站的干扰特点是频带宽,占据整个上行,且幅度不稳定。 选频直放站也是放大上行信号的放大器,但与宽频直放站不同,选频直放站仅工作在某一频率或几个频率上,因此产生的干扰比宽频直放站产生的干扰小。有些选频直放站仅在有手机业务信号时才存在,形成的干扰是间歇的。从频谱上看,选频直放站具有与正常手机信号相同的频谱,只是手机信号是瞬间信号,选频直放站信号相对停留时间比较长。选频直放站一般价格较高,通常不是非法直放站,而是运营商自身或运营商之间的直放站设置不好造成的。 CDMA基站及其直放站的干扰 从运行频段上看,CDMA的下行频段与GSM的上行频段比较接近,在站址选择及网络规划中如果做得不恰当,势必造成对GSM的干扰,造成GSM系统接收性能的下降(干扰是相互的,但由于GSM的发射频段与CDMA的接收频段相差较远,且CDMA是自扩频通信系统,抗干扰性能较好,所以GSM对CDMA系统所造成的干扰可以忽略)。三种主要的CDMA干扰为杂散干扰、阻塞干扰和互调干扰。其中,杂散干扰与CDMA直放站(或基站)目前在890MHz附近的带外发射有关,这是接收方(GSM系统)自身无法克服的,将导致GSM系统信噪比下降,

传感器的噪声及其抑制方法

传感器的噪声及其抑制方法 1 引言 传感器作为自控系统的前沿哨兵,犹如电子眼一般将被测信息接收并转换为有效的电信号,但同时,一些无用信号也搀杂在其中。这些无用信号我们统称为噪声。 应该说,噪声存在于任何电路之中,但它对传感器电路的影响却尤为突出。这是因为,传感器的输出阻抗一般都很高,使其输出信号衰减厉害,同时,传感器自容易被噪声信号淹没。因此,噪声的存在必定影响传感器的精度和分辨率,而传感器又是检测自控系统的首要环节,于是势必影响整个自控系统的性能。 由此,噪声的研究是传感器电路设计中必须考虑的重要环节,只有有效地抑制、减少噪声的影响才能有效利用传感器,才能提高系统的分辨率和精度。 但噪声的种类多,成因复杂,对传感器的干扰能力也有很大差异,于是抑制噪声的方法也不同。下面就传感器的噪声问题进行较全面的研究。 2 传感器的噪声分析及对策 传感器噪声的产生根源按噪声源分为内部噪声和外部噪声。 2.1 内部噪声——来自传感器件和电路元件的噪声 2.1.1 热噪声 热噪声的发生机理是,电阻中自由电子做不规则的热运动时产生电位差的起伏,它由温度引发且与之呈正比,由下面的奈奎斯特公式表示: 其中,Vn:噪声电压有效值;K:波耳兹曼常数(1.38×10-23J〃K-1);T:绝对温度(K);B:系统的频带宽度(Hz);R:噪声源阻值(Ω)。 噪声源包括传感器自身内阻,电路电阻元件等。 由公式(1)可见,热噪声由于来自器件自身,从而无法根本消除,宜尽可能选择阻值较小的

电阻。 同时,热噪声与频率大小无关,但与频带宽成正比,即,对应不同的频率有均匀功率分布,故,也称白噪声。因此,选择窄频带的放大器和相敏检出器可有效降低噪声。 2.1.2 放大器的噪声 2.1.3 散粒噪声 散粒噪声的噪声源为晶体管,其机理是由到达电极的带电粒子的波动引起电流的波动形成的。噪声电流In与到达电极的电流Ic及频带宽度B成正比,可表示为: 由此可见,使用双极型晶体管的前置放大器来放大传感器的输出信号的场合,选Ic取值尽可能小。同时,也可选择窄频带的放大器降低散粒噪声电流。 2.1.4 1/f噪声 1/f噪声和热噪声是传感器内部的主要噪声源,但其产生机理目前还有争议,一般认为它是一种体噪声,而不是表面效应,源于晶格散射引起。在晶体管的P-N附近是电子-空穴再复合的不规则性产生的噪声,该噪声的功率分布与频率成反比,并由此而得名。其噪声电压表示为: Hooge还在1969年提出了一个解释1/f噪声的经验公式: 式中,SRH和SVH为相应于电阻起伏和电压起伏的功率噪声密度,V为加在R上的偏压,N 为总的自由载流子数,α叫Hooge因子,是一个与器件尺寸无关的常数,它是一个判断材料性能的重要参数。 对于矩形电阻,总的自由载流子数N=PLWH,其中,P为载流子浓度,L、W、H为电阻的长、宽、厚。

