造成硅片的不良原因

造成硅片的不良原因
造成硅片的不良原因

原因有很多,但是真正工艺上的原因很少,主要还是认为的因素比较容易造成多的缺角(包括很多车间里面,比如说清洗,检验等

隐裂:来料、预清洗、插片、清洗、拉运、分选;

崩边:C角、胶面、加工、搬运;

亮点:杂质;

毛边:搬运、加工。

在太阳能电池制造过程中,用氢氧化钠和异丙醇制取单晶硅时表面发花,时什么原因?

怎么样才能处理好呢?

一般来说呢是有机物没有彻底的清洗干净!第二是氢氧化钠没有清洗干净!

造成硅片线性斜的原因大概有哪些?

1线速不能低于或超过砂浆的切割能力。如果低于砂浆的切割能力,就会出现线痕片甚至断线;反之,如果超出砂浆的切割能力,就可能导致砂浆流量跟不上,从而出现厚薄片甚至线痕片等

2砂浆流量要充分

3钢线的张力

硅片出现线痕可能是由那些原因引起的?

这要看具体的发生状况及硅片线痕的走向:主要影响有砂浆的颗粒不均、跳线、主轮开槽及砂浆内有杂物。

1.原料--硅块本身就存在缺陷如杂质等,造成硅块密度不一致或者说分布不均匀,容易造成线痕;

2.辅料--辅料质量不佳,如材质不对、杂质等,另外也有可能是辅料重复使用次数过多;

3.设备--设备机台各项参数不应该版本统一,应该因机而各异;

4.人为--可能性最大因数,有意无意或者消极工作导致. 但是目前线痕是多数公司存在的普遍现象主要看线痕比率体现线切水平和成片率 .

可以从多方面考虑降低线痕: 一.原料从开方后检测下手,控制可能导致线痕的

硅块流入线切工序

二.辅料控制辅料质量和使用次数, 避免辅料造成的损失,得不偿失;

三.设备完善的保养机制独有的工艺配方

四.人员从积极方面考虑降低线痕率如奖励机制替代处罚机制主要是人员工

作积极性毕竟人在生产中起主导作用

五.完善的制程控制完善的制程检验过程, 及时发现并纠正不当操作

六.完准的数据和反舞弊制度如各大数据程序支持和反舞弊制度说到底关键在人工艺设备操作数据等等都需要靠人完成密布线痕: 密布线痕是砂浆的问题,砂浆的切割能力低,要解决这个问题可以将切割速度调整慢一点,还要在浆料问题上做的更加细致。搅拌时间延长一些。完全可以将这个问题解决好

硅片清洗出现花片是因为IPA加多了,制绂时间太段,需补加KOH或NAOH

硅片清洗后表面出现花污,且在单面边缘一固定位置,可能...

有几种可能!1前工程,也就是线切割时到泥浆洗净这块有问题。2硅片洗净是要注意,洗净前就应该可以看到脏的,把脏的一面朝上插,超声波时间稍微加长,洗净机里面补充乳酸!应该就可以了!

硅片解决方案

各种硅片不良的解决方案 一。断线:如何让预防断线;断线后如何处理(M&B。NTC HCT)把损失降低到最少二。硅片崩边。线式崩边点式崩边倒角崩边 三。厚薄不均:一个角偏薄,厚薄不均 四。线痕:密集线痕亮线线痕 五。花污片:脱胶造成的花污片清洗造成的花污片 接下来将对以上五种关键不良做从5M1E6个方面做详细的分析预防善后等 具体是什么参数比如0.10钢线要求瞬间破断力多少?1200# 1500# 2000#碳化硅的颗粒圆形度粒径大小要求黏度张力要求多少等 大家去按照这个方向去找对策做计划(P),做好可量化的点检表(D),主管亲自抓班长去督导(C),总结检查的结果进行处理,成功的经验加以肯定并适当推广、标准化;失败的教训加以总结,以免重现,未解决的问题放到下一个PDCA循环(A)。 这个虽然写的是M&B264的原因分析,但是从标准化管理角度来说,应该还是具有普遍意义的哦 断线善后处理首先做好断线记录(断线时间、机台号、部位、切深)留好线头 1. 查明断线原因及断线情况. 2. 及时上报,未经同意,不得私自处理。 3. 处理流程:1.在出线端断线,宽度不超过10毫米的直接拉线切割. 2.切深≦60mm中部或进线端断线,以30mm/min直接升起,迅速布线,8000流量砂浆冲洗,冲片时在线网上铺上无尘纸, 冲开粘在一起的片子后,迅速把晶棒降到距线网2mm处,然后 以10mm/min的进给认真仔细的“认刀”。3.中部或进线端断线,切深在50mm---80mm之间的,以10mm/min的速度升料到距进刀处30--40毫米,,停止。线速调到2m/s,以2%走线1cm,以调平线网,停止。打开砂浆8000流量均匀冲片子。把晶棒两侧的线网小心的剪掉(剪时要用手捏着),留出3-4厘米的线头,另一端不剪.(进线端有线网的一定要保留该部分线网,以便重新布线.剪两侧线网时一定要用手或其他夹紧物,夹紧预留的线网头.)布线网,重新切割。4进线端或中部断线切深超过80mm的视情况能认刀的就认刀否则就反切或直接拉线正向切割。 4.进线端断线,第一次断线,切深在80mm.1换掉放线轮,用一个空的收线轮来代替。以低于原2N(左19和右21)的张力,切割线方向改为:右,其他参数不变,手动2m/s的线速走1m,不要开砂浆。2把晶棒提升至30---40mm处,重新对接焊线,焊线时要焊接均匀,焊接点的点径要和线径相同。经15N的线速走线300——400米,改张力为自动切割的张力,每秒1米,不开沙浆,走到出线端5米时,把张力改为15N,待线头在收线轮上绕2——3圈,改回原来的张力。把晶棒压到断线位置误差在0.05mm,打开砂浆。以1m/s速度的20%,走上1m,经班长确认无误后进行切割。 5.经上环节中必须处理好线网(其中包括,碎片、胶条、沙浆颗粒)在升晶棒前,把胶条去

