高中数学幂函数指数函数对数函数(经典练习题)

高中数学幂函数指数函数对数函数(经典练习题)
高中数学幂函数指数函数对数函数(经典练习题)

高中数学精英讲解-----------------幂函数、指数函数、对数函数

【第一部分】知识复习

【第二部分】典例讲解

考点一:幂函数

例1、比较大小

例2、幂函数,(m∈N),且在(0,+∞)上是减函数,又,则m= A.0 B.1 C.2 D.3

解析:函数在(0,+∞)上是减函数,则有,又,故为偶函数,故m为1.

例3、已知幂函数为偶函数,且在区间上是减函数.(1)求函数的解析式; (2)讨论的奇偶性.

∵幂函数在区间上是减函数,∴,解得,∵,∴.又是偶数,∴,∴.

(2),.

当且时,是非奇非偶函数;当且时,是奇函数;

当且时,是偶函数;当且时,奇又是偶函数.

例4、下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系

(1)(A),(2)(F),(3)(E),(4)(C),(5)(D),(6)(B).

变式训练:

1、下列函数是幂函数的是()

A.y=2x B.y=2x-1 C.y=(x+1)2D.y=

2、下列说法正确的是()

A.y=x4是幂函数,也是偶函数 B.y=-x3是幂函数,也是减函数

C.是增函数,也是偶函数 D.y=x0不是偶函数

3、下列函数中,定义域为R的是()

A.y=B.y= C.y=D.y=x-1

4、函数的图象是()

A.B.C.D.

5、下列函数中,不是偶函数的是()

A.y=-3x2B.y=3x2 C.D.y=x2+x-1

6、若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则()

A.f(-1)<f(-3) B.f(0)>f(1) C.f(-1)<f(1) D.f(-3)>f(-5)

7、若y=f(x) 是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()

A.(a,-f(a)) B.(-a,-f(a)) C.(-a,-f(-a)) D.(a,f(-a )) 8、已知,则下列正确的是()

A.奇函数,在R上为增函数 B.偶函数,在R上为增函数

C.奇函数,在R上为减函数 D.偶函数,在R上为减函数

9、若函数f(x)=x2+ax是偶函数,则实数a=()

A.-2 B.-1 C.0 D.1

10、已知f(x)为奇函数,定义域为,又f(x)在区间上为增函数,且f(-1)=0,则满足f(x)>0的的取值范围是()

A.B.(0,1) C.D.

11、若幂函数的图象过点,则_____________.

12、函数的定义域是_____________.

13、若,则实数a的取值范围是_____________.

14、是偶函数,且在上是减函数,则整数a的值是_____________.DACAD ABACD

9、,函数为偶函数,则有f(-x)=f(x),即x2-ax=x2+ax,所以有a=0.

10、奇函数在对称区间上有相同的单调性,则有函数f(x)在上单调递增,则当x<-1时,f(x)<0,当-10,又f(1)=-f(-1)=0,故当01时,f(x)>0.则满足f(x)>0的.

11、解析:点代入得,所以.

12、解:

13、解析:,解得.

14、解:则有,又为偶函数,代入验证可得整数a的值是5.

考点二:指数函数

例1、若函数y=a x+m-1(a>0)的图像在第一、三、四象限内,则()

A.a>1

B.a>1且m<0

C.00

D.0

例2、若函数y=4x-3·2x+3的值域为[1,7],试确定x的取值范围.

例3、若关于x的方程有负实数解,求实数a的取值范围.

例4、已知函数.

(1)证明函数f(x)在其定义域内是增函数; (2)求函数f(x)的值域.

例5、如果函数(a>0,且a≠1)在[-1,1]上的最大值是14,求a的值.

例1、解析:y=a x的图像在第一、二象限内,欲使其图像在第一、三、四象限内,必须将y=a x向下移动.而当01时,图像向下移动才可能经过第一、三、四象限,故a>1.又图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时,图像恰好经过原点和第一、三象限.欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故m-1<-1,∴m<0.故选B.

答案:B

例2、分析:在函数y=4x-3·2x+3中,令t=2x,则y=t2-3t+3是t的二次函数,由y ∈[1,7]可以求得对应的t的范围,但t只能取正的部分. 根据指数函数的单调性我们可以求出x的取值范围.

解答:令t=2x,则y=t2-3t+3,依题意有:

∴x≤0或1≤x≤2,即x的范围是(-∞,0]∪[1,2].