WCDMA室内分布系统OCNS加载研究与测试

WCDMA室内分布系统OCNS加载研究与测试[摘要] 本文重点讨论WCDMA室内分布系统中的OCNS加载原理及其对 实际网络无线参数的影响,通过选取实际室内环境进行空载和加载的对比测试,最终确定了OCNS加载对WCDMA主要无线指标的影响结果,并将其应用于日常室分入网测试中。 [关键词]室内分布系统OCNS WCDMA 加载 1 研究背景 在WCDMA系统入网测试中,由于系统基本上是处于空载状态,为了验证系统在一定负载情况下的各项指标情况,根据WCDMA无线基本原理,利用物理层的OCNS信道加载,叠加下行正交噪声来代替系统负荷,从而模拟实际网络中下行负载的情况。 根据中国联通总部《中国联通WCDMA网验收规范(无线网分册)》中的室内分布系统性能验收测试方法,明确要求在进行相关功能测试时,必须满足“小区负载:本小区下行采用OCNS方式加载75%”。 本文重点讨论OCNS加载的原理,并通过小区空载和加载的对比测试,来确定OCNS加载对WCDMA主要无线指标的影响。 2 OCNS加载原理及其对网络参数的影响 OCNS(Orthogonal Channel Noise Simulator:正交信道噪声模拟器),是一种通过基站侧物理层信道参数调整进行小区模拟加载的方法。按照3GPP 25.101协议的定义,OCNS通过占用业务信道功率的方式来模拟小区负载。其下行总功率分配如下: 通过OCNS发射的伪正交信号,将对系统的EC/Io有较大程度的影响。 基于上述的原理,根据张长钢博士在《WCDMA/HSDPA无线网络优化原理与实践》(张长钢等著,人民邮电出版社,2007年)中的结论(原书5.4节),则OCNS加载对网络EC/Io指标影响如下: 为了验证实际情况下,OCNS下行加载75%对WCDMA室内分布系统网络主要参数的影响,我们选择了东莞铂尔曼酒店、广州大舜丽池酒店进行了小区空载和加载的现场对比测试,下面集中分析对比测试结果。 3 小区空载/加载对比测试结果与分析 * 广州大舜丽池酒店(华为设备,选取21层)

