植物过氧化物同工酶的聚丙烯酰胺凝胶电泳实验指导

植物过氧化物同工酶的聚丙烯酰胺凝胶电泳实验指导
植物过氧化物同工酶的聚丙烯酰胺凝胶电泳实验指导

植物过氧化物同工酶的聚丙烯酰胺凝胶电泳

【目的】

1.掌握聚丙烯酰胺凝胶电泳的原理及操作过程。

2.了解聚丙烯酰胺圆盘电泳的实际应用,利用此法分离植物过氧化物同工酶。

【概述】

1.聚丙烯酰胺凝胶电泳

聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支承物的一种电泳技术。其凝胶是由丙烯酰胺单体和交联剂甲叉双丙烯酰胺在催化剂的作用下聚合交联而成的三维网状结构。凝胶网孔的大小可通过改变单体浓度和交联剂浓度的比例加以调节,常用的所谓标准凝胶是指含丙烯酰胺7%~7.5%的凝胶,大多数生物体内的蛋白质在此凝胶中电泳能达到满意的结果。

聚丙烯酰凝胶电泳过程中除了一种电泳所具有的电荷效应外,还具有“分子筛”效应;不连续的凝胶电泳过程中具有电荷效应、分子筛效应和浓缩效应。不连续凝胶电泳体系的不连续性体现在:

(1)凝胶由上、下两层组成,两层胶孔孔径不同。上层为大孔径的浓缩胶,下层为小孔径的分离胶。

(2)缓冲液离子组成及各层凝胶的pH 值不同。如常用的碱性系统中,电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl 缓冲液,分离胶为pH8.9的Tris-HCl 缓冲液。

(3)在电场中形成不连续的电位梯度。

在这种不连续的系统中有三种物理效应起作用,使样品分离效果好、分辨率高。这三种效应是电荷效应、分子筛效应和浓缩效应。

① 电荷效应 由于各种蛋白质分子所载有效电荷不同,因而在一定电场作用下迁移率不同。承载有并效电荷多的,泳动的快,反之则慢。 CH 2CH C=O NH 3CH 2=CH C=O NH CH 2

NH C=O CH 2+CH 2CH C=O NH 3CH 2CH C=O NH 3

C=O NH CH 2NH C=O CH 2CH 2CH [[]]n

n 催化剂

② 分子筛效应 因为聚丙烯酰胺具有网孔结构,所以直径大,形状不规则的分子,电泳时通过凝胶受到的阻力大,移动较慢;分子量小,形状为球形的分子在电泳过程中受到的阻力小移动较快。

③ 浓缩效应 待分离样品中各组分在浓缩胶中会被压缩成薄层,而使原来很稀的样品得到高度浓缩,其原因:

a 由于两层胶孔径不同,蛋白质分子向下移动到两层凝胶界面时,阻力突然增大,速度变慢。这样,就在两层凝胶交界处使待分离的蛋白区带变窄,浓度升高。

b 在凝胶中,虽然浓缩胶和分离胶用的都是Tris-HCl 缓冲液,但浓缩胶pH6.7,分离胶pH8.9,电泳槽中Tris-甘氨酸缓冲液的pH8.3。在此条件下,HCl 几乎全部电离为Cl -,甘氨酸等电点为6.0,在pH6.7条件下仅有0.1%~1%解离为甘氨酸负离子,大部分蛋白质在pH6.7条件下都以负离子形式存在。电泳一开始,三种离子同向正极移动,其有效泳动率顺序为Cl -﹥蛋-﹥甘-。布满胶柱的Cl -迅速跑到最前边,成为快离子,电极缓冲液中的甘氨酸走在最后,成为慢离子。由于快离子迅速向前移动,在其原来停留的那部分区域成为低离子浓度区,即电导区。

聚丙烯酰凝胶圆盘电泳除具有分离效果好的优点外,还具有设备简单、操作方便、时间短,样品用量少,不易扩散等优点,所以它是鉴定酶和蛋白质的有力工具。

2.同工酶的分离

同工酶是指生物体内能催化统一生化反应,但是由于分子结构及组成不同因而具有不同的化学性质、电泳效应等的一类酶。因此,可以利用其结构上的差异 用凝胶电泳将其分离。

过氧化物酶能催化过氧化氢把联苯胺氧化成蓝色或棕色产物的原理,将经过电泳后的凝胶置于有过氧化氢及联苯胺的溶液中染色,即可显色,此有色部位即为过氧化物酶在凝胶中存在的位置。其反应如下:

