激光粒度仪及其原理介绍讲解

激光粒度仪及其原理介绍讲解
激光粒度仪及其原理介绍讲解

激光粒度仪及其原理介绍

发布日期:2007-12-26 我也要投稿!作者:网络阅读: 1914[ 字体选择:大中小]

激光粒度分析仪仪是根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,要慎重选用。

激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。

激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。它的特点是测试速度快、重复性好、准确性好、操作简便。对提高产品质量、降低能源消耗有着重要的意义。

激光粒度仪的原理

激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。如图1所示。

图1 激光束在无阻碍状态下的传播示意图

米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。

图2 不同粒径的颗粒产生不同角度的散射光

为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。我们在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行处理,就会准确地得到粒度分布了,如图3所示。

图3 激光粒度仪原理示意图

激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。如图7所示。

当光束遇到颗粒阻挡时,一部分光将发生散射现象,如图8。散射光的传播方向将与主光束的传播方向形成一个夹角θ。散射理论和实验结果都告诉我们,散射角θ的大小与颗粒

的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。在图8中,散射光I1是由较大颗粒引起的;散射光I2是由较小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,在不同的角度上测量散射光的强度,就可以得到样品的粒度分布了。

为了有效地测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。我们在图8所示的光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,这样不同角度的散射光通过富氏透镜就会照射到多元光电探测器上,将这些包含粒度分布信息的光信号转换成电信号并传输到电脑中,通过专用软件用Mie 散射理论对这些信号进行处理,就会准确地得到所测试样品的粒度分布了,如图9所示。

激光粒度分析仪原理

光在传播中,波前受到与波长尺度相当的隙孔或颗粒的限制,以受限波前处各元波为源的发射在空间干涉而产生衍射和散射,衍射和散射的光能的空间(角度)分布与光波波长和隙孔或颗粒的尺度有关。用激光做光源,光为波长一定的单色光后,衍射和散射的光能的空间(角度)分布就只与粒径有关。对颗粒群的衍射,各颗粒级的多少决定着对应各特定角处获得的光能量的大小,各特定角光能量在总光能量中的比例,应反映着各颗粒级的分布丰度。按照这一思路可建立表征粒度级丰度与各特定角处获取的光能量的数学物理模型,进而研制仪器,测量光能,由特定角度测得的光能与总光能的比较推出颗粒群相应粒径级的丰度比例

量。

激光粒度分析仪

采用湿法分散技术,机械搅拌使样品均匀散开,超声高频震荡使团聚的颗粒充分分散,电磁循环泵使大小颗粒在整个循环系统中均匀分布,从而在根本上保证了宽分布样品测试的准确重复。

测试操作简便快捷:放入分散介质和被测样品,启动超生发生器使样品充分分散,然后启动循环泵,实际的测试过程只有几秒钟。测试结果以粒度分布数据表、分布曲线、比表面积、D10、D50、D90等方式显示、打印和记录.

输出数据丰富直观:本仪器的软件可以在各种计算机视窗平台上运行,具有操作简单直观的特点,不仅对样品进行动态检测,而且具有强大的数据处理与输出功能,用户可以选择和设计最理想的表格和图形输出。

激光粒度仪的作用原理是什么

通过颗粒衍射或散射光的空间分布分析颗粒大小的仪器被称之为激光粒度仪。它采用Furanhofer衍射及Mie散射理论,因为不受温度、介质、密度以及表面状态等因素的影响,激光粒度仪如今正广泛的应用于各行各业。 很多人所在的工作岗位都会遇到这个仪器,但不一定每个人都了解它的作用原理和应用范围。本文就和大家一起来做个简单的知识分享。 一、作用原理 不管什么仪器,搞定它的工作原理,其它的基本就很简单了。激光粒度仪的工作原理涉及颗粒衍射或散射光空间分布等内容。

由于激光具有很好的单色性和较强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。 当光束遇到颗粒阻挡时,一部分光将发生散射现象。其中散射部分的传播方向将与主光束的传播方向形成一个夹角θ。散射角θ的大小与颗粒的大小相关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。利用这个原理,在不同的角度上测量散射光的强度,就可以拿到样品的粒度分布了。 二、应用范围 搞清楚原理,下一步就是它的应用范围了。什么仪器用在什么环境上,用在哪个地方都是很有讲究的,用错领域,用错环境可能都会造成仪器的损害和测量结果的误差。

激光粒度仪目前主要应用于建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室,研究机构等领域。 类似这种大型仪器,买回去一定要注意它的环境要求,小心因为湿度和温度造成仪器寿命的缩短。激光粒度仪的温度要求大概就是10-40℃,湿度要求只要在百分之90以下就可以了。当然,除了这些还需要找专业技术人员进行日常维护,别不小心造成工作停滞。 本期对激光粒度仪的工作原理和工作领域、工作环境做了简单介绍,其中有不尽详细的地方也可以电话咨询大昌洋行等公司,他们会给出相对专业化的答案。下一期将会对仪器的使用以及指标分析做一个介绍,希望通过这系列文章帮助您了解更多的激光粒度仪。