中国移动室内分布系统安装技术规范

1、主机安装 1.1、主机安装位置要求 1.1.1安装位置必须保证无强电、强磁和强腐蚀性设备的干扰; 1.1.2主机安装场所应干燥、灰尘小、且通风良好; 1.1.3主机安装位置便于馈线、电源线、地线的布线; 1.1.4主机尽量安装在室内。安装主机的室内不得放置易燃品;室内温度、湿度不能超过主机工作温度、湿度的范围; 1.1.5主机挂壁式安装时,主机底部距离地面为1米以上,在移动机房、交换机房等特殊机房内安装时,主机底部或顶部应与其它原有壁挂设备底部或顶端保持在同一水平线上; 1.1.6主机落地式安装时,龙门架底座或主机座应与墙壁距离0.8米,在移动机房、交换机房等特殊专用设备机房内安装时,应与原有设备保持整体协调。 1.1.7设备在条件允许的情况下尽量安装在室内。对于室外安装的主机,必须做好防雨、防水处理,以防止雨水溅湿机箱体底部,同时做好主设备的防晒、防破坏的措施;必须保证主设备便于调试、维护和散热需要; 1.2、主机的架设安装 1.2.1主机安装步骤参照使用说明书和设计方案进行; 1.2.2立式或挂式机柜的安装位置、排列顺序均应符合设计要求。机柜或机箱的安装必须垂直、牢固稳定,加固应符合设计的抗震要求; 1.2.3立式机柜与同列机架应成一条直线,无明显参差不齐,整列机架允许偏差为10mm;机柜的安装垂直度应满足上、下偏差不大于机柜高度的千分之一; 1.2.4挂式机柜的承载体必须坚固(如:建筑承重墙、柱等),具备长期稳定性;安装完毕后不得有影响美观的明显几何偏差。 1.2.5主机、分机的跳接馈线、电源线、地线均置于100X60mm的线槽内走线。1.2.6主机接地排安装于主机下方,距地面150mm-200mm紧靠垂直线槽水平固定; 1.2.7所有线头标签均距线槽10mm贴于馈线、地线、电源线上,标签字体朝上;1.2.8主机保护地、室内馈线接地,分别用16mm2地线引至主机下端接地排上,再用35mm2地线从接地排引至地网; 2、天线安装 2.1天线安装的位置,俯、仰角必须符合设计方案。 2.2天线的安装应美观、牢固,与周围墙体和天花板协调,并且不能损毁周围墙体、天花板和其它设施; 2.3安装时应带手套,禁止安装后天线上存在污迹; 2.4室内天线布放时尽量注意金属结构和墙体结构对信号的影响,选择合适的位置;2.5吸顶天线安装过程中应将天线保持与地面垂直; 2.6天线安装完毕后,应对每一处天线所处的位置做详细的标识; 3、附件(功分器、耦合器等)安装 3.1附件是指功分器、耦合器及配电箱、电表、电源插座、电源保护开关、接地排等。 3.2功分器等小无源射频器件尽量妥善安置在线槽或弱电井中,无线槽和弱电井时,要

互调干扰

互调干扰 基站互调信号的产生和对GSM网络质量的影响,必须在处理网络规划和网络优化中关注。在自然界中,当两个射频信号输入到一个非线性元件中,或者通过一个存在不连续性的传输介质时,将因为这种非线性而产生一系列新的频率分量,新产生信号的频率分量满足如下频率关系,设输入的两个信号的频率为f1,f2(绝对频率): Fn=mf1+nf2 和 Fn=mf1-nf2 最常见是三阶、五阶互调分量,因为在各阶互调分量中,三阶、五阶互调产物的幅度较高。以三阶互调为例: 2f1-f2和2f2-f1的两种频谱分量距离本身信号最近,它们最有可能对系统产生干扰,频谱分布如图所示: 图1 互调信号频谱分布图 新增信号的幅度取决于器件的非线性程度或者微波传输不连续性,衡量的指标为三阶互调指标IM3。IM3定义:该指标定义为输入两个一定电平的等幅信号,由于系统的非线性而产生的三阶互调产物与输入信号的差值。一般情况下器件三阶互调指标满足要求,在频率规划时,不考虑三阶互调的频点,但对于所使用双频网(共天馈时)或使用频带特别宽的情况,下行产生的三阶互调会影响上行的接收,在排查干扰问题时重点考虑。 天线作为无源器件和微波信号传输器件,产生互调的可能有以下几个方面: 天线输入接头的清洁程度,机械性损伤,或者多次拆装造成内部的镀银层损坏和遗留在接头内的金属屑; 天线接头安装不紧密或密封不良; 密封在保护罩内部天线阵子被腐蚀; 天线输入接头到天线阵子的馈电部分被腐蚀。