【材料、器材与试剂】 NH 22NH NH H

2

N

H 2N NH -2H -2H

无色蓝色中间产物

棕色

1.材料绿豆芽

2.器材

(1)离心机(2)电泳槽(3)5号注射器(4)注射器(5)稳流稳压电泳仪(6)洗耳球(7)研钵(8)微量注射器(9)移液管(10)园盘电泳槽3.试剂

(1)溶液 A 三羟甲基氨基甲烷(Tris)36g,1mol/L HCl48mL,四甲基乙二胺(TEMED)0.24ml,加水定容至100ml,pH为8.9。

(2)溶液B 丙烯酰胺30g,甲叉双丙烯酰胺0.8g,加水分别溶解,定容至100ml,pH为8.9(注意:丙烯酰胺和甲叉双丙烯酰胺具有神经毒性,操作中注意安全)。(3)溶液C 过硫酸胺0.14g,加水定容至100ml(现用现配)。

(4)电极缓冲液 Tris6g,甘氨酸28.6g,加水定容至1000ml,pH为8.3(使用时稀释10倍)。

(5)样品提取液 0.1mol/L Tris-HCl缓冲液pH为8.0。

(6)40%蔗糖

(7)联苯胺溶液 2g联苯胺溶于18mL文火加热的冰醋酸中,再加入72mL水。(8)3%过氧化氢

【方法与步骤】

1.制备玻璃管取玻璃管12支,长80~100mm,两端切口磨平,离管口20mm 划一圈水平刻度线,洗净烘干。另一端套上塞有玻璃珠的乳胶管。

2.制备凝胶 A:B:水:C按1:2:1:4配制

将A、B及水按比例混好后置于三角瓶中,再放在真空干燥器中,同时将C 液也放在真空干燥器中减压排溶液中的气泡。抽气后立即按比例加入C液,用玻璃棒轻搅使之混合。

用10ml针筒吸混匀的胶液,插入干燥、洁净下端密封的玻璃管中,一边推出溶液一边将针头自管底部逐渐向上移动,要使针尖始终在液面下,胶液灌到20mm的刻度线处。为防止空气中的氧及凝胶表面形成弯月面,应立即在其表面覆盖5mm水层。将灌好胶的玻管插入橡皮寒孔中垂直挂于电泳槽的孔内,静止30min。当见到水层下有一清楚的界面时,表明胶已聚合,用滤纸条吸去水层。拔掉玻管下的乳胶套。

3.样品的制备称取1g绿豆芽,放入研钵中,加1ml提取液,冷水浴中研成匀浆,用1ml提取液几次洗涤移入离心管,3500rpm离心20min,上清液倒出,以等量40%蔗糖混合备用。

4.装槽点样

(1)装下槽电极缓冲液将稀释10倍的电极缓冲液400ml倒入下槽,安好装有

凝胶柱玻管的上槽,准备点样。

(2)点样用1ml微量进样器吸取样品50ul,沿玻管壁轻轻加到胶面上。(3)装上槽电极缓冲液将稀释10倍的电极缓冲液100ml倒入上槽,用2ml 注射器吸缓冲液将各玻管注满,加一滴溴酚蓝指示剂,再倒入300ml电极缓冲液,淹没玻管上端1~2cm,连接电极,准备电泳。

5.电泳接好电源(上槽为负极)。打开电源开关,调节电流到每管1mA左右,15min后调至每管2mA,电泳。等指示剂前沿距胶柱末端0.5cm处,即可停止电泳。关闭电源,取出电泳槽。

6.剥胶拔下所有凝胶柱玻管,用5ml注射器注满水,安上10cm长的细针头,沿管壁内侧穿入,边前进,边注水,边转动玻璃管,借水的润滑作用和针头的刮切作用把胶柱剥离,然后用洗耳球轻轻吹出胶柱,放入指形管中。

7.染色向指形管中加入0.5ml联苯胺溶液、9.3ml水和0.2ml的双氧水,淹没整个胶柱,于32℃水浴中保温显色10min,当过氧化物酶同工酶区带出现蓝色后,取出用蒸馏水漂洗,蓝色变为棕色,即得过氧化物酶同工酶的棕褐色酶谱。8.记录结果倒掉染色液,放入70%乙酸中保存,绘图或照像。

【思考题】

1.聚丙烯酰胺凝胶电泳和醋酸纤维素薄膜电泳的分离效果哪个好,为什么?2.聚丙烯酰胺凝胶电泳时蔗糖的作用是什么?

3.电泳时样品为什么加在负极?