太阳能电池硅片缺陷检测

硅片缺陷自动检测仪 中科院上海光机所研制成功“硅片缺陷自动检测仪”样机(图1),灵敏度优于180纳米(图2),检测速度30片/小时(8英寸硅片),拥有6项专利(3项发明),具有自主知识产权。该类型设备市场非常大,目前我国完全依赖进口,单台价格达千万元人民币以上。该样机研制成功,对于改变我国IC专用检测设备长期依赖进口局面、研制和开发国产化设备取得重要进展。该技术还可用于检测卫星用太阳能电池帆板碎片(图3)以及光学元件表面疵病。 An Automated Wafer Defects Detection System An automated wafer defects detection system has been developed in Shanghai Institute of Optics and Fine Mechanics, CAS. The photograph of this detector is shown in figure 1. The apparatus can detect defects of size of 180nm on wafer surface, with velocity of 30 pieces per hour for 8 inch wafer. The oscilloscope signal is shown in figure 2. This type of detecting apparatus will have large demand in China in future. It entirely depends on importing now and its unit price outvalues ten millions yuan. Therefore, the successful development of this detecting apparatus (having 6 Chinese patents) is very important to change the situation of depending on importing and manufacture home-made products. This detecting technology can also be used to detect flaws on surfaces of solar cell array and large-caliber optical elements. The oscilloscope signal of detecting solar cell array is shown in figure 3.

电池片等级分类表

1.目的 为规范成品太阳电池片的外观判检工作,保证检验项目完整、检验作业方法和检验数据准确;统一生产、质量、销售认识以满足顾客所需,特制定本本电池片检验标准。 2.适用范围 本标准内部适用,检验范围为本公司生产的单多晶硅太阳能电池片。 3. 工作职责 质量管理部负责外观判检项目的具体实施,对所有成品太阳电池片进行目测全检;所有检验人员严格按照本文件规定进行操作。 4. a判检工具 PVC 手套、日光灯、塞尺、外观判检模具、直尺、塑料垫片、插片盒、高密度泡沫盒、黑色油笔、口罩。 b判检作业条件 1、照度800lx 日光灯下; 2、洁净水平的判检操作台面上; 3、每片电池片自然水平放置于判检操作台面,不得人为挤压; 4、佩戴PVC 手套、轻拿轻放,保持3 秒/片检片速度; 5、统一由一个检验员先进行背面判检再由另外的检验员进行正面判检,避免判检翻片过程中的电池片损伤。 6、判检人员保持直立坐姿,从正上方(视线与判检水平桌面呈80°~90°)对电池片进行观测,前胸距离电池片中心点水平距离约16cm,人眼距离电池片中心点视线距离约28cm 5. 检验标准 (一)包括各等级的分类、检验项目及说明、各等级产品的接收条件等,列于下表: 检验项目及说明 A类B类C类 A级A1级B1级B2级C级1.效率光电转换效率(Eff.) 2.正面 次栅断 开无 断栅宽度L≤1 mm, 数量≤3条 断栅宽度L>1 mm, 数量≤3条 超过B1标准 3.正面 栅线结 点 无无 数量≤2处, 且长、宽分别小 于2 mm和0.3 mm 超过B1标准L

4.正面是否漏 浆由网版原因引起的漏 浆 无无 漏浆面积≤ 1mm2,数量≤2 个 超过B1标准 5.正面 主栅缺 损无无 缺损面积≤ 4mm2 超过B1标准 6.正面印刷图案偏 离因为硅片与网版未完 全对准而引起的图案 偏离无 印刷边界到硅 片边沿的距离 差别≤0.5 mm 印刷边界到硅 片边沿的距离 差别0.5 mm<d <2mm 印刷边界到 硅片边沿的 距离差别0.5 mm<d< 2mm 超过B类标 准为等外 品 7.正面 色差PECVD沉积氮化硅减 反射膜的色彩及均匀 性 单片蓝色, 色彩均匀, 且同一包 电池片的 色彩一致 单片色差肉眼 观察不明显, 且同一包电池 片的色彩一致 肉眼可见色差, 透过毛玻璃观 察不明显;且同 一包电池片的 色彩一致 超过B1标 准;同一包色 彩一致 8.正面色斑. 因制绒或脏污引起的 色彩不均匀 无 轻微色斑面积 总计≤1.5cm2, 无点状色斑 色斑面积总计 ≤4cm2 严重色斑 9.黄金 斑PECVD时电池片正面被颗 粒掩盖引起 无 色斑面积≤ 1mm2,数量≤3 个 色斑面积≤ 1mm2,数量>3 个 超过B1标准 10.正面玷污因各种原因引起的玷 污 无无 沾污面积≤ 1mm2,数量>3 个 超过B1标准 11.正面划伤电池工艺过程中因各 种原因造成的正面划 伤、绒面破坏 无 轻微划伤,长 度<5cm 超过A1标准 12.正面水痕去除磷硅玻璃层后,经 清洗、烘干(或甩干) 后留下的水痕 无无 水痕颜色较浅, 长度≥5cm;水 痕颜色较明显, 长度<5cm 超过B1标准 13.正面指印操作过程中在电池片 正面留下的指纹 无 轻微指纹,色 差较浅 引起色差 引起较重色 差 d