激光粒度仪讲解

激光粒度仪测定粒度分布组成 一、试验目的 本实验目的是测定粒子尺寸及粒度大小分布,通过试验了解激光粒度仪的工作原理及组成,学习激光粒度仪的使用及操作;掌握分布曲线所显示的粒度大小及分布情况。颗粒及颗粒行为是无机非金属材科研究的基础。因此,颗粒的表征和颗粒的测试具有同样的重要性。粉体的粒度是颗粒在空间范围所占大小的线性 尺度。粒度越小,粒度的微细程度越大。颗粒群是指含有许多颗粒的粉体或分散体系中的分散相。若颗粒进度都相等或近似相等,称为单进度或单分散的体系或颗粒群。实际颗粒所含颗粒的粒度大都有一个分散范围,常称为多进度的、多谱的或多分散的体系或颗粒群。粒度分布是表征多分散体系中颗粒大小不均一程度的。粒度分布范围越窄,其分布的分散程度就越小,集中度也就越高。 粒度分布测量中分为频率分布和累积分布。累积分布横坐标表示各粒级的粒度;纵坐标表示在某Df以下的颗粒所占总颗粒的个数或质量百分数。通过粒度 分布曲线分析所显示的粒度大小和粒度大小分布,了解材料的研磨情况,推断出材料粒度不同其性能不同。同时可以反映出材料性能不同与材料颗粒粒径的大小 有关系。 二、试验仪器 RISE—2008型激光粒度分析仪,1000ml烧杯二只,试样若干种类 三、试验原理 根据光学衍射和散射的原理,从激光器发出的激光束经显微物镜聚集,针孔滤波和准直后,变成直径约10mm的平行光束,该光束照射到待测的颗粒上,就 发生了散射,散射光经傅立叶透镜后,照射到光电探测器上的任一点都对应于某一确定的散射角,光电探测器阵列由一系列同心环带组成,每个环带是一个独立的探测器,能将投射到上面的散射光线形地转换成电压,然后送给数据采集卡, 该卡将电信号放大,再进行AID转化后送入计算机。Rise-2008型激光粒度仪依据全量程米氏散射理论,充分考虑到被测颗粒和分散介质的折射率等光学性质, 根据激光照射在颗粒上产生的散射光能量反演出颗粒群的粒度大小和粒度分布 规律。

激光粒度仪使用说明及注意事项

激光粒度仪使用说明及注意事项 注意:第一次使用仪器得有人全程陪同指导,能搞到多少技巧看你本事啦,同时群里有详细的原理资料。 一、样品制备 1、取半勺粉体(注意不要太少),倒入研钵(研钵底部略湿)中,再用钵杵研磨 粉体只看不见颗粒; 2、量取10ml的蒸馏水,洗涤研钵后倒入烧杯中; 3、配置六偏磷酸钠溶液:2.83g的六偏磷酸钠+45ml的水=六偏磷酸钠溶液,取 此溶液15滴滴入烧杯中; 4、将烧杯至于超声波清洗器振动腔内超声,时间:5~6min,频率:50Hz,功率 60W。 二、软件操作 1、打开软件点击“纳米测试”点击“放大倍数”,选60倍; 2、清洗仪器:自己倒蒸馏水进入反应釜(以稍微淹盖搅拌片为准)点击“半自动清洗”逐步点击“超声”、“循环泵”、“搅拌”(工作时间为30秒)点击“排水”(此时排水阀打开,等待反应釜水排完)再点击“排水”(此时排水阀关闭)以上操作连续两次,目的是为了能够把仪器清洗干净,具体视情况而定; 3、测试:自己倒蒸馏水进入反应釜(以稍微淹盖搅拌片为准)加样品水,取上清液1ml左右点击“半自动清洗”逐步点击“超声”、“循环泵”、“搅拌”(工作时间为30秒)点击“退出”点击“状态调整”,待显示正常再点击一次,连续两次(不能少,不正常则继续点击),点击“状态检测”点击“单分数测试”“人工测试” “标准测试”选“否”再分别输入“15”、“80”、“40”、“40”、“命名”、“3次”、“确定”。 4、品质因素合理范围为80左右,75~85之间,根据具体情况而定。 5、保存数据图片:“特殊功能”“图文”选择要保存的原始数据打开否命名; 6、保存数据txt格式:“特殊功能”txt 选择要保存的原始数据打开否命名; 三、注意事项 1、激光粒度仪开机须预热二十分钟才可测试; 2、软件测试时禁止其他操作,假如误操作使得软件关闭,重新打开软件; 3、软件连接不上仪器,重启计算机即可; 4、样品制备后须马上测试,不宜放置太久测试,否则结果可能不正确,团聚; 5、品质因数为零,可能是粉体的浓度太低造成的,或者是重新“超声”、“循环 泵”、“搅拌”在测量,否则是测试玻璃污染得清理; 暂时想到这些,有什么错误的地方大伙就帮着改下,好建议就加进来吧。

欧美克LS-POP激光粒度分析仪作业指导书

1. 目的: 为了规范对激光粒度分析仪的操作使用,从而确保产品粒度检验结果的正确性、真实性、可靠性,特制定本文件。 2. 内容: 2.1 工作原理 利用颗粒对光的散射现象,根据散射光能的分布推算被测颗粒的粒度分布。 2.2 技术指标 测试范围:0.2~500μm 进样方式:湿法,循环进样器和静态样品池 重复性误差:<3% 测试时间:1-2分钟 独立探测单元数:32 光源种类:氦-氖激光 功率:2.0 mW 波长:0.6328 μm 2.3工作环境 2.3.1 仪器应安装在洁净、少尘、无烟、带空调的环境中。仪器的组件中含有激光管、光学镜头、针孔和测量窗口等。这些光学部件如果受到灰尘、油脂、石油产品或其他有害物质的侵蚀,将会造成光洁度下降、腐蚀、堵塞、功率下降等损害。 2.3.2 室温要稳定,没有明显的气流,没有直射阳光,否则会引起激光功率不稳,光束准直欠佳和外界杂散光的干扰,从而造成测量的重复性下降。 2.3.3 ,仪器的工作环境要求温度在5-35℃之间,空气湿度不可高于85% ,否则光学镜头表面可能会结露,致使光线不能聚焦,时间长了还会使镜头发霉。 2.3.4 地面不能有明显的震动,否则会导致光路系统偏移,引起测量结果异常。 2.3.5 电源电压220V,50/60HZ,有三头插座且接地线良好。 2.3.6严禁将零线和地线合接。 2.3.7本仪器的接地线不可与其他地线专用。 2.4 输出项目 粒度分布表、粒度分布曲线、平均粒径、中位径、比表面积等。