总氮量的测定―――微量凯氏定氮

【目的】

1.学习测定蛋白质样品中含氮量的方法

2.了解氮含量测定的原理及重要性。

【概述】

生物体中的氮包括蛋白质氮和非蛋白质氮两大类。组成蛋白质的氮称做蛋白质氮,其它化合物中的氮称做非蛋白质氮,主要是氨基酸和酰胺,以及未同化的无机氮等,它们都是小分子化合物,易溶于水,故也称做水溶性氮。植物体中的含氮化合物以有机氮为主,无机氮含量极少。蛋白质中氮的含量比较恒定,平均为16%,可通过测定氮的含量推测样品中蛋白质的含量(总氮量×6.25)。

存在于蛋白质或其他含氮化合物中的氮通常用微量凯氏定氮法来测定,其基本原理是含氮化合物例如蛋白质与浓硫酸共热,使其中的氮转化为氨,后者与硫酸结合生成硫酸按。以甘氨酸为例反应如下:

NH

2-CH

2

-COOH + 3H

2

SO

4

→ 2CO

2

+ 2SO

2

+NH

3

+4H

2

O

2NH

3

+ H

2

SO

4

→(NH

4

2

SO

4

反应进行得很慢,因此需加入接触剂(由硫酸铜和硫酸钠或硫酸钾组成,硫酸钾可提高浓硫酸的沸点,增加氧化能力;硫酸铜是催化剂,同时可指示消化的终点),这一步称为消化,所得硫酸铵溶液为消化液。

消化完了,加入强碱(如30%~40%的氢氧化钠)使硫酸铵分解放出氨。借水蒸气蒸馏法将氨气蒸入硼酸溶液中,氨与酸液中的氢离子结合生成铵离子,使溶液中氢离子浓度降低。用标准盐酸滴定,根据所消耗的标准盐酸的量可换算出放出的氨的量,进而可计算出蛋白质样品中总氮的量。在发酵工业上,常用此方法测定发酵液中氮源的消耗情况。

【材料、器材与试剂】

1.材料豆粉等含蛋白质的物质。

2.器材

(1)凯氏烧瓶(50ml,8个)(6)玻璃漏斗(4~6cm)

(2)三角瓶(500m1,7 个)(7)洗瓶

(3)微量凯氏定氮仪(8)100ml的容量瓶

(4)滴定管架(9)微量滴定管

(5)10m1量筒(2个)(10)微量酸式滴定管

3.试剂

(1)浓H

2SO

4

(AR)

(2)接触剂硫酸钾-硫酸铜混合物(K

2SO

4

:CuSO.5H

2

O=5:1)

(3)甲基红-甲烯蓝指示剂(变色范围:酸性为紫红色,中性为灰绿色,碱性为绿色)

①溴甲酚绿乙醇溶液(0.1%)把0.1g溴甲酚绿溶于100ml乙醇中。

② 0.15的甲基红乙醇溶液把0.1g甲基红溶于100ml乙醇中。

③把50ml溴甲酚绿乙醇溶液和10ml甲基红乙醇溶液混合后即得

(4)0.01mol/L的标准盐酸溶液

① 0.lmol/L的盐酸把8.4ml浓盐酸加水稀释到1000ml。

②标定取一个250ml的三角瓶,精确称取0.4~0.5g的硼砂放入该三角瓶内,重复做两份。分别加入50ml蒸馏水使其溶解,再加入2~3滴甲基红溴甲酚绿指示剂,用0.1mo1/L的盐酸滴定到红色刚出现为止。记录0.1mol/L盐酸的用量,根据下式计算标准盐酸溶液的实际浓度。

盐酸的摩尔浓度=g(硼砂质量)/盐酸消耗量× 0.1907

③取适量盐酸溶液加水稀释到0.01mol/L 备用。

【方法与步骤】

1.样品的消化

(1)样品的处理固体样品粉碎、烘干至恒重。

(2)消化取2个凯氏烧瓶,编号为1和2。在分析天平上称取0.5~1.0mg的样品放入1号烧瓶中(注意要加到瓶底部),再加入0.5g硫酸铜和5g硫酸钾混合接触剂,并慢慢加入20ml浓硫酸。2号烧瓶中加入0.5g硫酸铜和5g硫酸钾混合接触剂,20ml浓硫酸,作为空白对照。

(3)在每个瓶口放一个小漏斗,置通风橱内,在电炉上加热消化。瓶内溶液的颜色由棕褐色变为浅蓝色后,继续消化0.5~1小时,至消化液呈透明蓝绿色。(4)使瓶内消化液冷却到室温。将1、2号烧瓶中的消化液分别移入100ml的容量瓶内,用燕馏水冲洗漏斗和烧瓶(注意:每次加水要适量,至少冲洗3次)。最后加水到刻度,混匀备用。