小结:当遇到y=f(a x)类的函数时,用换元的思想将问题转化为较简单的函数来处理,再结合指数函数的性质得到原问题的解.

例3、分析:求参数的取值范围题,关键在于由题设条件得出关于参数的不等式.

解答:因为方程有负实数根,即x<0,

所以,

解此不等式,所求a的取值范围是

例4、分析:对于(1),利用函数的单调性的定义去证明;对于(2),可用反解法求得函数的值域.

解答:(1),设x1<x2,则

因为x1<x2,所以2x1<2x2,所以,所以.又+1>0, +1>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在其定义域(-∞,+∞)上是增函数.

(2)设,则,因为102x>0,所以,解得-1<y<1,所以函数f(x)的值域为(-1,1).

例5、分析:考虑换元法,通过换元将函数化成简单形式来求值域.

解:设t=a x>0,则y=t2+2t-1,对称轴方程为t=-1.

若a>1,x∈[-1,1],∴t=a x∈,∴当t=a时,y max=a2+2a-1=14.

解得a=3或a=-5(舍去).

若0

∴当时,.解得(舍去).

∴所求的a值为3或.

变式训练:

1、函数在R上是减函数,则的取值范围是()

A.B. C. D.

2、函数是()

A.奇函数B.偶函数 C.既奇又偶函数D.非奇非偶函数3、函数的值域是()

A. B. C.D.

4、已知,则函数的图像必定不经过()

A.第一象限B.第二象限 C.第三象限D.第四象限5、函数的定义域为()

A.B. C.D.

6、函数,满足f(x)>1的x的取值范围是()A.B. C.D.

7、函数的单调递增区间是()

A.B. C.D.

8、已知,则下列正确的是()

A.奇函数,在R上为增函数 B.偶函数,在R上为增函数

C.奇函数,在R上为减函数 D.偶函数,在R上为减函数

9、函数在区间上是增函数,则实数的取值范围是()A.B. C.D.

10、下列说法中,正确的是()

①任取x∈R都有;②当a>1时,任取x∈R都有;

③是增函数;④的最小值为1;

⑤在同一坐标系中,的图象对称于y轴.

A.①②④B.④⑤ C.②③④D.①⑤

11、若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围__.

12、函数的定义域是______________.

13、不论a取怎样的大于零且不等于1的实数,函数y=a x-2+1的图象恒过定点________.

14、函数y=的递增区间是___________.

15、已知9x-10·3x+9≤0,求函数y=()x-1-4()x+2的最大值和最小值.

16、若关于x的方程25-|x+1|-4·5-|x+1|-m=0有实根,求m的取值范围.

17、设a是实数,.

(1)试证明对于a取任意实数,f(x)为增函数;

(2)试确定a的值,使f(x)满足条件f(-x)=-f(x)恒成立.

18、已知f(x)=(a>0且).

(1)求f(x)的定义域、值域.(2)讨论f(x)的奇偶性.(3)讨论f(x)的单调性.答案及提示:1-10 DADAD DDACB

1、可得0

2、函数定义域为R,且,故函数为奇函数.

3、可得2x>0,则有,解得y>0或y<-1.

4、通过图像即可判断.

5、.

6、由,由,综合得x>1或x<-1.

7、即为函数的单调减区间,由,可得,

又,则函数在上为减函数,故所求区间为.

8、函数定义域为R,且,故函数为奇函数,

又,函数在R上都为增函数,故函数f(x)在R上为增函数.

9、可得.

10、①中当x=0时,两式相等,②式也一样,③式当x增大,y减小,故为减函数.

11、0<a<提示:数形结合.由图象可知0<2a<1,0<a<.

12、提示:由得2-3x>2,所以-3x>1,.

13、(2,2) 提示:当x=2时,y=a0+1=2.

14、(-∞,1]

提示:∵y=()x在(-∞,+∞)上是减函数,而函数y=x2-2x+2=(x-1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].

15、解:由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,解得1≤3x≤9.

∴0≤x≤2,令()x=t,则≤t≤1,y=4t2-4t+2=4(t-)2+1.

当t=即x=1时,y min=1;当t=1即x=0时,y max=2.

16、解法一:设y=5-|x+1|,则0<y≤1,问题转化为方程y2-4y-m=0在(0,1]内有实根.设f(y)=y2-4y-m,其对称轴y=2,∴f(0)>0且f(1)≤0,得-3≤m<0.