2.5 相关名词解释 2.5.1 粒径:又称颗粒尺寸,用以表征颗粒的大小。除了球形颗粒这一特例外,粒径并不是真实的物理尺寸,而是会随测量原理变化的等效尺寸。在激光散射法技术中,粒径是指与待测颗粒有相同的化学性质并有最相近的光散射特性的球形颗粒(组合)的直径(分布)。 2.5.2 粒度分布:是指一个粉体样品中各种粒径的颗粒所占的比例。因为任何一个粉体样品都是由大小不同的颗粒组成的,所以用粒度分布才能确切地描述其粗细情况。 2.5.3 悬浮介质:测量粒度时需要把样品分散在液体或气体中。这里的液体或气体就称为悬浮介质。合适的悬浮介质应该是既能让样品在其中分散,又不让样品在其中分解或发生化学反应的。 2.5.4 光能分布:即散射光的能量分布,就是照射到粒度仪各光电探测器上的散射光的能量。背景光能代表被光路上的尘埃粒子或各光学镜面的疵点散射的光能分布;而样品颗粒的散射光能是被待测样品的颗粒散射的光能,其分布与样品颗粒的粒度相对应,但不等于粒度分布。 2.5.5 遮光比:指测量用的照明光束被测量的样品颗粒阻挡的部分与照明光的比值。颗粒在测量介质中的浓度越高,则遮光比越大。 2.5.6 平均粒径:是指样品中所有颗粒的粒径的平均值,可以根据粒度分布计算而得。 2.5.7粒度分布宽度:用以表征样品粒径的均匀程度。粒度分布宽,表示样品颗粒的粗细不均匀;反之,则表示均匀。 2.6 准备阶段 2.6.1系统开机 打开电源开关 测量单元(预热半小时后进行下面步骤) 循环进样器 打印机 显示器 计算机主机 2.6.2 测量单元预热 2.6.2.1如关机超过半小时再重新开机,必须预热半小时。 2.6.2.2打开测量单元电源,半小时后,激光率才能稳定。如果环境温度较低,等待时间还要延长。 2.6.2.3判断激光功率是否达到稳定的依据是,背景光能分布的零环高度是否稳定。正常

激光粒度仪HELOS-RODOSM

目录 引言______________________________________________________3 激光粒度仪的原理___________________________________________3 仪器介绍__________________________________________________4 1、HELOS激光系统特点:_______________________________4 2、RODOS/M干法分散系统的技术特点:___________________6 3、数据处理系统_______________________________________9 4、仪器的精度_________________________________________9 5、实际样品干法检测结果举例:__________________________10 结论:___________________________________________________15

引言 在当今国际上,通常采用基于激光衍射原理(Laser Diffraction )的激光粒度仪来对各种 物料和样品进行粒度检测,这种仪器的特点是能够在较短的时间内给出比较详细的粒度分布数据,很多行业如医药、水泥、涂料、油墨、化工、金属、陶瓷、材料、稀土等都需要用到激光粒度仪。 激光粒度仪的原理 利用光的衍射现象,即大颗粒产生的衍射角小,小颗粒产生的衍射角大,通过计算探测器上收集到的不同衍射图形的光强分布,来给出颗粒的粒度大小和粒度分布。(见下图) 相同大小颗粒的衍射光强集中在探测器的相同部位,不同大小的颗粒的衍射光强集中在探测器的不同部位,根据在多元探测器上得到的衍射光强的分布,通过颗粒大小和光强分布之间的相关公式来计算得到颗粒的粒度分布: 在实际测量中,不同形貌的颗粒所产生的衍射图形是不一样的。检测器上所得到的不同光强分布的衍射图形,已包含了真实颗粒的大小和其形状的信息: 通过探测器上收集得到的光强信号,以相应的数学公式处理得到颗粒的粒度大小和粒度分布。 颗粒大小和光强分布之间的关系:

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 了解激光粒度仪的基本操作; 了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 实验样品:果汁饮料。 实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于μm以下的颗粒,选择Include PIDS,并将分析时间改 为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuration应稳定在8-12%:假如选择了PIDS,则要把PIDS稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 分析结束后,排液,并加水清洗样品台,准备下一次分析。 作平行试验,保存好结果,根据要求打印报告。 退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 实验结果 由实验结果显示: 平均粒径:μm