硅材料基础知识

导体:导体是很容易导电的物质,电阻率约为10-6-10-8Ωcm, 绝缘体:极不容易或根本不导电的一类物质。 半导体:导电性能介于导体和绝缘体之间的一类物质,目前已知的半导体材料有几百种,适合工业化的重要半导体材料有:硅、锗、砷化镓、硫化镉,电阻率介于10-5-1010Ω(少量固体物质如砷、锑、铋,不具备半导体基本特性,叫做半金属。 冶金级硅(工业硅):将自然级自然界的SI02矿石冶炼成元素硅的第一步,冶金级硅分为两类:1、供钢铁工业用的工业硅,硅含量约为75%。2、供制备半导体硅用,硅含量在99.7%-99.9%,它常用作制备半导体级多晶硅的原料。 多晶硅:1、改良西门子法,2、硅烷法,3、粒状硅法。 改良西门子法:多晶硅生产的西门子工艺,在11000C左右德高纯度硅芯上还原高纯三氯氢硅,生成多晶硅沉积在硅芯上。过程:1、原料硅破碎;2、筛分(80目)——沸腾氯化制成液态的SIHCL3——粗馏提纯——精馏提纯——氢还原——棒状多晶硅——破碎——洁净分装。 硅烷法:原料破碎——筛分——硅烷生成——沉积多晶硅——棒状多晶——破碎、包装。单晶硅:硅的单晶体,具有基本完整的点阵结构的晶体,不同的方向具有不同的性质,是一种良好的半导体,纯度要求达到99.9999%甚至达到99.9999999%用于制造半导体器件、太阳能电池等。 区域熔炼法:制备高纯度、高阻单晶的方法。 切克劳斯基法(直拉法):制作大规模集成电路、普通二极管和太阳能电池单晶的使用方法。硅棒外径滚磨:将单晶滚磨陈完全等径的单晶锭。 硅切片:硅切片是将单晶硅原锭加工成硅圆片的过程(内圆切片机刀口厚度在300-350um,片厚300-400um。线切机刀口厚度不大于200u,片最薄可达200-250u.). 硅磨片:一般是双面磨,用金刚砂作原料,去除厚度在50-100u,用磨片的方法去除硅片表面的划痕,污渍和图形,提高硅片表面平整度。用内圆切片机加工的硅片一般都需要进行研磨。 倒角:将硅切片的边沿毛刺、崩边等倒掉。 抛光片:大规模集成电路使用的硅片。 硅材料电性能的三个显著特点: 1、对温度的变化十分灵敏,当温度提高时,电阻率将大幅度下降。 2、微量杂志的存在对电子的影响十分显著,纯硅中加入百万分之一的硼,电阻率就会 从2.14*103下降至4*10-3Ω。 3、半导体材料的电阻率在受到光照时会改变其数值大小。 本征硅:绝对纯净没有缺陷的硅晶体称作本征硅,本征硅中导电的电子和空穴都会由于其价键破裂而产生。体内电子和空穴浓度相等。 N型硅:在纯硅中掺入V族元素(如、磷、砷等),能够提供自由电子的杂质统称为施主杂质,掺入施主杂质的硅叫N型硅。以电子为多数载流子的半导体。 P型硅:在纯硅中掺入III型元素(如硼)以后,具有接受电子的杂质成为受主杂质,掺入受阻杂质的硅叫做P型硅。以空穴为多数载流子的半导体。 单晶:一块晶体如果从头到尾按照同一种排列重复下去叫做单晶体, 多晶:许多微小单晶颗粒杂乱的排列在一起称为多晶体。 晶体中的缺陷:点缺陷、线缺陷、面缺陷、孪晶、旋涡、杂质条纹、堆垛层错、氧化层错、滑移线等 电阻率: 高能粒子探测器:要求几千乃至上万Ω的FZ单晶。

硅片不良片判定

不合格樣品參考圖片/定義 Chips 缺口/崩邊No V-type sharp chip Length of edge chip ≦ 5mm, Depth ≦ 0.5mm, No. of chip ≦ 3 ICOS PV Wafer Inspector Saw mark 切割線痕≦ 15μm (Depth) 1. 目視檢驗 2. 使用SJ-201量測 Crack and pin holes 裂痕與針狀列口None 不可有 ICOS Microcrack Inspector Micro-crack Inclusions Surface Cleanliness 表面潔淨度 As cut and cleaned, No stains, scratch, contamination, watermark and fingerprints 表面須清洗乾淨, 無可 見斑點, 玷汙及化學殘 留物Contaminations ICOS PV Wafer Inspector Standard Wafer Specification 外觀 檢驗項目檢驗規格檢驗工具 Micro-crack, pitting holes and inclusions 內部微裂痕, 凹陷與內含物Non-penetrating, None penetrating micro crack, inclusions and holes 不可有 ICOS Microcrack Inspector 2F-11, No.32, Jiajheng 9th St., Jhubei City, Hsinchu County 302, Taiwan R.O.C. Page 1 of 3

单晶硅中可能出现的各种缺陷分析

单晶硅中可能出现的各种缺陷分析 缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷: 点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。 线缺陷:线缺陷指二维尺度很小而们可以通过电镜等来对其进行观测。 面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。我们可以用光学显微镜观察面缺陷。 体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。 一、点缺陷 点缺陷包括空位、间隙原子和微缺陷等。 1、空位、间隙原子 点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。 1.1热点缺陷 其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。单晶中空位和间隙原子在热平衡时的浓度与温度有关。温度愈高,平衡浓度愈大。高温生长