解法二:∵m=y2-4y,其中y=5-|x+1|∈(0,1],∴m=(y-2)2-4∈[-3,0).

17、(1)设,

即f(x1)<f(x2),所以对于a取任意实数,

f(x)在(-∞,+∞)上为增函数.

(2)由f(-x)=-f(x)得,解得a=1,即当a=1时,f(-x)=-f(x).

18、解:(1)定义域为R.

∴值域为(-1,1).

(2),

∴f(x)为奇函数.

(3)设,则

当a>1时,由,得,

∴当a>1时,f(x)在R上为增函数.

同理可判断当0

考点三:对数函数

例1、求函数的定义域和值域,并确定函数的单调区间.

例2、已知函数f(x)=lg(ax2+2x+1)(a∈R).

(1)若函数f(x)的定义域为R,求实数a的取值范围;

(2)若函数f(x)的值域为R,求实数a的取值范围.

例3、已知的最大值和最小值以及相应的x值. 例4、已知f(x)=log a(a x-1)(a>0,a≠1).

(1)求f(x)的定义域;

(2)讨论f(x)的单调性;

(3)求函数y=f(2x)与y=f-1(x)的图象交点的横坐标.

例1解:由-x2+2x+3>0 ,得 x2-2x-3<0,∴-1<x<3,定义域为 (-1,3);

又令 g(x)=-x2+2x+3=-(x-1)2+4,∴当 x∈(-1,3) 时, 0<g(x)≤4.

∴ f(x)≥=-2 ,即函数 f(x) 的值域为[-2,+∞);

∵ g(x)=-(x-1)2+4 的对称轴为 x=1.

∴当-1<x≤1 时, g(x) 为增函数,∴为减函数.

当 1≤x<3 时, g(x)为减函数,∴ f(x)为增函数.

即 f(x) 在(-1,1] 上为减函数;在 [1,3 )上为增函数.

例2、分析:令g(x)=ax2+2x+1,由f(x)的定义域为R,故g(x)>0对任意x∈R均成立,问题转化为g(x)>0恒成立,求a的取值范围问题;若f(x)的值域为R,则g(x)的值域为B必满足B(0,+∞),通过对a的讨论即可.

解答:(1)令g(x)=ax2+2x+1,因f(x)的定义域为R,∴ g(x)>0恒成立.∴∴函数f(x)的定义域为R时,有a>1.

(2)因f(x)的值域为R,设g(x)=ax2+2x+1的值域为B,则B(0,+∞).

若a<0,则B=(-∞,1-](0,+∞);

若a=0,则B=R,满足B(0,+∞).

若a>0,则△=4-4a≥0,∴ a≤1.

综上所述,当f(x)的值域为R时,有0≤a≤1.

例3、分析:题中条件给出了后面函数的自变量的取值范围,而根据

对数的运算性质,可将函数化成关于log2x的二次函数,再根据二次函数在闭区间上的最值问题来求解.

解答:

当t=3时,y有最大值2,此时,由log2x=3,得x=8.

∴当x=2时,y有最小值-.

当x=8时,y有最大值2.

例4、分析:题设中既含有指数型的函数,也含有对数型的函数,在讨论定义域,讨论单调性时应注意对底数a进行讨论,而(3)中等价于求方程f(2x)=f-1(x)的解.

解答:(1)a x-1>0得a x>1.

∴当a>1时,函数f(x)的定义域为(0,+∞),

当0<a<1时,函数f(x)的定义域为(-∞,0).

(2)令g(x)=a x-1,则当a>1时,g(x)=a x-1在(0,+∞)上是增函数.

即对0<x1<x2,有0<g(x1)<g(x2),

而y=log a x在(0,+∞)上是增函数,

∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).

∴ f(x)= log a(a x-1)在(0,+∞)上是增函数;

当0<a<1时,g(x)=a x-1在(-∞,0)上是减函数.

即对x1<x2<0,有g(x1)>g(x2)>0.

而y=log a x在(0,+∞)上是减函数,

∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).

∴ f(x)=log a(a x-1)在(-∞,0)上是增函数.

综上所述,f(x)在定义域上是增函数.

(3)∵ f(2x)= log a(a2x-1),令y=f(x)= log a(a x-1),

则a x-1=a y,∴ a x=a y+1,∴ x= log a (a y+1)(y∈R).