激光粒度仪 日常维护

第七章日常维护 §7.1 一般注意事项 在日常存放和使用仪器时,以下几点都是必须做到的: 1、仪器的全套设备不论是否处于工作状态,都应放置在清洁干燥的环境中。 2、粒度仪的全套设备不用时应盖上致密的防尘布。 3、当测完一种样品,必须取下进样料斗,让仪器自动执行清洗料仓程序,确保 下一种样品的测量的可靠性。并且用毛刷清除进样料斗上的残余样品。 4、粒度仪测量单元连续开机时间不宜超过5小时。 5、空气压缩机应参照说明书定期更换机油。 6、吸尘器收到的测试废料要定期清理。或当仪器指示负压不足时,必须清理。 7、计算机关机必须按规定的步骤进行,切不可贸然关断电源,否则可能照成难 以弥补的损失。 §7.2 付里叶透镜与准直镜的清洗 当富里叶透镜和准直镜的表面沾上灰尘或其他脏物时,也会造成背景光能上升,使测量结果的可靠性下降。用户应定期检查。一般情况下每半年检查一次。如果环境比较脏,应检查得更频密一些。用户如果发现背景光能比刚交货时有明显上升,那么除了样品测量窗口脏这一原因之外,就是由上述镜子变脏引起的。这时应展开如下清洗步骤: 1、在系统关机后,拔掉测试单元上所有的信号线和电源线; 2、用§3.4.2所用方法将测试单元外罩打开; 3、手动旋下准直激光器的激光射出端部分;(准直镜在激光射出端口) 4、首先取下X旋钮,用螺丝刀将小面板上的三个沉头螺丝旋下,并将小面板取 下。用螺丝刀将固定付里叶透镜架的两个沉头螺丝,拨开压板。 5、将Y轴对中旋钮顺时针转动到底。 6、从测试单元的正面抽出已取去X轴对中旋钮的付里叶透镜架; 7、用脱脂棉蘸无水乙醇与无水乙醚的混合溶液(体积比1∶1)轻轻擦拭付里叶 透镜,直至异物被除去(注意:透镜清洗时极易划伤,清洗是应掌握尺度,不可粗暴对待); 8、将擦干净的准直镜和付里叶透镜装回测试单元。 至此,付里叶透镜和准直镜的清洗完成。

如何判断和选择激光粒度分析仪

如何判断和选择激光粒度分析仪 阅读次数:535 文章日期:2003-5-12 22:03:13 以往的粒度分析方法通常采用筛分或沉降法。常用的沉降法存在着检测速度慢(尤其对小粒子)、重复性差、对非球型粒子误差大、不适用于混合物料(即粒子比重必须一致才能较准确)、动态范围窄等缺点。随着激光衍射法的发明,粒度测量完全克服了沉降法所带来的弊端,大大减轻了劳动强度及加快了样品检测速度(从半小时缩短到了1分钟)。 激光衍射法测量粒度大小基于以下事实:即小粒子对激光的散射角大,大粒子对激光的散射角小。通过散射角的大小测量即可换算出粒子大小。其依据的光学理论为米氏理论和弗朗霍夫理论。其中弗朗霍夫理论为大颗粒米氏理论的近似,即忽略了米氏理论的虚数子集,并且假定颗粒不透明;并忽略光散射系数和吸收系数,即设定所有分散剂和分散质的光学参数均为1,因此数学处理上要简单得多,对有色物质和小粒子误差也大得多。同样,近似的米氏理论对乳化液也不适用。 另外,根据瑞利散射定律,散射光的光强与颗粒直径的六次方成正比,与散射光的光源波长的四次方成反比。这意味着颗粒直径减少10倍,散射光强减弱100万倍!而光源波长越短,散射光强度越高。 再者,由于小粒子散射角大,而主检测器面积有限,一般只能接受到最多45度角的散射光(即大于0.5微米的粒子)。那么,如何检测小粒子,如何克服小粒子光散射能量低,超出主检测器范围的问题,就成为评价激光粒度分析技术的关键。 所以,判断激光粒度分析仪的优劣,主要看其以下几个方面: 1 粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(〈0.5μm〉如何检测。 最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。

激光粒度分布仪操作规程

1、目的:建立BT-2003激光粒度分布仪的操作规程,使检验人员正确BT-2003激光粒度分布仪。 2、适用范围:适用于粒径的测定。 3、责任人:化验员。 4、正文: 4.1基本操作: 4.1.1开机顺序:激光粒度分布仪→自动循环分散系统→启动粒度分析软件。4.1.2关机顺序:关闭粒度分析软件→自动循环分散系统→激光粒度分布仪。4.1.3常规操作时的操作步骤。 4.1.3.1测试准备:(1)填写“文件-数据库处置”信息。(2)点击“下一步”进入“测试参数”:选择合适的物质(如碳酸钙)、介质(水)等。在选择合适的分析模式。(3)下一步进入点“常规测试”进入测试窗口。(4)单击“进水”图标把循环池加满水,然后交替的循环泵和超声波消除气泡(至少3次),再开启超声、循环。 4.1.3.2开始测试:(1)背景:启动“测量-常规测试”测量系统背景。背景高度应在0.5-5之间(1-4最佳),横坐标长度小于20格,20格以后没有信号。点击“确认”后背景将被保存下来。(2)浓度:观察遮光率,这个值一般应在10%-15%之间。(3)分散:超声分散3分钟左右。(4)测试:点击“连续”按钮开始测试并显示结果。(5)保存和打印:点击保存或打印按钮,将结果保存到数据库里,测试结束。 4.1.3.3清洗:点击“自动清洗”图标清洗循环分散系统,然后准备进行下次测试。 4.1.4自动测试时的操作步骤: 4.1.4.1SOP设置:打开“文件-数据库处置”填好内容后点击下一 步进入测试参数后点击“自动流程”设置里面的各项参数后点“确认”保存下来,点击“自动测试”进入自动测试窗口后即可以进行自动测试。 4.1.4.2自动测试:点击“自动测试”按钮,待提示请加入样品时加入适量的样品(遮光率为10%-15%),就等待结果即可。 4.2准确性标定方法: 4.2.1标定周期:通常半年标定一次,仪器经过维修后要标定