的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。间隙原子和空位目前尚无法观察。 1.2杂质点缺陷 A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子 B、间隙杂质点缺陷,如硅晶体中的氧等 1.3点缺陷之间相互作用 一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。 2、微缺陷 2.1产生原因 如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。 2.2微缺陷观察方法 1)择优化学腐蚀: 择优化学腐蚀后在横断面上呈均匀分布或组成各种形态的宏观漩涡花纹(漩涡缺陷)。宏观上,为一系列同心环或螺旋状的腐蚀图形,在显微镜下微缺陷的微观腐蚀形态为浅底腐蚀坑或腐蚀小丘(蝶形蚀坑)。在硅单晶的纵剖面上,微缺陷通常呈层状分布。 2)热氧化处理: 由于CZ硅单晶中的微缺陷,其应力场太小,往往需热氧化处理,使微缺陷缀饰长大或转化为氧化层错或小位错环后,才可用择优腐蚀方法显示。 3)扫描电子显微技术,X射线形貌技术,红外显微技术等方法。 2.3微缺陷结构

硅片等级分类及标准

硅片等级分类及标准(150×150) 一、优等品(Ⅰ类片) 1、物理、化学特性 ①型号:P 晶向〈100〉±1°; ②氧含量: ≤1.0×1018at/cm3; ③碳含量: ≤5×1016at/cm3; ④少子寿命:τ=1.3-3.0μs(在测试电压≥20mv下裸片的数据); ⑤电阻率: 0.9-1.2、1.2-3.0、3.0-6.0Ω·cm; ⑥位错密度:≤3000个/cm2; 2、几何尺寸 ①边长:125×125±0.5mm; ②对角:150×150±0.5mm; ③同心度:任意两弧的弦长之差≤1mm; ④垂直度:任意两边的夹角90°±0.3°; ⑤厚度:200±20μm; (中心点厚度≥195μm,边缘四点厚度≥180 μm) 180±20μm; (中心点厚度≥175μm,边缘四点厚度≥160 μm) ⑥TTV:≤30μm; ⑦弯曲度:≤40μm; 3、表面指标 ①线痕:无可视线痕; ②目视表面:无沾污、无水渍、染色、白斑、指印等; ③无崩边、无可视裂纹、边缘光滑、目视无翘曲; 二、合格品(Ⅱ类片) 1、物理化学特性 ①型号:P 晶向〈100〉±1°; ②氧含量: ≤1.0×1018at/cm3; ③碳含量: ≤5×1016at/cm3; ④少子寿命:τ=1.0-1.2μs(在测试电压≥20mv下裸片的数据); ⑤电阻率:0.5-0.8Ω·cm; ⑥位错密度:≤3000个/cm2; 2、几何尺寸 ①边长:125×125±0.5mm; ②对角:150×150±0.5mm; ③同心度:任意两弧的弦长之差≤1.5mm; ④垂直度:任意两边的夹角90°±0.3°; ⑤厚度:200±20μm;(中心点厚度≥195μm,边缘四点厚度≥180 μm) 180±20μm;(中心点厚度≥175μm,边缘四点厚度≥160 μm)

半导体IC清洗技术

半导体IC清洗技术 李仁 (中国电子科技集团公司第四十五研究所,北京 101601) 摘要:介绍了半导体IC制程中存在的各种污染物类型及其对IC制程的影响和各种污染物的去除方法, 并对湿法和干法清洗的特点及去除效果进行了分析比较。 关键词:湿法清洗;RCA清洗;稀释化学法;IMEC清洗法;单晶片清洗;干法清洗 中图分类号:TN305.97 文献标识码:B 文章编号:1003-353X(2003)09-0044-04 1前言 半导体IC制程主要以20世纪50年代以后发明的四项基础工艺(离子注入、扩散、外延生长及光刻)为基础逐渐发展起来,由于集成电路内各元件及连线相当微细,因此制造过程中,如果遭到尘粒、金属的污染,很容易造成晶片内电路功能的损坏,形成短路或断路等,导致集成电路的失效以及影响几何特征的形成。因此在制作过程中除了要排除外界的污染源外,集成电路制造步骤如高温扩散、离子植入前等均需要进行湿法清洗或干法清洗工作。干、湿法清洗工作是在不破坏晶圆表面特性及电特性的前提下,有效地使用化学溶液或气体清除残留在晶圆上之微尘、金属离子及有机物之杂质。 2污染物杂质的分类 IC制程中需要一些有机物和无机物参与完成,另外,制作过程总是在人的参与下在净化室中进行,这样就不可避免的产生各种环境对硅片污染的情况发生。根据污染物发生的情况,大致可将污染物分为颗粒、有机物、金属污染物及氧化物。 2.1 颗粒 颗粒主要是一些聚合物、光致抗蚀剂和蚀刻杂质等。通常颗粒粘附在硅表面,影响下一工序几何特征的形成及电特性。根据颗粒与表面的粘附情况分析,其粘附力虽然表现出多样化,但主要是范德瓦尔斯吸引力,所以对颗粒的去除方法主要以物理或化学的方法对颗粒进行底切,逐渐减小颗粒与硅表面的接触面积,最终将其去除。