互调产物干扰接收必须满足两个基本条件: 互调产物落入接收带内。 互调产物必须达到一定的电平,按照同频干扰和基站灵敏度-110dBm要求,天线端口互调产物的最大信号电平必须满足:-110dBm-9dB(同频干扰抑制因子)+ 6dB(60m馈线损耗)=-113dBm。 对于第一个条件,以M900 两个发射信号互调产物落入接收带内为例: 在对某基站第二小区拨测中,发现很明显的噪音,这个小区中的频点依次为109、87、18、96。将计算96和18频点的下行绝对频点: F1 (18) =935MHz+0.2MHz*18=938.6MHz F2(96)=935MHz+0.2MHz*96=954.2MHz 图2 3阶和5阶互调信号分布 两者的三阶互调产物信号频率为:2F1-F2=923MHz 两者的五阶互调产物信号频率为:3F1-2F2=907.4MHz 五阶互调产物都已经落入M900 的上行频带内,对应上行信号频点为 F3=(907.4-890)/0.2=87,而87频点正好是本小区使用的频点,就可能产生干扰。 对于第二个条件,仍然以这个小区为例。 该小区采用双CDU配置,TRX输出功率40W,假设馈线损耗为6dB时,输入到天线输入端口的功率为35dBm左右,不考虑其他,仅仅按照天线互调IM3=-150dB的要求来衡量,天线端口的互调产物可粗略的估计为:35dBm-150dB=-115dBm<-113dBm,将不会因互调而产生干扰。但是,如果互调指标恶化20dB,则天线口的互调产物为-95dBm,该信号通过CDU后的输入电平为-90dBm左右,形成等级为2的干扰带(干扰带门限为缺省值时)。 对于目前中国移动(1~94号频点)和中国联通(96~124)的频段化分,通过计算没

室内分布基础知识(了解)..

室内分布系统 室内分布系统解决的问题: 近年来,随着移动通信的快速发展,移动电话已逐渐成为人民群众日常生活中广泛使用的一种现代化通信工具,同时广大移动用户对移动通信服务质量的要求也越来越高,他们已不再单单满足于良好的室外移动通信服务,而且也要求在室内(特别是星级酒店、大型商场、高级写字楼等)能享受优质的移动通信服务。 而现代建筑由于多以钢筋混凝土为骨架,再加上全封闭式的外装修,对无线电信号的屏蔽衰减特别厉害,使通话质量严重下降。具体影响如下,在大型建筑的低层、地下商场、地下停车场等环境下,基站接收信号十分微弱,导致手机无法正常使用,形成了信号覆盖的盲区;在大型建筑的中间楼层,由于手机可以接收到周围多个不同基站的信号,使基站信号发生重叠,产生乒乓效应,严重影响了手机的正常使用;在大型建筑的高层部分,进入室内的无线信号非常杂乱,既有附近几个基站的信号,也有不远处基站的信号通过直射、折射、反射、绕射等方式进入室内,导致室内接收信号忽强忽弱极为不稳定,同频、邻频干扰十分严重。手机在这种环境下使用,在空闲状态时小区重选频繁,在通话过程中频繁进行切换,话音质量受到极大影响,容易产生掉话现象。另外,在有些建筑物内,虽然手机能够正常通话,但是用户密度太大,信道十分拥挤,手机上线困难。 因此,如何解决好室内信号的覆盖问题,满足广大用户的需求,提高网络质量,已变得越来越重要,也成为网络优化工作的一个重点。为解决以上所说的室内信号覆盖不理想的问题,目前最有效的解决方法是在建筑物内安装室内覆盖分布系统。就是将基站的信号通过有线方式直接引入到室内的每一个区域,再通过小型天线将基站信号发送出去,从而达到消除室内覆盖盲区、抑制干扰的目的,为楼内的移动通信用户提供稳定、可靠的室内信号,使用户在室内也能享受高质量的移动通信服务。 室内分布系统概述 1、室内分布系统的组成 室内分布系统主要由三部分组成:信号源设备(微蜂窝、宏峰窝基站或室内直放站);室内布线及其相关设备(同轴电缆、光缆、泄漏电缆、电端机、光端