2.定氮装置的安装与清洗在蒸气发生器中加约2/3体积的蒸馏水和几滴浓硫酸、甲基红和沸石。打开漏斗下夹子,加热至水沸腾,使蒸气通入仪器的每个部分,达到清洗的目的。在冷凝管下端放置一个三角瓶承接冷凝水。然后夹紧漏斗下的夹子,再冲洗5min,冲洗完毕,夹紧蒸气发生器与收集器之间的连接橡皮管,蒸馏瓶中的废液由于减压倒吸到收集器中,打开收集器下端的活塞排除废液。如此清洗2~3次,然后在冷凝管下换放一盛有硼酸指示剂混合液的三角瓶,使冷凝管下口完全浸在溶液内,蒸馏1~2min,观察三角瓶内的溶液是否变色,如不变色,则证明蒸馏瓶内部已洗干净。移去三角瓶再蒸馏1~2min,最后用蒸馏水冲洗冷凝管下口外面,关闭电炉,仪器可供测样品用。

3.碱化蒸馏

(1)量取10ml硼酸溶液放入三角瓶中,加入混合指示剂2~3滴,并使冷凝管下端插入硼酸液面下(注意加样前勿打开收集器活塞以免三角瓶内液体倒吸)。(2)准确吸取5ml样品消化液由小漏斗加入反应室,并以10ml蒸馏水洗涤样品加入反应室,塞紧棒状玻璃塞。将10mlNaOH溶液倒入小漏斗,提起玻璃塞使其缓慢流入反应室,用少量水冲洗后立即将玻璃塞塞紧,并于小漏斗中加水水封。(3)关闭收集器活塞,打开蒸气夹,加热蒸汽发生器,进行蒸馏。三角瓶中的硼酸指示剂由于吸收了氧,由紫红色变成了绿色。自变色时起,再蒸3~5min,移动三角瓶使瓶内液面离开冷凝管下口约1cm,并用少量蒸馏水洗涤冷凝管下口外边,再继续蒸馏1min,移开三角瓶。

4.样品滴定用微量酸式滴定管以标准液进行滴定,直至三角瓶中硼酸指示剂混合液由绿色变回淡紫红色为止,即滴定终点,记录盐酸的用量。

5.计算

N×(V

1-V

2

)×100×A

样品含氮量(%)=—————————————× 0.014

W × B

样品中粗蛋白质含量(%)=总氮量(%)×6.25

式中:N——盐酸的浓度(0.01mol/L);

V

1

——滴定样品所需的0.01mol/L 盐酸的ml数;

V

2

——滴定空白所需的0.01mol/L盐酸的m1数;

W——样品质量,g;

A——消化液的总体积;

B——每次蒸馏所取的消化液毫升数。

【思考题】

1.样品消化过程中发生的颜色变化是什么?为什么?

2.为什么在消化过程中要加入接触剂?

3.本实验过程中,精确测定的关键步骤是什么?

4.如何判断反应室(即仪器)是否冲洗干净?

5.何谓样品的消化?

6.在定氮仪的反应室内将发生什么化学反应?

粗脂肪含量的测定(残余法)

【目的】

掌握残余法测定粗脂肪的原理与过程。

【概述】

脂类是一类不溶于水但易溶于有机溶剂的一类化合物。脂肪是由一分子的甘油和三分子脂肪酸脱水缩合而成的化合物,广泛存在于动植物组织中。用脂溶性溶剂将脂肪从样品中浸提出来,然后将溶剂蒸发出去,称量样品损失的重量,即可求得样品中粗脂肪的含量。在抽提样品时,通常采用沸点低于60℃的有机溶剂作为脂溶性溶剂,如乙醚、石油醚等。用乙醚等提取的脂类,除脂肪外,还有游离脂肪酸、有机酸、磷脂、色素等。所以此法测得的脂肪为粗脂肪。

【材料、器材与试剂】

1.材料花生米

2.器材

(1)电子天平(2)研钵(3)水浴锅(4)电热恒温箱(5)索氏提取器3.试剂无水乙醚

【方法与步骤】

1.仪器安装将索氏提取器各部分组装好,并连通冷凝管的进出水口。

2.样品的制备

(1)取一定量的烘干的花生米于研钵中研磨成粉末状。(样品去皮)