∴ f-1(x)= log a (a x+1)(x∈R).

由f(2x)=f-1(x),得log a(a2x-1)= log a(a x+1).

∴ a2x-1= a x+1,即(a x)2-a x-2=0.

∴ a x=2或a x=-1(舍).

∴ x=log a2.

即y=f(2x)与y= f-1(x)的图象交点的横坐标为x=log a2.

变式训练:

一、选择题

1、当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是()

A.B.C.D.

2、将y=2x的图象(),再作关于直线y=x对称的图象,可得函数y=log2(x+1)和图象.

A.先向左平行移动1个单位 B.先向右平行移动1个单位

C.先向上平行移动1个单位 D.先向下平行移动1个单位

3、函数的定义域是()

A.(1,+∞)B.(2,+∞) C.(-∞,2)D.(1,2]

4、函数y=lg(x-1)+3的反函数f-1(x)=()

A.10x+3+1 B.10x-3-1 C.10x+3-1 D.10x-3+1

5、函数的递增区间是()

A.(-∞,1)B.(2,+∞) C.(-∞,)D.(,+∞)6、已知f(x)=|log a x|,其中0

A.B.

C.D.

7、是()

A.奇函数而非偶函数 B.偶函数而非奇函数

C.既是奇函数又是偶函数 D.既非奇函数也非偶函数

8、已知01,且ab>1,则下列不等式中正确的是()

A. B.

C. D.

9、函数f(x)的图象如图所示,则y=log0.2f(x)的图象示意图为()

A.B.C.D.

10、关于x的方程(a>0,a≠1),则()

A.仅当a>1时有唯一解 B.仅当0<a<1时有唯一解

C.必有唯一解 D.必无解

二、填空题

11、函数的单调递增区间是___________.

12、函数在2≤x≤4范围内的最大值和最小值分别是

___________.

13、若关于x的方程至少有一个实数根,则a的取值范围是___________.

14、已知(a>0,b>0),求使f(x)<0的x的取值范围.

15、设函数f(x)=x2-x+b,已知log2f(a)=2,且f(log2a)=b(a>0且a≠1),

(1)求a,b的值;

(2)试在f(log2x)>f(1)且log2f(x)

16、已知函数f(x)=log a(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是y=g(x)图象上的点.

(1)写出y=g(x)的解析式;

(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试求a的取值范围.

答案及提示:1-10 DDDDA BBBCC

1、当a>1时,y=log a x是单调递增函数,是单调递减函数,对照图象可知D正确. ∴应选D.

2、解法1:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.

解法2:在同一坐标系内分别作出y=2x与y=log2(x+1)的图象,直接观察,即可得D.

3、由≥0,得 0

5、应注意定义域为(-∞,1)∪(2,+∞),答案选A.

6、不妨取,可得选项B正确.

7、由f(-x)=f(x)知f(x)为偶函数,答案为B.

8、由ab>1,知,故且,故答案选B. 10、当a>1时,0<<1,当0<a<1时,>1,

作出y=a x与y=的图象知,两图象必有一个交点.

11、答案:(-∞,-6)

提示: x2+4x-12>0 ,则 x>2 或 x<-6.

当 x<-6 时, g(x)=x2+4x-12 是减函数,

∴在(-∞,-6)上是增函数 .

12、答案:11,7 :∵ 2≤x≤4,∴.

则函数,

∴当时,y最大为11;当时,y最小为7.

13、答案:(-∞,] 提示:原方程等价于

由③得. ∴当x>0时,9a≤,即a≤.

又∵ x≠3,∴ a≠2,但a=2时,有x=6或x=3(舍).∴ a≤.

14、解:要使f(x)<0,即.

当a>b>0时,有x>;

当a=b>0时,有x∈R;

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数与对数函数测试题

东山中学指数与对数函数同步练习 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下列所给出的函数中,是幂函数的是 ( B ) A .3 x y -= B .3-=x y C .3 2x y = D .13 -=x y 2、下列命题中正确的是 ( D ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 3、已知32a =,那么33log 82log 6-用a 表示是 ( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 4、2log (2)log log a a a M N M N -=+,则 N M 的值为 ( ) A 、 4 1 B 、4 C 、1 D 、4或1 5、下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 6、化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 7、已知732log [log (log )]0x =,那么12 x -等于 ( ) A 、 1 3 B C D 8、函数2lg 11y x ?? =- ?+?? 的图像关于 ( )