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

粒度分析仪简介及使用

实验7、粒度分析仪简介及使用 纯牛奶粒度分布的测定(激光粒度法) 一、实验目的: 1.掌握粒度分析仪的测定原理及操作方法。 2.测定纳米粒子的粒度尺径及分布和Zeta电位性质。 二、实验原理: 2.1 激光粒度仪介绍 激光粒度分析仪仪是利用粒子的布朗运动,根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,要慎重选用。 激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。 激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。它的特点是测试速度快、重复性好、准确性好、操作简便。对提高产品质量、降低能源消耗有着重要的意义。 2.2激光粒度仪的原理 激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。如图1所示。 图1,激光束在无阻碍状态下的传播示意图 米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。

激光的理论基础讲解

激光的理论基础 直到二十世纪初,人们才在实验的基础上揭开了原子结构的奥秘。原子结构像是一个小小的太阳系,中间是原子核,电子围绕原子核不停地旋转,同时也不停地自转。原子核集中了原子的绝大部分质量,但却只占有很小的空间。原子核带正电,电子带负电,一般原子核与电子所携带的正负电荷数量相等,因此对外呈中性。电子绕核旋转具有一定的动能,同时负电荷的电子与正电荷的原子核之间存在着一定的位能。所有电子的动能与位能之和就是整个原 直到二十世纪初,人们才在实验的基础上揭开了原子结构的奥秘。原子结构像是一个小小的太阳系,中间是原子核,电子围绕原子核不停地旋转,同时也不停地自转。原子核集中了原子的绝大部分质量,但却只占有很小的空间。原子核带正电,电子带负电,一般原子核与电子所携带的正负电荷数量相等,因此对外呈中性。电子绕核旋转具有一定的动能,同时负电荷的电子与正电荷的原子核之间存在着一定的位能。所有电子的动能与位能之和就是整个原子的能量,称为原子的内能。 这种原子模型是1911年由英国科学家卢瑟福提出的。紧接着,1913年,丹麦物理学家玻尔提出了原子只能处于由不连续能级表征的一系列状态——定态上,这与宏观世界中的情况大不相同。人造卫星绕地球旋转时,可以位于任意的轨道上,也就是说可具有任意的连续变化的能量。而电子在绕核运动时,却只能处于某些特定的轨道上。从而原子的内能不能连续的改变,而是一级一级分开的,这样的级就称为原子的能级。 不同的原子具有不同的能级结构。一个原子中最低的能级称为基态,其余的称为高能态,或激发态。原子从高能态E2过渡到低能态E1时,会向外发射某个频率为ν的辐射,满足普朗克公式:hv = E1 - E2 式中h为普朗克常数。反之,该原子吸收频率为ν的辐射时,就会从低能态E1过渡到高能态E2。 爱因斯坦在玻尔工作的基础上于1916年发表《关于辐射的量子理论》。文章提出了激光辐射理论,而这正是激光理论的核心基础。因此爱因斯坦被认为是激光理论之父。在这篇论文中,爱因斯坦区分了三种过程:受激吸收、自发辐射、受激辐射。前两个概念是已为人所知的。受激吸收就是处于低能态的原子吸收外界辐射而跃迁到高能态;自发辐射是指高能态的原子自发地辐射出光子并迁移至低能态。这种辐射的特点是每一个原子的跃迁是自发的、独立进行的,其过程全无外界的影响,彼此之间也没有关系。因此它们发出的光子的状态是各不相同的。这样的光相干性差,方向散乱,而受激辐射则相反。它是指处于高能级的原子在光子的“刺激”或者“感应”下,跃迁到低能级,并辐射出一个和入射光子同样频率的光子。这好比清晨公鸡打鸣,一个公鸡叫起来,其他的公鸡受到“刺激”也会发出同样的声音。受激辐射的最大特

12-激光粒度仪标准操作规程

图1、BT-9300Z激光粒度分析系统 样品信息:单击“测量—文档”项即进入如图2所示的文档窗口,填入实际信息。文档是用来记录样品名称、介质名称、测试人员、检测单位、样品来源、测试日期和测试时间等测试相关的原始信息,这些信息将随测试结果一同保存到数据库中, 制定时间颁发部门 审核时间版

图2、“文档”窗口 图3、测试参数 光学参数:使用Mie散射理论进行数据处理。 折射率:激光粒度分析中的基本理论——米氏散射理论需要折射率参数。

操作 图4、常规测试窗口 状态(背景状态良好)。如果背景数值和状态正常,在“背景操作区”中单击“确认”就完成背景测试;如果背景值和状态不正常,单击“背景校准”系统将进入背景校准窗口,进行调整背景;“默认”是用上一次的背景值,此功能常用于测试过程中关闭测试窗口又重新进入不能重新测试背景时;“启动”是在按确认后需要重新测试背景时使用。图5是背景数据不正常时的几种情形及原因: 将样品混合均匀,用小勺在样品袋中的不同部位不同深度各取少量多次加