(2)称取研磨好的样品用电子天平准确称取1~2g(G)。

(3)将样品放入已烘干的滤纸包内,用线系好,电子天平称重(W

1

)。

3.脂肪抽提

(1)将样包装入脂肪抽提器的抽提筒中,倒入无水乙醚,使之刚好超过包高度,连接好抽提器的各部分。

(2)检验抽提装置有无漏气,打开冷凝水,在水浴锅中进行抽提,温度40℃~50℃,抽提6~8小时。

(3)取出样包,在通风处使乙醚挥发,另将抽提器剩余乙醚回收。

(4)将样包放入105±2℃烘箱中干燥2小时,取出放入干燥器,冷却至室温,

再将样包进行称重(W

2

)。

4.计算粗脂肪含量(%)=[W

1-W

2

/G]×100%

【思考题】

1.绘出索氏提取装置图,并标明各部分名称。2.如果用增重法测定脂肪含量,应称量哪些重量?

有关中性单细胞凝胶电泳的总结要点

1、辐射生物剂量:此法适于照后短期内的剂量评价,中性条件优于碱性条件; 旁观效应:查阅了许多国外文献,尚无此方法观察旁观效应的研究报道,所以我采用此方法观察了1Gy照后的旁观效应,试验今天上午刚刚结束,结果待分析,粗略看,此法对于旁观效应还是很敏感的,此法的优势在于成本低,操作比较简单。 低剂量照射的适应性反映:本实验室的一个相关课题刚刚结提,论文在法医学与特种医学版的军事医学子版已有上传,感兴趣的可以去看。 凋亡细胞的观察:看过国外此法作出的凋亡细胞彗星图像,很漂亮,用CASP软件分析后,其曲线呈典型的双峰,而正常细胞为单峰。我的一些教训:观察凋亡细胞最好把电压、电流、和电泳时间均调低,否则,凋亡细胞中的DNA片断跑的太块,荧光下根本看不到凋亡细胞的尾巴。 注:我用的是中性条件,20V,200mA,20min, 凋亡细胞观察宜选用10V,100mA,10min。 2、中性单细胞凝胶电泳步骤:(以淋巴细胞为例) 1) 淋巴细胞的提取 ①取各组荷瘤鼠外周血0.2ml,肝素抗凝,加入到等体积淋巴细胞分离液上,3500r/min离心4min。 ②取中间层淋巴细胞并加入PBS至5 ml, 1500r/min离心8min。 ③重复洗涤细胞两次。 2) 琼脂糖玻片的制备 ①制好微型电泳槽。 ②使用两层凝胶法,第一层为100μl 0.75%正常熔点琼脂糖凝胶, 第二层为75μl 0.75%低熔点琼脂糖凝胶和25μl淋巴细胞的混合液。 3) 细胞裂解、电泳 ①好的玻片浸入新配的预冷的(4oC)中性裂解液中裂解1.5h。 ②取出玻片,用双蒸水浸没漂洗。 ③将玻片置于0.5%电泳液中先解旋20分钟,然后电泳20min,电压20V,电流200毫安。 4) 染色 用溴化乙啶(2μg/ml)染色。 用双蒸水冲去多余染液,滤纸洗去多余水分。 5)读片和分析 ①用荧光显微镜(激发波长515-560nm)观察玻片,每张胶随机抓 取100个慧星图像并用数码相机拍照后输入计算机储存。 ②用CASP软件分析系统分析慧星图像。 3、biomed96 :lq6688你好,本人也正要做这个实验,预实验做了两次,但什么都没看到,也不知道是什么问题,望指教。 铺3层胶,第一层100ul1%regular胶,50度烤干,第二层50000个细胞100ul0.5%低熔点胶,第三层100ul 0.5%低熔点胶。 裂解液:EDTA 100mM Nacl 2.5M Tris(10mM)pH10 1%TritonX-100 裂解1小时 解旋液:EDTA1mM NaoH 300mM Ph>13 孵育20分钟。电泳40分钟。 染色:PI 50ug/ml染色15分钟。 结果是什么都看不到,好像一点都没染色。 lq6688:首先,此试验的生物学原理目前还不是很清楚,Sighn和Olive这两个单细胞凝胶电泳的鼻祖首先提出的中性和碱性条件,中性条件检测双链断裂,而碱性条件检测单链断裂,有人曾提出这是为什么,我查阅了大量文献,国外文献没有具体的说明,国内文献更是人云亦云,所以,目前只能按照大家比较默认的:中性--双链,碱性--单链,这不是用软件来区分的,而是你的试验条件决定的,我看了您的裂解