半导体硅材料基础知识.1

微秒是10-6秒)。所谓非平衡载流子是指当半导体中载流子的产生与复合处于平衡状态时,由于受某种外界条件的作用,如受到光线照射时而新增加的电子——空穴对,这部分新增加的载流子叫作非平衡载流子。 对于P型硅而言:新增加的电子叫作非平衡少数载流子;而新增加的空穴叫作非平衡 多数载流子。 对于N型硅而言:新增加的空穴叫作非平衡少数载流子;而新增加的电子叫作非平衡 多数载流子。 当光照停止后,这些非平衡载流子并不是立即全部消失,而是逐渐被复合而消失,它们存在的平均时间就叫作非平衡载流子的寿命。 非平衡载流子的寿命长短反映了半导体材料的内在质量,如晶体结构的完整性、所含杂质以及缺陷的多少,因为硅晶体的缺陷和杂质往往是非平衡载流子的复合中心。 少子寿命是一个重要的参数,用于高能粒子探测器的FZ硅的电阻率高达上万Ωcm,少子寿命上千微秒;用于IC工业的CZ硅的电阻率一般在5—30Ωcm 范围内,少子寿命值多要求在100μs以上;用于晶体管的CZ硅的电阻率一般 在30—100Ωcm,少子寿命也在100μs以上;而用于太阳能电池CZ硅片的电 阻率在0.5—6Ωcm,少子寿命应≥10μs。 5. 氧化量:指硅材料中氧原子的浓度。 太阳能电池要求硅中氧含量<5×1018原子个数/cm3。 6. 碳含量:指硅材料中碳原子的浓度。 太阳能电池要求硅中碳含量<5×1017原子个数/cm3。 7、晶体缺陷 另外:对于IC用硅片而言还要求检测: 微缺陷种类及其均匀性; 电阻率均匀性; 氧、碳含量的均匀性; 硅片的总厚度变化TTV; 硅片的局部平整度LTV等等参数。 一、我公司在采购中常见的几种硅材料 1.Cell:称为电池片,常常是电池片厂家外销的产品,它实际是一个单元电池。 2.Wafer:这通常指的是硅片,可能是圆片,也可能是方片。 圆片包括:硅切片,硅磨片、硅抛光片、图形片、污渍片、缺损片。 3.Ingot:常常指的是单晶硅锭,且是圆柱形的硅锭,也有用指多晶硅铸锭的。 4.Polysilicon:通常是指多晶硅料,它又分为棒料、块料、碎料。 5.碳头料(goods with carbon):通常指多晶硅棒的下部接近石墨头的部分 6.横梁料(beam):通常是指多晶硅棒最上部的横梁,由于其处在硅棒上部,靠近炉 顶部,且过热(生成温度超过1100℃),也常是金属杂质较多的部分,常不 适合于IC工业,而作为太阳电池材料。 7.头尾料(top and tail):这是指拉制单晶锭的头部和尾部的部分,它由于电阻率 范围不在IC适用范围内,杂质浓度高(如尾料),或缺陷密度大(如头部料) 而被切下报废,但可作太阳电池的原料。 8.埚底料(Pot scrap):这是指CZ单晶拉制结束后残留于石英埚底部的余料,常用 作太阳电池片的原料。

注塑产品不良原因分析及解决方案

注塑成型品质改善原因分析 未射饱(缺料) 1.射出压力不足; 2.保压压力不足; 3.射出时间不足; 4.加料(储料)不足; 5.射料分段位置太小; 6.射出终点位置太小; 7.射出速度不够快; 8.射嘴﹑料管温度不够; 9.模具温度不够;10.原料烘干温度﹑时间不足;11.注塑周期太快,预热不足;12.原料搅拌不均匀;(背压不足,转速不够) 13.原料流动性不足(产品壁太薄);14.模具排气不足;15.模具进料不均匀;16.冷料井设计不合理;17.冷料口太小,方向不合理;18.模穴內塑胶流向不合理;19.模具冷卻不均匀;20.注塑机油路不精确﹑不够快速;21.电热系統不稳定,不精确;22.射嘴漏料,有异物卡住;23.料管內壁﹑螺杆磨损,配合不良; 毛边(飞边) 1.射出压力和压力太大; 2.锁模高压不够; 3.背压太大; 4.射出和保压时间太长; 5.储料延迟和冷却时间太长; 6.停机太长,未射出热料; 7.射出压.保压速度太快; 8.螺杆转速太快,塑胶剪切,磨擦过热; 9.料管温度太高.流延;10.模温太高﹑模腔冷却不均匀;11.注塑行程调试不合理;12.保压切换点,射出终点太大; 13.模具裝配组合不严密;14.合模有异物,调模位置不足;15.锁模机构不平行﹑精确;16.顶针润滑﹑保养不足;17.滑块﹑斜导柱配合压不到位;18.模腔镶件未压到位,撐出模面;19.进料口设计分布不均匀合理;20.产品设计导致某处內壁太薄和结尾处太远;21.小镶件组合方式不合理,易发生变形;22.镶件因生产中磨损﹑变形﹑圆角;23.镶件未设计稳固性﹑未抱合,加固;24.模腔內排气槽太深; 气泡(气疮) 1.射出﹑保压压力不足; 2.背压太小﹑原料不够扎实; 3.射出速度太快; 4.储料速度太快; 5.料管温度太高, 模具温度太低; 6.材料烘干温度﹑时间不足; 7.射退太多; 8.注塑周期太长(预热时间增加); 9.加料位置不足,射出终点太小; 10.前﹑后松退位置太长;11.机器油压不稳定;12.料管﹑螺杆压缩比不够;13.原料下料﹑搅拌不均匀; 14.料管逆流,有死角;15.模具进料口太小﹑模穴內流动不够快速;16.冷料井设计不当,冷料进入模穴;17.模具冷卻不当,模仁温度太高; 18.产品设计內壁太厚,內应力不均匀;19.原料添加剂不当,易分解析出;