遮光率调整:①遮光率太高时:应在充分循环均匀的条件下排放掉一部分悬浮液,然后加水稀释,直到遮光率合适为止。克服遮光率过高的有效方法就是“少量多次”加样。②遮光率太低时:再向循环池中加适量的样品,直到遮光率合适并从最后一次加样算起图5、几种不正常的背景状况及原因 光路偏移-需要校准 样品池或透镜脏 介质不纯净或透镜脏 图6、常规测试界面说明 遮光率指示 散射光强坐标 探测器坐标

图7、测试窗口图8、“实时”窗口单次:在图7中单击“单次”按钮,将得到一次的测试结果。 就按它! 图9、单次测试 ?连续:在图7中单击“连续”按钮,将得到多次测试结果。 就按它! 图10、连续测试 ?图形设置:在图7中单击“图形设置”按钮,将可以设置测试区中光能信号图形显 示方式:柱型图、曲线、对比信号的比例和颜色,如图11。“对比信号”是指当前信号对比上一次测试的测量信号,启用后测试区同时显示两组信号。

激光粒度仪主要品牌分析(报告精选)

北京先略投资咨询有限公司

激光粒度仪主要品牌分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/a88520777.html, 1

目录 (最新版报告请登陆我司官方网站联系) (1) 公司网址: https://www.360docs.net/doc/a88520777.html, (1) 激光粒度仪主要品牌分析 (3) 第一节激光粒度仪品牌构成 (3) 第二节主要品牌区域市场占有率分析 (4) 第三节品牌满意度分析 (4) 2

激光粒度仪主要品牌分析 第一节激光粒度仪品牌构成 品牌知名度以及市场占有率是评价品牌竞争实力的重要指标。产业结构低,缺乏品牌是导致企业缺乏讨价还价能力的深层次原因。我国激光粒度仪行业的产品结构还不太合理,高科技含量、高附加值的产品不多,企业在市场竞争中拼资源、拼价格的现象比较严重。面对资源的制约和其他同类产品的激烈竞争,必须加强技术创新和产品创新,提升产品品牌才行。 从消费者正在使用产品的分布情况可以看出不同品牌的市场占有情况。因激光粒度仪产业进入门槛较高,生产企业较为集中,因此目前我国共有各种类型的颗粒测试仪器生产厂家二十余家,在国产粒度仪生产厂家中,丹东市百特仪器有限公司、珠海欧美克仪器有限公司、济南微纳颗粒仪器股份有限公司、成都精新粉体测试设备有限公司等几个厂商已经形成一定的生产规模,是国内颗粒测试仪器的主要生产商及出口商。 与此同时,国产品牌的激光粒度仪性能逐渐提高,新产品不断推出,如济南微纳颗粒仪器股份有限公司的Winner2005、Winner2008系列智能激光粒度仪测试范围下限0.05微米,2009年研制成功的Winner800系列光子相关纳米激光粒度仪测试范围下限更是达到了1纳米(0.001微米)。与进口颗粒测试仪器相比,国产仪器在价格、成本与售后服务上具有明显优势。首先,在产品价格上,进口颗粒测试仪器的平均价格约4万美元/台,价格是国内同类型仪器的数倍。其次,在售后服务上,国产颗粒测试仪器具有天然优势,能做到收费低廉、反应迅速、零配件及时供应;而进口仪器则受人员、授权、地理、语言等方面限制,面临时间长、费用高等问题。与进口激光粒度仪相比,正是由于国产粒度仪的技术水平不断创新发展使国产仪器在价格和成本控制上具有明显优势。 3

欧美克LS-POP(9A)激光粒度仪操作规程

欧美克LS-POP(9A)激光粒度仪操作规程 文件编号:分发号: 生效日期:版本:页数:1/7 编制:审核:批准: 1.适用范围 钴酸锂、锰酸锂、镍钴锰酸锂在制品样测试 2.仪器、设备 欧美克LS-POP(9A)型激光粒度分析仪、SCF-126C循环进样系统、超声波清洗机、100ml烧杯、样品勺、计算机 3.试剂 一级纯水、5%六偏磷酸钠溶液(或同等分散剂) 4.作业步骤 4.1.开机准备 4.1.1.进行样品测试前,先打开位于激光粒度仪底部的电原开关进行预热,检查进样器(图1)和进样 窗口(图2)的连接情况。 图1 图2 4.1.2.打开进样器电源并将转速调至500~800rpm,将纯净水加入进样器直至水位约进样容器1/2高度, 然后拆下进样窗口(图3),检查进样器窗口玻璃内外的洁静度以及进样气泡情况,若正常,则按原位装回进样窗口。若洁静度不达标或者进样有气泡,请参照仪器说明书进行处理。 图3

编制:审核:批准: 4.2.检测光背景扣除及对中 4.2.1.待激光粒度仪预热30min后,打开计算机,双击桌面上的“OMEC LS-POP(9A)”图标,弹出界面 图4,点“确定”,进入“激光粒度分析仪”主界面图5. 图4 图5 4.2.2.按“F2”键进行粒度器背景扣除,扣除后的激光粒度仪背景几乎只剩下几道小峰图6,然后通过 进样窗口旁边的旋扭进行光对中,对中后的光信号如图8,要求0道光信号强度值大于45,其余光信号强度值几乎为0。 图6 图7