室内分布系统总体方案

内部 中国联通室内分布系统工程 总体方案 建设单位:中国联合通信有限公司 广州杰赛通信设计院 2001.4

目次 一. 概述 (1) 1. 项目背景与建设的必要性 (1) 2. 总体方案的研究范围 (1) 3. 简要结论 (1) 二. 工程建设的必要性 (2) 1. 移动网络发展的需要 (2) 2. 促进移动通信市场的发展 (3) 3. 直接经济效益 (3) 三. 建设目标 (4) 四. 总体要求 (5) 五. 项目实施管理方法 (6) 1.1. 项目实施方案 (6) 1.2. 本项目范围 (6) 1.3. 分公司上报要求 (7) 1.4. 建设模式与管理方法 (7) 六. 建设计划及工程进度 (7) 七. 建设规模与投资估算 (8) 1.1. 建设规模 (8) 1.2. 投资估算 (8) 八. 附表 (9)

九. 附件10

一.概述 1.项目背景与建设的必要性 中国联通经过六年的移动通信网络建设,目前已建成覆盖全国(除西藏以外)的GSM 数字移动通信网络,并正在进行覆盖全国的CDMA数字移动通信网络建设,随着市场的快速发展,逐渐成为我国第二大移动通信运营商,取得的市场份额,极大的促进了我国移动通信事业的发展与市场竞争体制的形成。 随着移动通信事业的深入发展和移动通信网络建设步伐的不断加快,移动电话在大型建筑物内、地下公共场所等室内区域使用的机会增加,而且,对通信质量要求更高的数据业务也将大部分集中在这些室内场所,这就迫切需要网络有良好的室内覆盖环境,以提高全网的总体质量,从而增强市场竞争力,进一步争取用户。但部分特殊场所仅通过基站从外部覆盖,无法达到满意的效果,只有通过室内分布系统的建设才能实现良好的室内覆盖。通过调查,中国移动从1997年开始进行室内分布系统的建设,目前在全国已建有大量的室内分布系统,较好的解决了星级酒店、高档写字楼、大型商场及其他重要公共场所等大型建筑物的室内覆盖,并在今年“3.15消费者权益日”提出网络已覆盖80%的三星级以上酒店和高档写字楼、重要公共场所的承诺,目前仍在继续这一方面工作。 在此情况下,为提高联通移动通信网的质量,增强市场竞争力,建设必要数量的室内分布系统改善大型建筑物和重要地下公共场所的室内覆盖势在必行。 2.总体方案的研究范围 本文件为中国联通移动通信网室内分布系统建设总体规划报告。 本报告包括的主要内容如下: 工程建设必要性 工程建设目标 总体要求 项目实施管理方法 建设计划及工程进度 3.简要结论

LTE干扰排查指导书

LTE干扰排查指导 1.1 LTE常见干扰 F频段常见干扰: DCS1800杂散干扰; DSC1800阻塞干扰; DCS1800互调干扰; GSM900谐波干扰; 其他干扰(PHS、电信FDD-LTE等); D频段常见干扰: 广电MMDS; CDMA800三次谐波; 公安机关监控的电源控制箱; 1.2 干扰波形特征 1.2.1 DCS1800杂散干扰波形特征 杂散干扰波形特征:前40个RB底噪偏高,底噪随RB数逐渐增大而降低。 举例1:cell1\cell2存在杂散干扰

举例2:cell2小区存在杂散干扰 1.2.2 DCS1800阻塞干扰波形特征 DCS1800阻塞干扰波形特征:20M带宽内100个RB噪声整体偏高。 举例1:Cell1存在阻塞干扰,整体100个RB噪声升高。 举例2:广州榕溪工业区FE1小区存在阻塞干扰,整体RB底噪偏高,去掉1865MHz~1875MHz频点后,干扰消失;