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

高一指数函数对数函数测试题及答案精编版

高一指数函数对数函数 测试题及答案精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

指数函数和对数函数测试题 一、选择题。 1、已知集合A={y|x y 2log =,x >1},B={y|y=( 21)x ,x >1},则A ∩B=() A.{y|0<y <21}B.{y|0<y <1}C.{y|2 1<y <1}D.φ 2、已知集合M={x|x <3}N={x|1log 2>x }则M ∩N 为() φ.{x|0<x <3}C.{x|1<x <3}D.{x|2<x <3} 3、若函数f(x)=a (x-2)+3(a >0且a ≠1),则f(x)一定过点() A.无法确定 B.(0,3) C.(1,3) D.(2,4) 4、若a=π2log ,b=67log ,c=8.02log ,则() >b >>a >>a >>c >a 5、若函数)(log b x a y +=(a >0且a ≠1)的图象过(-1,0)和(0,1)两点,则a ,b 分别为() =2,b==2,b==2,b==2,b=2 6、函数y=f(x)的图象是函数f(x)=e x +2的图象关于原点对称,则f(x)的表达式为() (x)=(x)=-e x +(x)=(x)=-e -x +2 7、设函数f(x)=x a log (a >0且a ≠1)且f(9)=2,则f -1(2 9log )等于() 2422229log 、若函数f(x)=a 2log log 32++x x b (a ,b ∈R ),f(2009 1)=4,则f(2009)=() 、下列函数中,在其定义域内既是奇函数,又是增函数的是() =-x 2log (x >0)=x 2+x(x ∈R)=3x (x ∈R)=x 3(x ∈R) 10、若f(x)=(2a-1)x 是增函数,则a 的取值范围为() <21B.2 1<a <>≥1 11、若f(x)=|x|(x ∈R),则下列函数说法正确的是() (x)为奇函数(x)奇偶性无法确定 (x)为非奇非偶(x)是偶函数 12、f(x)定义域D={x ∈z|0≤x ≤3},且f(x)=-2x 2+6x 的值域为()A.[0,29]B.[29,+∞]C.[-∞,+2 9]D.[0,4]

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

中职数学第册指数函数对数函数测试题

2015级建筑部3月份月考数学测试题 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共20小题,每小题3分,共60分。在每小题所给出的四个选项中,只有一个符合题目要求,不选、多选、错选均不得分) 1、下列函数是幂函数的是( ) A 3+=x y ; B 3 x y =; C x y 3=; D x y 2log = 2、数列-3,3,-3,3,…的一个通项公式是( ) A. n a =3(-1) n+1 B. n a =3(-1)n C. n a =3-(-1)n D. n a =3+(-1)n 3、对数1log 3的值正确的是( ). A. 0 B.1 C. 2 D. 以上都不对 4、将对数式24 1 log 2 -=化成指数式可表示为( ) A.224 1-= B.412 2 =- C.2412 =?? ? ??- D.2412 -=?? ? ?? 5、若指数函数的图像经过点?? ? ??21,1,则其解析式为( ) A.x y 2= B.x y ??? ??=21 C. x y 4= D. x y ??? ??=41 6、下列运算中,正确的是( ) A.5553443=? B.435÷5534= C.55 3 44 3=??? ? ? ? D.0554343=?- 7、已知3log 2log a a >,则a 的取值范围是( ) A 1>a ; B 1a a 或 8、将对数式ln 2x =化为指数式为 ( ) A. 210x = B. x = 2 C. x = e D. x = e 2 9、4 32813?-的计算结果为( )。 A .3 B.9 C.3 1 D.1

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

(完整版)指数函数和对数函数单元测试题及答案

指数函数和对数函数单元测试题 一选择题 1 如果,那么a、b间的关系是【】 A B C D 2 已知,则函数的图象必定不经过【】 A第一象限 B第二象限 C第三象限D第四象限 3 与函数y=x有相同图象的一个函数是【】 A B,且 C D,且 4 已知函数的反函数为,则的解集是【】 A B C D 5已知函数在上是x的减函数,则a的取值范围是【】 A B C D 6 已知函数的值域是,则它的定义域是【】 A B C D 7已知函数在区间是减函数,则实数a的取值范围是【】 A B C D 8 已知,则方程的实数根的个数是【】 A1 B 2 C 3D 4 9 函数的定义域为E,函数的定义域为F,则【】 A B C D 10有下列命题:(1)若,则函数的图象关于y轴对称;(2)若,则函数的图象关于原点对称;(3)函数与的图 象关于x轴对称;(4)函数与函数的图象关于直线对称。其中真命题是【】 A(1)(2) B(1)(2)(3)C(1)(3)(4) D (1)(2)(3)(4)