核酸聚丙烯酰胺凝胶电泳

PAGE胶的配制(DNA电泳用)50ml体系: 丙烯酰胺有效分离 (bp) 丙烯酰 胺30% (ml) 10×TBE (ml) ddH2O (ml) TEMED (μl) 过硫酸铵 10%(μl) 3.5% 100-1000 5.83 5 39.17 25.0 250 5.0% 100-500 8.33 5 36.67 25.0 250 8.0% 60-400 13.33 5 31.67 25.0 250 12.0% 40-200 20.0 5 25.00 25.0 250 15.0% 25-150 25.0 5 20.00 25.0 250 20.0% 5-100 33.33 5 11.67 25.0 250 5ml体系: 丙烯酰胺丙烯酰胺 30%(ml) 10×TBE (ml) ddH2O (μl) TEMED (μl) 过硫酸铵 10%(μl) 3.5% 0.583 0.5 3.917 2.5 25 5.0% 0.833 0.5 3.667 2.5 25 8.0% 1.333 0.5 3.167 2.5 25 12.0% 2.00 0.5 2.5 2.5 25 15.0% 2.50 0.5 2.0 2.5 25 20.0% 3.333 0.5 1.167 2.5 25 1、丙烯酰胺30%为29:1(质量比,丙烯酰胺:双甲叉丙烯酰胺) 2、TEMED 可以加到1ul/ml。 不同浓度丙烯酰胺和DNA的有效分离范围表

丙烯酰胺(%) 有效分离范围(bp) 溴酚兰* 二甲苯青* 3.5 100~2000 100 460 5.0 80~500 65 260 8.0 60~400 45 160 12.0 40~200 30 70 15.0 25~150 15 60 20.0 10~100 12 45 *表中给出的数字为与指示剂迁移率相等的双链DNA分子所含碱基对数目(bp). 凝胶的制备过程: 1、按要求装配好垂直电泳板,两块玻璃板的两侧及底部用1%的琼脂糖封边,防止封闭不严而使聚丙烯酰胺液漏出。 2、将装好的玻璃电泳板倾斜成45~60℃角。 3、按表3配制所需%浓度凝胶的毫升数。 4、加入TEMED后,立即混匀,缓缓倒入两玻璃板间的胶床中,直到液体接近溢出时为止。 5、立即插入适当的梳子,密切注意防止梳齿下产生气泡,用一有力的夹将梳子夹在一边的玻璃板上,然后将玻璃板斜靠在物体上,使成10°角,可减少液体泄漏的机会。 6、室温聚合一小时后,将玻璃板插入电泳槽中,上紧,倒入0.1XTBE缓冲液。 7、小心取出梳子,加样。 预电泳: 1.对于预电泳,有一种解释是为了除去没有聚合完全的丙烯酰胺分子和交联剂,其实最直接的理解就是预电泳会让胶跑的好看一点。 2.电压根据胶的长度来,是5~10V/cm,100V以下。 3.在预冷装置下电泳,防止局部温度高。

实验二 琼脂糖凝胶电泳实验知识交流

实验二琼脂糖凝胶电 泳实验

实验二琼脂糖凝胶电泳实验 【实验目的】 (1)学习琼脂糖凝胶电泳的基本原理; (2)掌握使用水平式电泳仪的方法; (3)学习在含有甲醛的凝胶上进行RNA电泳的方法。 【实验原理】 琼脂糖凝胶电泳是基因工程实验室中分离鉴定核酸的常规方法。核酸是两性电解质,其等电点为 pH2-2.5,在常规的电泳缓冲液中(pH约8.5),核酸分子带负电荷,在电场中向正极移动。核酸分子在琼脂糖凝胶中泳动时,具有电荷效应和分子筛效应,但主要为分子筛效应。因此,核酸分子的迁移率由下列几种因素决定: (1)DNA的分子大小。线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中移动,因而迁移得越慢。 (2)DNA分子的构象。当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关。相同分子量的线状、开环和超螺旋质粒DNA在琼脂糖凝胶中移动的速度是不一样的,超螺旋DNA移动得最快,而开环状DNA移动最慢。如在电泳鉴定质粒纯度时发现凝胶上有数条DNA带难以确定是质粒DNA不同构象引起还是因为含有其他DNA引起时,可从琼脂糖凝胶上将DNA带逐个回收,用同一种限制性内切酶分别水解,然后电泳,如在凝胶上出现相同的DNA图谱,则为同一种DNA。 (3)电源电压。在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb 的DNA 片段的分辨率达到最大,所加电压不得超过5v/cm。