硅片清洗原理与方法介绍

硅片清洗原理与方法介绍 1引言 硅片经过切片、倒角、研磨、表面处理、抛光、外延等不同工序加工后,表面已经受到严重的沾污,清洗的目的就是为了去除硅片表面颗粒、金属离子以及有机物等污染。 2硅片清洗的常用方法与技术 在半导体器件生产中,大约有20%的工序和硅片清洗有关,而不同工序的清洗要求和目的也是各不相同的,这就必须采用各种不同的清洗方法和技术手段,以达到清洗的目的。 由于晶盟现有的清洗设备均为Wet-bench类型,因此本文重点对湿法化学清洗的基本原理、常用方法及其它与之密切相关的技术手段等进行论述 3.1湿法化学清洗 化学清洗是指利用各种化学试剂和有机溶剂与吸附在被清洗物体表面上的杂质及油污发生化学反应或溶解作用,或伴以超声、加热、抽真空等物理措施,使杂质从被清除物体的表面脱附(解吸),然后用大量高纯热、冷去离子水冲洗,从而获得洁净表面的过程。化学清洗又可分为湿法化学清洗和干法化学清洗,其中湿法化学清洗技术在硅片表面清洗中仍处于主导地位,因此有必要首先对湿法化学清洗及与之相关的技术进行全面的介绍。 3.1.1常用化学试剂、洗液的性质 常用化学试剂及洗液的去污能力,对于湿法化学清洗的清洗效率有决定性的影响,根据硅片清洗目的和要求选择适当的试剂和洗液是湿法化学清洗的首要步骤。

表一、用以清除particle、metal、organic、nature-oxide的适当化学液 3.1.2溶液浸泡法 溶液浸泡法就是通过将要清除的硅片放入溶液中浸泡来达到清除表面污染目的的一种方法,它是湿法化学清洗中最简单也是最常用的一种方法。它主要是通过溶液与硅片表面的污染杂质在浸泡过程中发生化学反应及溶解作用来达到清除硅片表面污染杂质的目的。 选用不同的溶液来浸泡硅片可以达到清除不同类型表面污染杂质的目的。如采用有机溶剂浸泡来达到去除有机污染的目的,采用1号液(即SC1,包含H2O2、NH3OH化学试剂以及H2O)浸泡来达到清除有机、无机和金属离子的目的,采用2号液(即SC2,包含HCL、H2O2化学试剂以及H2O)浸泡来达到清除AL、Fe、Na等金属离子的目的。 单纯的溶液浸泡法其效率往往不尽人意,所以在采用SC1浸泡的同时往往还辅以加热、超声或兆声波、摇摆等物理措施。

硅片薄厚片问题

一、概况 切片工序是制备太阳能硅片的一道重要工序,太阳能硅片的切割原理是转动的钢线上携带着大量碳化硅颗粒,同时工作台位置缓慢下降,由于碳化硅的硬度大于多晶硅(晶体硅的莫氏硬度为6.5,碳化硅的莫氏硬度为9.5),依靠碳化硅的棱角不断地对硅块进行磨削,起到切割作用。薄厚片是衡量硅片品质的一个很重要的指标。薄厚片的存在会影响硅片合格率及电池片的生产工艺,因此这对硅片品质提出了更加严格的要求。 二、硅片厚度产生偏差的原理 硅片的切割过程是在导轮上完成的,钢线在导轮上缠绕形成相互平行的均匀线网,并以10-15m/s的速度运动,砂浆经浆料嘴均匀地流到线网,砂浆中的碳化硅由于悬浮液的悬浮作用裹覆在钢线上,对硅块进行切割。但是随着切割的进行,钢线和碳化硅都会出现不同程度地磨损,钢线的椭圆度增大,携砂能力下降,同时碳化硅的圆度变大,平均粒径减小,切割能力也有所降低,因此,通常在平行工作台运动的方向,硅片入刀点厚度小于出刀点厚度;而和硅块运动方向垂直的方向上,硅片入线侧厚度小于出线侧厚度。硅片厚度有一定的偏差范围,对于180μm厚度的硅片,其偏差范围为±20μm,超过此范围则成为不良品--薄厚片。从根本上讲,薄厚片的产生都是由于各种问题导致线网抖动而造成的。 三、薄厚片原因分析 薄厚片可分为两大类: (1)TV(ThicknessVariation厚度偏差),主要指硅片与硅片之间相同位置之间的厚度偏差,通常存在于同一锯硅片中。 (2)TTV(TotalThicknessVariation整体厚度偏差),指同一片硅片上最厚位置与最薄位置之间的偏差。薄厚片根据其在硅片内的分布位置可以分为四类:整片薄厚(TV);入刀点薄厚(TTV);硅片中部至出刀点薄厚(TTV);单片薄厚不均(TTV)。其产生原因分析如下: (1)整片薄厚: a.导轮槽距不均匀。硅片厚度=槽距-钢线直径-4倍的(碳化硅)D50,根据所需的硅片厚度要求,可以计算出最佳槽距。此外由于在切割过程中,钢线会磨损,钢线直径变小,且端口由圆形变为椭圆形,因此导轮槽距需要根据线损情况进行补偿,以保证硅片厚度均匀。 b.切割前未设好零点。正确设置零点的方法是(以HCT机床为例):将晶棒装载入机床后,手动降工作台使四条晶棒的导向条刚刚接触线网并点击触摸屏主界面设零点按钮,然后慢速将工作台升至-1.5mm位置真正设零点并命名切割编号。如果零点位置设置不当,导向条接触到线网,则在切割开始后钢线由于受摩擦力作用张力不稳,导致从入刀开始即产生整片薄厚。 c.导向条与硅块之间留有缝隙,切割开始后,随着钢线的运行,部分碎导向条被带入线网,钢线错位,由于钢线在切割过程中会瞬间定位,这样就造成硅片整片薄厚的现象。 d.导轮槽磨损严重。导轮涂层为聚氨酯材料,切割一定刀数后导轮槽根部磨损严重,导轮槽切偏,切割过程中钢线在导轮槽内由于左右晃动导致产生整片薄厚。 解决措施: a.导轮开槽后检查槽距是否均匀,且要根据线损情况对导轮槽距进行补偿。