二填空题 11函数的反函数是______ 。12 的定义域是______ 。 13 函数的单调减区间是________。 14 函数的值域为R,则实数a的取值范围是__________. 三解答题 1 求下列函数的定义域和值域 (1)(2) 2 求下列函数的单调区间 (1)(2) 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。 4 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

参考答案 一选择题BADBC BCBDD 二填空题11121314或 三解答题 1 求下列函数的定义域和值域 (1)(2) 定义域定义域 值域值域且 2 求下列函数的单调区间 (1)(2) 减区间,增区间减区间, 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。解(1),又,所以,所以定义域。 (2)在上单调增。 (3),,即 ,所以,所以解集 2 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

《指数函数与对数函数》测试题

《指数函数与对数函数》测试题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、10 5 C 、lg10 D 、lg5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若2 2 log log a a M N =则M N =; ④若M N =则2 2 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2 {|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.48 12314,8 ,2y y y -??=== ? ?? ,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()2 2 lg 2lg 52lg 2lg 5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、2 3(1)a a -+ D 、2 31a a -- 9、若210 25x =,则10x -等于( ) A 、15 B 、15- C 、150 D 、1625

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

指数函数及对数函数测试题及答案

指数函数与对数函数检测题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =;②若log log a a M N =则M N =; ③若22log log a a M N =则M N =;④若M N =则22 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、?B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.4812314,8,2y y y -?? === ???,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值X 围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、23(1)a a -+ D 、231a a -- 9、若21025x =,则10x -等于( )

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

中职数学指数函数与对数函数

指数函数与对数函数 一、实数指数幂 1、实数指数幂:如果x n =a (n ∈N +且n >1),则称x 为a 的n 次方根。当n 为奇数时,正数a 的n 次方根是一个正数,负数的n 次方根是一个负数。这时,a 的n 次方根只有一个,记作n a 。当n 为偶数时,正数a 的n 次方根有两个,它们互为相反数,分别记作n a ,- n a 。它们可以写成±n a 的形式。负数没有 (填“奇”或“偶”)次方根。 例:填空: (1)、(38)3= ;(38-)3 = 。 (2)33 8= ;33)8(-= 。 (3)、44 5= ;44)5(-= 。 巩固练习: 1、将下列各分数指数幂写成根式的形式: (1)3 2a (2)5 3-b (b ≠0) 2、将下列各根式写成分数指数幂的形式: (1)52 a (2)3 5 1 a (a ≠0) 3、求下列幂的值: (1)、(-5)0; (2)、(a-b )0; (3)、2-1; (4)、(47)4 。 2、实数指数幂的运算法则 ①、β α a a ?=β α+a ②、βαa a =β α-a ③、β α)(a =αβ a ④、α )(ab =α α b a ? ⑤、α)(b a =αα b a 例1:求下列各式的值: ⑴、2 1100 ⑵、3 2 8- ⑶3 23 188? 例2:化简下列各式: ⑴、3a a ⑵、633333??

巩固练习:1、求下列各式的值: ⑴、4 33 162 ?- ⑵、4482? ⑶553 25.042 ??- 2、化简下列各式: ⑴2 )3(-x ⑵232)(-y x ⑶203 53 2a a a a ???-(a ≠0) 二、幂函数 1、幂函数:形如α x y =(α∈R,α≠0)的函数叫做幂函数,其中x 为自变量,α为常数。 例1、判断下列函数是否是幂函数: ⑴、y =4x ⑵、y =3 -x ⑶、y =2 1 x ⑷、y =x 2 ⑸、s =4t ⑹、y =x x ++2) 1( ⑺、y =2 x +2x+1 巩固练习:观察下列幂函数在同一坐标系中的图象,指出它们的定义域: ⑴、y =x ;⑵、y =2 1x ;⑶y =1 -x ; ⑷y =2 x ;⑸y =41 -x 。 o x 1 1 y y =x y=x -1 y=x 2

相关文档
最新文档