1.2.3 DCS1800互调干扰波形特征 DCS1800互调干扰波形特征:底噪高低起伏,底噪有高有低。 举例1:cell1存在DCS1800互调干扰。 举例2:LTE1、2、3小区存在互调干扰存在DCS1800互调干扰。

1.2.4 GSM900谐波干扰波形特征 GSM900谐波干扰波形特征:带内个别RB噪声较高,没有突起的RB底噪较低。 举例1:小区2存在GSM900谐波干扰 1.2.5 PHS干扰波形特征 小灵通干扰的小区NI曲线,一般会使靠近1900MHZ附近NI噪声抬升。靠近1900MHZ 处噪声至1880MHZ处噪声幅度逐渐降低。 举例1: 举例2:棠下上社2FE收到PHS干扰

无线室内分布系统的应用及优化分析

无线室内分布系统的应用及优化分析 发表时间:2019-07-22T16:35:29.833Z 来源:《基层建设》2019年第13期作者:郑鹏城 [导读] 摘要:城市建设的快速发展,室内网络覆盖问题成为当前急需解决问题,各大运用商通过网络规划等方式解决了室内外存在的网络通信问题。 广东海格怡创科技有限公司广东深圳 518000 摘要:城市建设的快速发展,室内网络覆盖问题成为当前急需解决问题,各大运用商通过网络规划等方式解决了室内外存在的网络通信问题。当前,更大运营上将工作重点不断放在了室内网络的深度覆盖。部分建筑物的结构具有独特性,建筑物内部的移动信号很容易被屏蔽。因此,有必要针对此类建筑进行无线室内系统的构建,通过分布式系统的模式来实现室内信号传输的优化。基于此,笔者对无线室内分布系统的基本原理进行了概述,主要分析和探讨了无线室内分布系统的具体应用和相应的优化措施。 关键词:无线室内分布系统;系统应用;系统优化 引言: 当前背景之下,大部分的建筑物都具备集成化的功能,其对于通信的需求也正逐步提升。确保室内信号分布和信号覆盖的质量,是建设移动通信过程中的重点。室内无线分布系统主要通过使用无线光纤建设,在城市中大部分的建筑物中有着广泛应用,效果良好,尤其是在一些大型建筑、停车场或者高铁站等场所,都应用了该系统。通过一系列实验表明,在移动信号的全覆盖优化方面,室内无线分布系统发挥了关键作用,可将信号覆盖面拓宽到最大程度。 1无线室内分布系统的基本原理及要素 1.1无线室内分布系统的基本原理 通常情况下,无线室内分布系统主要通过使用蜂窝技术建设起来,从而可获取到更清晰的信号来源。该系统主要是采用无线接入的操作模式。无线室内分布系统具有良好的适用性,在不同类型的大型建筑物中均有使用。另外,为了避免在通信过程中出现盲区问题,部分地区的室外站通过直放站的方式来引入室外信号。在无线通信过程中,使用直放站的方式更具灵活性、便捷性,而且还可有效消除移动通信中存在的相关缺陷。分布无线室内通信主要包含三部分:光缆设备、信号源与接收系统。信号源系统包括微蜂窝基站、宏蜂窝基站、直放站。在室内系统中,应当布置光端机、电端机、光缆设备和同轴电缆等。室内要配备相应的信号接收系统,系统中主要包括天线、干线放大器、功分器和耦合器等部分。 1.2无线室内分布系统要素 为了更好的保障无线室内分布系统分布更加均匀,首先应该明确使用网络的用户,由于通信网络信号的质量会对企业的发展具有重要的作用,因此应测量移动通信信号的质量。针对长期的室内网络通信系统设计的过程中,应保障通信信号能够全面的覆盖室内,这就应该测试室内的网络通信质量,分析室内信号源的流量,进而将信号源的储存流量能够确定下来。 