彗星试验步骤

彗星试验步骤 1.5.4 彗星试验(单细胞凝胶电泳试验):参照文献[i],略加改动,进行碱性单细胞凝胶电泳,具体如下。 1.5.4.1 制片 将0.6%的NMPA(用PBS配制)于微波炉中加热融化后,浸泡磨砂玻片,用吸水纸将玻片滑面及四周吸干,自然晾干备用。 1.5.4.2 铺胶 取1.5.3中所备细胞悬液10μl,向其中加入70μl 37℃0.7%LMPA(用PBS配制),混匀后迅速滴于37℃预热的玻片上,立即盖上盖玻片,4℃固化10min。 1.5.4.3 裂解 轻轻取下盖玻片,将玻片浸于新鲜配制并预冷的细胞裂解液中,4℃避光裂解1h。 1.5.4.4 解旋 从裂解液中取出载玻片,用PBS浸泡玻片3×3min。用纸巾吸去玻片上残留的液体,置于水平电泳槽中,加新鲜配制的碱性电泳缓冲液至高于玻片表面3mm 以上,避光解旋30min。 1.5.4.5 电泳 电压25V,调整液面高度使电流达到300mA,电泳25min。 1.5.4.6 漂洗及染色 电泳完毕,取出玻片,用PBS浸泡2×15min,以中和强碱。用纸巾吸去玻片上残留的液体,然后滴加20μg/ml的EB20μl,盖上盖玻片,立即置荧光显微镜下观察。 以上步骤尽量在黄光下或暗处进行,避免其他原因所致的DNA损伤。每一剂量水平制片2张。 1.5.4.7 结果观察 荧光显微镜下200倍观察,激发波长515~560nm,发射波长590nm。每一剂量水平随机观察100个细胞,记录拖尾细胞数。计算拖尾细胞率(以下简称拖尾率),拖尾率=(拖尾细胞数/100)×100%。每一剂量水平用目镜测微尺测量30个拖尾细胞的全长和头长,拖尾细胞尾长(以下简称尾长,tail length,TL)=全

单细胞凝胶电泳(SCGE)检测锰损伤神经元DNA

单细胞凝胶电泳(SCGE)检测锰损伤神经元DNA1 陆彩玲,郭松超,鲁力,陈维平,邝晓聪 广西医科大学公共卫生学院,广西南宁(530021) E-mail:lcling78@https://www.360docs.net/doc/a91728779.html, 摘要:目的建立体外染锰细胞模型,探讨锰神经毒性的作用机制。方法:以原代培养的成熟皮层神经元为靶,据本室前期试验结果确定低中高不同浓度的锰液(分别为0.2mmol/L,0.6mmol/L,1.0mmol/L),与神经细胞共孵育。显微镜观察各组神经细胞形态学的变化,用单细胞凝胶电泳试验(SCGE)检测神经细胞的DNA损伤,以彗星细胞尾长及彗星样细胞百分率为评价损伤的指标。结果:光镜下可见不同浓度锰孵育后神经细胞形态学发生改变,单细胞凝胶电泳试验显示神经细胞DNA出现不同程度的损伤,彗星尾长及彗星样细胞百分率较对照组明显增加(P<0.01)。尤以高浓度锰组损伤组严重,显著高于中低浓度组(P<0.01)。结论:锰不但能引起体外培养的神经细胞外在的形态学损伤,还可导致神经细胞DNA的损伤。 关键词:锰,单细胞凝胶电泳 (SCGE),DNA损伤 目前,随着生产工艺的改进和预防措施的加强,严重的职业性锰中毒已很少发生,但长期低剂量的锰暴露依然存在,并对接触者的潜在影响仍不可低估。慢性锰中毒是进行性的、不可逆的病变,并且锰对接触者的危害正由临床型向亚临床型转变,因而更为敏感、特异的效应指标,以早期筛检出亚临床中毒者及高危人群,是今后锰神经毒性研究中重点解决的问题。 DNA损伤是遗传毒理学的一个重要研究领域,长期不可逆转的DNA损伤累积可诱导细胞突变、畸变。单细胞凝胶电泳(Singl cells gel eletrophoresis,SCGE)又称彗星试验(comet assay),由Ostling等(1984)首创,后经Singh等(1988)进一步完善并逐渐发展起来的一种快速检测单细胞 DNA损伤的实验方法,适用于多种细胞,广泛应用于检测诱变剂、射线等对DNA的损伤、监测环境污染物对机体的遗传损害、研究毒物致癌机制等方面,具有经济、简捷、灵敏等优点,日益广泛地应用在各种诱变剂的遗传毒性检测上。鉴于此,本研究以此法检测染锰后对神经细胞遗传物质的影响,探讨锰神经毒性的机制,为锰中毒的防治提供研究基础。 1. 材料与方法 1.1 试剂 MnCl2·4H2O(购自上海生化试剂公司, AR级), Dulbcco's Modifed Eagle 培基(DMEM,高糖)及新生小牛血清购自Gibco公司(美国),L-谷氨酰胺与多聚赖氨酸 (PL YS)购自生物工程产品公司(上海).低熔点凝胶(LMPA)及正常熔点凝胶(NMPA)、TritonX-100、乙二胺四乙酸二钠(Na2EDTA)、Tris-HCl、溴乙锭(EB) 购自Sigma 公司(美国)其他所有试剂都达试验用的分析纯级 1.2 皮层神经元的原代培养 制备原代皮层神经元方法参照方法所述[1]. 取新生24小时内Wistar 乳大鼠,消毒后冰层上剥离大脑皮层,解剖显微镜下剔除血管、脑膜及海马组织后转入盛D-Hank’s液的玻璃瓶,机械法分离神经细胞。200um稠布筛网过滤神经细胞悬液,滤后悬液800转/分离心5 1本课题得到国家自然科学基金资助项目(项目批准号:30260095)的资助。