编制:审核:批准: 4.3.测试参数设定及样品准备 4.3.1.在“配置”菜单中选择“新建SOP”图9,弹出参数设置对话框“样品”选项卡图10,在样品标 识中填入样品名称(石墨)和样品编号(1),材料参数中填写材料名称(石墨)、拆射率(2.400+0.100i)、其它参数使用默认值。 图9 图10 4.3.2.然后点击“测量”选项卡,弹出“测量”选项卡图11,在进样器选择中选择进样器(cycle)、超 声时间(180),其余值使用默认参数; 图11 图12 4.3.3.点击“报告”选项卡,各选项值均设为默认值即可,点击“确定”按钮,此时弹出系统会自动弹 出保存SOP参数对话框图13,输入需保存的名称即可保存刚才设置的参数了。

激光粒度分布仪是基于颗粒对光的散射原理讲解

原理 激光粒度分布仪是基于颗粒对光的散射原理,即光与颗粒之间的相互作用以及颗粒对入 射光的散射规律(Mie散射理论)实现对颗粒的粒度测试。普通物理中说,光在纯净的透明介质中将沿直线传播,但当介质中存在颗粒、液滴或气泡时光束将改变原来的传播方向,而向四周散射。 当一束平行光照射到带小孔的屏幕时,将在小孔的后面产生艾里斑,而艾里斑分布,与小孔的大小密切相关,孔径大的所生成的艾里斑的第一个亮环靠近中心,孔径小的所生成的艾里斑的第一个亮环远离中心(Δθ=1.22λ/d),这就是著名的小孔衍射理论——夫郎和费衍射理论。 依据巴卑涅原理,光路中的颗粒、液滴或气泡如同小孔一样,符合夫郎和费衍射理论,但夫郎和费衍射理论只是Mie散射理论在颗粒粒径远远大于入射光波长(d >>λ)的近似解,Mie理论则是对处于均匀介质中的各向均匀同性的单个介质球在单色平行光照射下的麦可斯韦方程边界条件的严格数学解。随着科技的进步,激光粒度仪是否完全采用Mie散射理论已成为一种标志。我公司的激光粒度仪就是完全建立在Mie散射理论的基础上开发的。 Mie散射理论 严格的光散射电磁场理论利用光的电磁波性质,应用麦克斯韦方程对散射颗粒形成的边界条件求解,可以得到各个光散射物理量,但严格求解受诸多因素的影响很难得到精确的结果。Mie散射理论则是对处于均匀介质中的各向同性的单个球形颗粒在单色平行光照射下的麦克斯韦方程边界条件的严格数学解,其结论如下: 式中y为散射颗粒到观察点之间的距离,I0为入射光的强度,i1和i2称为强度函数,它与颗粒直径、入射光波长λ、相对折射率m和散射角θ有关,其定义如下:

上式中的,,和分别为: 式中和是关于贝塞尔函数和汉克尔函数的函数,P为缔合勒让德函数,d为颗粒的直径根据上面的公式,我们可以得出激光粒度仪在各个角度下的散射光强是不同的,光电接受器上任何一个光电池所接受到的散射光能也因此而有所不同,将I s积分即可求得米氏散射时任一光电池上所接受到得光能量为: 对实际的粉体,因为其有多种大小不等的颗粒组成,其光能分布为: 式中C为常数,在归一化数据处理中忽略不计,W i为第i中大小的粒径所占粉体总体积的百分含量。整理后可简单写成矩阵形式为:E=TW,式中的T为光能分布系数,即第ni(n为行,i为列)个光能系数为: 由此,结合优秀的分布函数算法求解E=TW矩阵,即可得到我们所需要的粒度分布了。

WJL激光粒度仪使用说明书

WJL激光粒度仪使用说明书 上海精密科学仪器有限公司 目录 1. 用途及特点 (2) 2. 规格及主要技术参数 (2) 3. 工作原理 (2) 4. 仪器结构 (3) 5. 操作步骤 (4) 6. 主要技术问题 (7) 7. 仪器成套性 (8) 8. 常见故障及其处理方法 (9) 9. 售后服务事项和生产者责任 (9) 1、用途及特点 WJL激光粒度仪是利用激光所特有的单色性、准直性等特点,根据颗粒对光的散射现象,按照Mie 散射理论作为仪器的测量基础而设计的实验室测试仪器。激光粒度仪广泛应用于化工、机械、冶金、电子、建筑及环保等行业的各种粉沙、微珠等原材料颗粒以及高分子乳胶物料等各类粉体材料颗粒的大小测定。 目前国内外同类粒度仪有一个共同的特点,即光学系统复杂,光路调整烦琐,因而仪器的造价一般较高;同时衍射式粒度仪由于在测量原理上的限制,必然使它在小粒径范围内很难达到令人满意的测量精度。 WJL激光粒度仪结构简单,操作方便。整个测量过程不需调节仪器中的任何部件。同时仪器还具有自标定、自校正功能,从而保证仪器有较高的测量精度。 2、规格及主要技术参数 可测粒径范围:0.5-200μm; 测量时间:采样时间0.5秒,计算时间一般为几秒种; 准确度:±6%(D50); 重复性:±6%(D50); 测量对象:粉末状颗粒、液-液和液-固系统中的液滴或固体颗粒; 粒径分布模式:自由分布及函数限定(R-R)分布; 电源:220V±22V,50Hz; 主机重量:12kg; 尺寸:608×228×168mm; 10.消耗功率:小于50W(不包括计算机)。 3、工作原理 激光粒度仪主要由激光器、样品池、光电探测器和计算机系统等部分组成,其结构如下图所示。被测颗粒放入样品池使之成为悬浮状态,当He-Ne激光器发出的激光束通过样品池时将会产生散射光,散射光的分布与被测颗粒的直径D、颗粒的相对折射率m和散射角θ有关。散射光由光电探测器接收,并经放大和A/D转换后经RS232或USB接口送入计算机,经数据处理和计算后就可以显示或打印出被测颗粒的粒径分布,各种平均直径及比表面积等参数。 4、仪器结构 仪器外视图