2无线室内分布系统的具体应用 2.1密集小区建设中的应用 住宅区为建筑密集区,且人口相对集中,网络信号更加复杂和不稳定,幅值波动现象频繁,因此对于通信建设有着很高的挑战性,难度大,同时该地区对于通信有着非常高的要求。考虑到这种情况,在建设过程中,需要采取相应的优化措施。一方面,充分利用直放站应用程序,争取选择在中央建设区域安置源基地。同时,为了确保移动通信质量,还应在源基站机房中设置主单元。另一方面,最好选择在多个不同的建筑物中安装光纤传输扩展单元;为了节省房间号码,需将多个建筑中的集中源设备都安装在一个房间,此举还有利于后续的管理和维护。此外,为了实现覆盖天线的有效分布,不同建筑物均要充分利用细同轴电缆,可很大程度上提高网络监控水平[1]。总而言之,这不仅实现了网络资源的灵活配置,同时还能解决相关问题,比如:降低电磁干扰问题等。在进行系统设计与安装的过程中,该施工方案体现出了较大的简便性和灵活性,在系统监管和调试方面也很方便。 2.2大型场馆建设中的应用 大型场馆的空置性和密集性都很高,因此该场馆对于通信容量有着很高的要求。通信系统的类型不同,其设置的信息覆盖范围也各不相同,其维护工作总量也有所差别。若在大型场馆中设计分布式的室内无线通信,以上问题将会迎刃而解。在前期,可快速高效地完成系统的安装,拥有显著的技术优势。此外,分布式系统设有网络监控,对于后期通信调试极其方便。在实际的操作过程中,光纤传输的单元应布置到会场内部的各个区域。在对布置进行优化后,将多个通信设备安置在同一个房间中,不仅有利于后期的维护,同时还节约了场馆空间[2]。对于扩展单元而言,分配覆盖天线应采用同轴电缆的方式,进而实现对远程单元的有效访问。一般来说,整个建筑区域都要覆盖信号源,技术人员通过适当的调整输入主单元信号,以保证网络管理的实效性和后期维护,并有效降低分布式系统的总体成本。 2.3综合性建筑建设中的应用 在针对综合性建筑建设的过程中,建筑散射的电磁辐射对建筑会造成干扰影响,必须要予以充分考虑,并且对手术室电磁辐射的干扰问题进行妥善处理,从而确保医疗设备的运行质量。建设中可应用直放站应用程序,在建筑中央建筑统一安置源基地;并且在原基站机房中安置主单元,然后在不同的建筑物单元中安置光纤传输扩展单元。此外,对于不同类型的建筑物,或者细同轴传输线的远程访问单元扩展单元而言,要确保远程访问设备周围区域使用的有线电视分配覆盖细同轴天线连接[3]。在一些特殊的领域中,比如:手术室或一些存有医疗设备的重要机房,必须确保无线光纤分布系统使用完整的监测系统。 3无线室内分布系统的优化 如果要确保室内信号的稳定性,就应当确保室内每个区域信号的稳定性。其主要思路:在组网融合的前提下,通过光纤传输的模式实现对系统的改造,以解决室内中存在的相关问题,比如空间信道阻塞等。例如,在布置分布式的室内无线系统之时,需要布置好源基地,并在主建筑物的附近进行,针对源基站机房而言,一般都在主单元的内部。与此同时,建筑内各单元均需要做好光纤传输的设置,其不仅有利于节省中心楼内部空间,还为建筑内部的管理创造了更加便利的条件。综合性建筑一般包含了拓展及远程访问单元,其传输途径可通过较细的同轴电缆实现。无线通信直放站通常都设置了小规模电源的装置,室内的地板同天线都要求设计成低功率的输出。通过优化后,在室内通信中可同时运用多条天线,因此在特殊的辐射环境中非常适用。无线室内分布系统的应用和优化,不仅可改善建筑物中的信号覆盖情况,同时无需增加额外的资源[4]。通过对无线室内分布系统应用,有利于运营商改善电磁环境和降低网络建设成本,在现有通信资源