硅片清洗及原理

硅片清洗及原理 硅片的清洗很重要,它影响电池的转换效率,如器件的性能中反向电流迅速加大及器件失效等。因此硅片的清洗很重要,下面主要介绍清洗的作用和清洗的原理。 清洗的作用 1.在太阳能材料制备过程中,在硅表面涂有一层具有良好性能的减反射薄膜,有害的杂质离子进入二氧化硅层,会降低绝缘性能,清洗后绝缘性能会更好。 2.在等离子边缘腐蚀中,如果有油污、水气、灰尘和其它杂质存在,会影响器件的质量,清洗后质量大大提高。 3.硅片中杂质离子会影响P-N 结的性能,引起P-N 结的击穿电压降低和表面漏电,影响P-N 结的性能。 4.在硅片外延工艺中,杂质的存在会影响硅片的电阻率不稳定。 清洗的原理 要了解清洗的原理,首先必须了解杂质的类型,杂质分为三类:一类是分子型杂质,包括加工中的一些有机物;二类是离子型杂质,包括腐蚀过程中的钠离子、氯离子、氟离子等;三是原子型杂质,如金、铁、铜和铬等一些重金属杂质。目前最常用的清洗方法有:化学清洗法、超声清洗法和真空高温处理法。 1.目前的化学清洗步骤有两种: (1)有机溶剂(甲苯、丙酮、酒精等)→去离子水→无机酸(盐酸、硫酸、硝酸、王水)→氢氟酸→去离子水 (2)碱性过氧化氢溶液→去离子水→酸性过氧化氢溶液→去离子水 下面讨论各种步骤中试剂的作用。 a.有机溶剂在清洗中的作用 用于硅片清洗常用的有机溶剂有甲苯、丙酮、酒精等。在清洗过程中,甲苯、丙酮、酒精等有机溶剂的作用是除去硅片表面的油脂、松香、蜡等有机物杂质。所利用的原理是“相似相溶”。 b.无机酸在清洗中的作用 硅片中的杂质如镁、铝、铜、银、金、氧化铝、氧化镁、二氧化硅等杂质,只能用无机酸除去。有关的反应如下:

硅片的等级标准

硅片的检测 1:硅片表面光滑洁净 2:TV:220±20um 。 3:几何尺寸: 边长:125±0.5mm;对角150±0.5mm、148±0.5mm、165±0.5mm; 边长:103±0.5mm、对角:135±0.5mm; 边长:150±0.5mm、156±0.5mm、对角:203±0.5mm、200±0.5mm、。 同心度:任意两个弧的弦长之差≤1mm 垂直度:任意两边的夹角:90°±0.3 二、合格品 一级品:垂直度:任意两边的夹角:90°±0.5 二级品:1:表面有少许污渍、线痕。凹痕、轻微崩边。 2:220±30um ≤TV≤220±40um。 3:凹痕:硅片表面凹痕之和≤30um 4:崩边范围:崩边口不是三角形,崩边口长度≤1mm ,深度≤0.5mm 5:几何尺寸: 边长:125±0.52mm;对角150±0.52mm、148±0.52mm、165±0.52mm; 边长:103±0.52mm、对角:135±0.52mm; 边长:150±0.52mm、156±0.52mm、对角:203±0.52mm、200±0.52mm、。 同心度:任意两个弧的弦长之差≤1.5mm 垂直度:任意两边的夹角:90°±0.8 三级品: 1:表面有油污但硅片颜色不发黑,有线痕和硅洛现象。 2:220±40um ≤TV≤220±60um。 3:硅落:整张硅片边缘硅晶脱落部分硅晶脱落。 三、不合格品

严重线痕、厚薄片:TV>220±60um。 崩边片:有缺陷但可以改¢103的硅片 气孔片:硅片中间有气孔 外形片:切方滚圆未能磨出的硅片。 倒角片(同心度):任意两个弧的弦长之差>1.5mm 菱形片:(垂直度):任意两边的夹角>90°±0.8 凹痕片:硅片两面凹痕之和>30um 脏片:硅片表面有严重污渍且发黄发黑 尺寸偏差片:几何尺寸超过二级片的范围。 注:以上标准针对的硅片厚度为220um 。 硅片等级分类及标准(150*150) 一、优等品(Ⅰ类片) 1、物理、化学特性 ①型号:P 晶向[100]±1° ②氧含量:≤1.0X1018at/cm3 ③碳含量:≤5X1016 at/cm3 ④勺子寿命:T=1.3—3.0us(在测试电压≥20mv下裸片的数据) ⑤电阻率:0.9—1.2、1。2—3.0 、3.0-6.0Ω/cm ⑥位错密度:≤3000个/cm 2、几何尺寸: ①边长:125*125±0.5mm ②对角:150*150±0.5mm ③同心度:任意两弧长之差≤1mm ④垂直度:任意两办的夹角90°±0.3° ⑤厚度:200±20 um,(中心点厚度≥195um,边缘四角厚度≥195um) 180±20 um,(中心点厚度≥175um,边缘四角厚度≥160um) ⑥TTV: ≤30um ⑦弯曲度:≤40um 3、表明指标: ①线痕:无可视线痕 ②目视表面:无粘污、无水渍、染色、白斑、指印等 ③无崩边:无可视裂纹、边缘光滑、目视无翘曲 二、合格品(Ⅱ类片) 2、物理、化学特性 ①型号:P 晶向[100]±1° ②氧含量:≤1.0X1018at/cm3 ③碳含量:≤5X1016 at/cm3 ④勺子寿命:T=1.3—3.0us(在测试电压≥20mv下裸片的数据) ⑤电阻率:0.5-0.8Ω/cm ⑥位错密度:≤3000个/cm 2、几何尺寸:

硅片检测

1618845313 一、硅片检测 硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试[url=]模组[/url]主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。 二、表面制绒 单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 三、扩散制结 太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 四、去磷硅玻璃 该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。 五、等离子刻蚀 由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空