激光粒度分布仪设备验证

粒度检测仪设备验证方案 (一)、概述: 光在传播中,波前受到与波长尺度相当的隙孔或颗粒的限制,以受限波前处各元波为源的发射在空间干涉而产生衍射和散射,衍射和散射的光能的空间(角度)分布与光波波长和隙孔或颗粒的尺度有关。用激光做光源,光为波长一定的单色光后,衍射和散射的光能的空间(角度)分布就只与粒径有关。对颗粒群的衍射,各颗粒级的多少决定着对应各特定角处获得的光能量的大小,各特定角光能量在总光能量中的比例,应反映着各颗粒级的分布丰度。按照这一思路可建立表征粒度级丰度与各特定角处获取的光能量的数学物理模型,进而研制仪器,测量光能,由特定角度测得的光能与总光能的比较推出颗粒群相应粒径级的丰度比例量。 (二)、设备的描述 BT-9300S激光粒度仪是一种具有自动对中、自动进水、自动水位测量、循环流量可调功能的自动化程度更高、使用更方便、性能更好的粒度分布仪。它采用进口的半导体激光器,功率大、寿命长、单色性好;采用专门设计的由大规模集成电路工艺制造的大尺寸高灵敏度光电探测器阵列;采用离心循环泵和微量样品池两种进样方式;采用全程米氏理论和多种分布模型的数据处理方式;采用高精度的数据传输与处理电路等一系列先进的技术和制造工艺,使该仪器具有准确可靠、测试速度快、重复性好、操作简便等突出特点, BT-2001激光粒度分布仪是国内首创的一种集干法测试和湿法测试于一体的高性能激光粒度分布仪。干法制样系统包括静音空压机、空气过滤器、干法分散进样系统、干法分散器、采样口、控制系统、干法收集器等部分组成。湿法制样系统包括搅拌器、超声波分散器、循环泵、测试窗口和管路等组成。采用多通道数据转换电路与USB2.0数据传输方式,配合自动对中系统等一系列先进技术和制造工艺,使该仪器具有准确可靠、测试速度快、重复性好、操作简便、适用领域广泛等突出特点。 BT-9300S设备现安装于春天一楼精密仪器室。 BT-2001安装于唐古拉QC理化室(二),。生产厂商:丹东百特仪器有限公司 (三)、验证依据及标准 丹东百特科技有限公司说明书,仪器设备操作规程 (四、验证判断标准: 性能确认判断标准:工作标样碳酸钙D90=47.69 D50=17.96 D10=2.58

激光原理及技术课程标准

《激光原理及技术》课程标准 适用专业:光电信息科学与工程专业 所属教研室(系):光电信息教研室 课程名称:激光原理及技术(Principles and Techniques of Laser) 课程类型:专业核心课程 学时学分:32学时(学分) 一、课程概述 (一)课程性质 《激光原理及技术》是光电信息科学与工程专业的一门专业核心课程。本课程的目的在于介绍激光的基本理论知识和掌握激光器的使用技术。 通过《激光原理及技术》课程的教学,使学生了解和掌握激光器的基本结构、工作原理和基本操控技术,培养学生分析解决激光原理问题的能力。激光原理及应用的预修课程为高等数学、线性代数、数学物理方法和大学物理等基础课程,激光原理为后继课的学习和专业训练提供必要的准备,是高等学校光学工程类和光电信息类各专业学生的一门重要的必需专业课程。我校光电信息科学与工程专业的人才培养目标是要求本专业毕业生在光电信息科学与工程领域方向上具有宽厚的理论基础、扎实的专业基础知识、熟练的实验技能,并具有综合运用专业理论技术分析解决工程问题的基本能力。激光是本专业中应用最为基本、最普遍的工具之一,例如在光纤通信、光存储、激光切割、激光雷达等方面都起着至关重要的作用,为了培养出符合社会需求的应用型人才,就必须要学生掌握激光的基本知识和操作技能。特别强调物理概念的深入理解,为今后从事光电子方向和相关专业的教学和科研打下扎实的理论基础。该课程共分五章,包括激光的基本原理,开放式光腔和高斯光束,激光介质的增益线形和增益系数,激光器稳态振荡特性,激光器和技术。 本课程应先修《大学物理(电磁学、光学部分)》、《高等数学》、《线性代数》、《数学物理方法》等课程,同时它又是《半导体物理与器件》、《光电子技术》、《光电探测和信号处理》和《光电成像原理与技术》等课程的基础。 (二)基本原则 本课程主要围绕着提高学生知识、技能和思维等方面能力为目标,遵循“掌握原理”、“了解技术”的原则。“掌握原理”是指教学内容要符合物理学专业的培养目标的需要和满足物理学专业学生能力发展的需求。“了解技术”是指教学内容既要保持本课程在以后工作中的应用性和实践性,又要“重难点突出”,让学生了解激光器的广泛应用和使用中常用的技术。 (三)设计思路。 1.教学改革基本思路 本课程依据光电信息科学与工程专业人才培养的目标和规格,在目标设定、教学过程、课程评价和教学资源的开发等方面突出以学生为主体、教师为主导的思想,以提高学生理性思维能力、逻辑推理能力和实际应用能力为主要目标,把知识与技能,

相关文档
最新文档