微蜂窝及室内分布系统工程施工安装规范

微蜂窝及室内分布系统工程施工安装规范 1为保证室内分布系统工程的施工质量,明确工程质量监查的技术规范,特制定本施工规范。 2本规范既是进行工程管理与工程施工的技术指导标准,又是工程质量监理部门对室内覆盖工程进行质量检查的依据。 3为保证系统能够可靠运行,必须严格按照本规范及相关作业指导书进行施工。 1主机安装: 1.1 安装位置要求: 1.1.1安装位置必须保证无强电、强磁和强腐蚀性设备的干扰; 1.1.2主机安装场所应干燥、灰尘小、且通风良好; 1.1.3所有用电设备不得安装在管井口下方,主设备上方安装有喷淋头的必须拆除。 1.1.4主设备上方有空调、供水等管路不能拆除时,需要做防水棚防止滴漏。 1.1.5主机安装位置便于馈线、电源线、地线的布线; 1.1.6机房内地线排必须安装合格母地线,母地线必须有良好可靠接地。地线排上所有地线要有标签。 1.1.7主机安装在室内。安装主机的室内不得放置易燃品;室内温度、 湿度不能超过主机工作温度、湿度的范围; 1.1.8主机挂壁式安装时,主机底部距离地面为1米,在移动机房、交 换机房等特殊机房内安装时,主机底部或顶部应与其它原有壁挂设备底部或顶端保持在一水平线上; 1.1.9主机落地式安装时,龙门架底座或主机座应与墙壁距离0.8米, 在移动机房、交换机房等特殊专用设备机房内安装时,应与原有设备保持整体协调。 1.1.10主机安装在有防静电地板的房间内,应该先制作与防静电地板 等高的增高架,先将增高架牢固固定在地板下面,再将主机安装在增高架

上面。不允许直接安装在防静电地板上面,也不允许机架落地安装。 1.1.11微蜂窝机房内主机需加装空调挡板时,由分布厂商负责安装; 如微蜂窝机房内需做隔断,由负责安装主设备的施工单位负责,根据石棉瓦、门窗、面积等做预算,报给建设单位和监理方。 1.1.12主设备安装及传输、光缆安装在分布工程施工期限间优先进行, 室分厂家负责协调业主和各相关方面,按计划施工。机房必须安装电表,电表由安装主设备的施工单位负责。且电表安装位置要便于查看,所有联通设备不允许表外接电。 1.1.13 主机安装时工作人员应配戴干净手套,以保证设备表面的清洁。 1.1.14为避免重复计费,机房电表、电源线、地线排、地线不列入室 分材料,应在主机安装材料中计费。 1.1.15机房施工垃圾必须每日清理,保持机房整洁。 2 天线部分的安装 2.1 天线架安装: 2.1.1各类型天线支架应结实牢固,支掌杆要垂直,横担要水平,安装 位置要符合设计方案; 2.2 天线安装: 2.2.1各类型天线安装详见天线安装使用说明书,天线选用依据设计方案; 2.2.2电梯内板状天线必须使用专用支架安装。发射方向必须垂直向下, 不得倾斜安装。 2.2.3电梯井道内轿厢与井壁间隙较小不能够安装板状天线时,需经监 理确认,报设计院变更设计,方可改装对数周期天线。 2.2.4电梯井道内馈线卡间距在1.5—2.0米之间,井道内所有器件安装 要牢固、可靠。 2.2.5所有天线必须牢固地安装在其支撑架上或建筑物天花板下,安装 位置符合设计方案; 2.2.6室内天线外露安装时,必须戴干净手套操作,保证天线美观且 不破坏整体 环境;天线暗装时,必须提前通知监理,以便到现场检查。

相关文档
最新文档