硅片清洗的方法

硅片清洗的方法 一、硅片清洗的重要性 硅片清洗是半导体器件制造中最重要最频繁的步骤,而且其效率将直接影响到器件的成品率、性能和可靠性。 现在人们已研制出了很多种可用于硅片清洗的工艺方法和技术,常见的有:湿法化学清洗、超声清洗法、兆声清洗法、鼓泡清洗法、擦洗法、高压喷射法、离心喷射法、流体力学法、流体动力学法、干法清洗、微集射束流法、激光束清洗、冷凝喷雾技术、气相清洗、非浸润液体喷射法、硅片在线真空清洗技术、RCA标准清洗、等离子体清洗、原位水冲洗法等。这些方法和技术现已广泛应用于硅片加工和器件制造中的硅片清洗。 表面沾污指硅表面上沉积有粒子、金属、有机物、湿气分子和自然氧化物等的一种或几种。超纯表面定义为没有沾污的表面, 或者是超出检测量极限的表面。 二、硅片的表面状态与洁净度问题: 硅片的真实表面由于暴露在环境气氛中发生氧化及吸附,其表面往往有一层很薄的自然氧化层,厚度为几个埃、几十个埃甚至上百埃。真实的硅片表面是内表面和外表面的总合,内表面是硅与自然氧化层的界面,。外表面是自然氧化层与环境气氛的界面,它也存在一些表面能级,并吸附一些污染杂质原子,而且不同程度地受到内表面能级的影响,可以与内表面交换电荷,外表面的吸附现象是复杂的。 完好的硅片清洗总是去除沾污在硅片表面的微粒和有害膜层,代之以氧化物的、氯化物的或其它挥发元素(或分子)的连续无害膜层,即具有原子均质的膜层。硅片表面达到原子均质的程度越高.洁净度越高。 三、硅片表面沾污杂质的来源和分类: 在硅片加工及器件制造过程中,所有与硅片接麓的外部媒介都是硅片沾污杂质的可能来源。这主要包括以下几方面:硅片加工成型过程中的污染,环境污染,水造成的污染,试剂带来的污染,工业气体造成的污染,工艺本身造成的污染,人体造成的污染等。

硅片清洗技术详解

硅片清洗主要内容讲解 1、清洗的基本概念和目的。 硅片加工的目的是为器件生产制作一个清洁完美符合要求的使用表面,所谓清洗,就是清洗硅片的表面,去除附着在硅片上的污染物。 2、硅片清洗室的管理与维护; (1)人员流动的管理和清洁室的作业人数。 (2)清洗室内物品器具的管理。 (3)清洗室内其它影响清洗质量因素的管理维护。如;空气过滤系统、防静电处理、温度与湿度系统等! 3、硅片表面沾污的类型; (!)有机杂质沾污;如;胶黏剂、石蜡、油脂等。 (2)颗粒类型杂质沾污;一般来自加工中磨料和环境中的尘粒。 (3)金属杂质沾污;由生产加工的设备引起的金属杂质沾污。 4、硅片清洗处理方法分类; 硅片清洗处理方法分为湿法清洗和干法清洗两大类。而湿法清洗又分为化学清洗和物理清洗两种方法。 化学清洗——利用各种化学试剂对各种杂质的腐蚀、溶解、氧化及络合等作用去除硅片表面的沾污。 物理清洗——硅片的物理清洗法主要指的是利用超声波和兆声波清洗方法。 5、化学清洗的各种试剂的性质应用和分级; (1)有机溶剂清洗;有机溶剂能去除硅片表面的有机杂质沾污。主要溶液有;甲苯、丙酮、乙醇等。根据其性质须在使用甲苯、丙酮后在使用乙醇进行处理,最后在用水冲洗。(2)无机酸及氧化还原清洗;无机酸试剂主要为;盐酸(HCI)、硝酸(HNO3)、硫酸(H2SO4)、氢氟酸(HF)以及过氧化氢(H2O2)—双氧水。其中过氧化氢主要用于氧化还原清洗。 其它试剂按其本省性质进行应用清洗。硅片金属清洗主要是利用了它们的强酸性、强腐蚀性、强氧化性的特性从而达到去除表面金属沾污的目的。 (3)化学清洗的分级主要分为优级纯、分析纯和化学纯三个级别。视清洗的种类和场合进行合理选择。通常硅片切割片和研磨片的清洗可以使用分析纯试剂,抛光片须用优级纯试剂。具体试剂分类有国家规定标准。 6、超声波清洗原理、结构和应用要素; 原理—提供高频率的震荡波在溶剂中产生气泡和空化效应,利用液体中气泡破裂所产生的冲击来波达到清洗目地。 结构—系统主要有超声电源、清洗槽和换能器三个基本单元组成。电源用来产生高频率震荡信号,换能器将其转换成高频率机械震荡波,也就是超声波。清洗槽是放清洗液 和工作的容器。 要素—1、超声频率;频率越低产生的空化效应越强但方向性差。频率高后方向性强但空化效应弱,所产生的气泡冲击力就弱。造成清洗就弱。超声波清洗只能去除≥0.4um 的颗粒。兆声波能去除≥0.2um的颗粒。 2、超声波功率密度;密度越高空化效应越强,速度越快,清洗效果越好。但对于精 密、表面光洁度甚高的工件长时间清洗会对物体表面产生“空化”腐蚀。 3、超声波清洗介质;是指采用超声波清洗时的溶液,也就是清洗液。一般用于超声 清洗的有化学溶剂清洗液和水基清洗液两种。现在清洗工艺为了更好的效果一般采 用两者按比例相结合的方式清洗。 4、超声波清洗温度;因各种清洗剂中的化学成分不同,其分子最佳清洗的温度也不

相关文档
最新文档