聚丙烯酰胺凝胶电泳

一、目的要求 1.学习电泳原理和技术 2.学习和掌握SDS-聚丙烯酰胺凝胶垂直板电泳分离蛋白质技术 二、实验原理 SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE):蛋白质在聚丙烯酰胺凝胶电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。如果在丙烯酰胺凝胶系统中加入阴离子去污剂十二烷基磺酸钠(sodium dodecyl sulfate,简称SDS),则蛋白质分子的电泳迁移率主要取决于它的分子量,而与所带电荷和形状无关。因此可以利用SDS-PAGE测定蛋白质分子量。 三、试剂与器材 试剂:10%SDS、30%凝胶贮液(29%ACr-1%Bis)、分离胶缓冲液、浓缩胶缓冲液、10%过硫酸铵、TEMED、pH8.3Tris-Gly电极缓冲液、上样缓冲液、蛋白质maker、0.25%考马斯亮兰R250染色液、甲醇:醋酸脱色液、异丙醇、tris-HCl(PH6.8)缓冲液、二硫苏糖醇、去离子水 器材:垂直板电泳槽、稳压稳流电泳仪、脱色摇床、50ml小烧杯、移液枪、枪头、玻璃棒、滤纸、表面皿、手套、 四、实验步骤 1 SDS聚丙烯酰胺的灌制 ⑴按说明安装玻璃板,橡胶条放在两玻璃板之间,确定不漏液,玻璃板放入电泳槽时,有凹槽的一侧向里,时刻保持玻璃片间的压力。 ⑵根据表1制备分离胶溶液,加入TEMED后迅速旋转混合物,用1ml移液枪将其注入两块玻璃板之间的间隙中(灌制红色板的上边缘)。用枪在聚丙烯酰胺溶液上小心的覆盖一层异丙醇。将凝胶垂直放于室温下。(丙烯酰胺有神经毒性,故操作时应注意不要吸入其粉末,实验时应戴手套,剩余的聚丙烯酰胺溶液不要乱扔,待聚合后再处理) ⑶待聚合后(40min),倒掉覆盖层,用去离子水清洗凝胶顶部,尽可能倒掉凝胶上的液体,用滤纸吸干水分。 ⑷按表1配置浓缩胶,加完TEMED后迅速旋转混合,注满玻璃板间隙,插入梳子(写有1.5mm 的一侧向里,先插入一侧,在从一侧向另一侧压着插入,以排除气泡)将胶垂直放置于室温下。约30min聚合完成,拔出梳子(平行拔出),用去离子水冲洗胶孔,再用滤纸吸干水。取出玻璃板,取下橡胶条。 表1分离胶与浓缩胶配制

琼脂糖凝胶电泳标准操作流程

琼脂糖凝胶电泳操作标准流程 一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,具有操作方便、经济快速等优点。本铜人阵学习DNA琼脂糖凝胶电泳的使用技术,此关为能力考核,通关成功后,代表具备操作琼脂糖电泳的能力。 二、实验原理 琼脂糖凝胶电泳是常用的用于分离、鉴定DNA、RNA分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。如环形DNA分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA)、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA>IDNA>ocDNA 影响核酸分子泳动率的因素主要还是:1、DNA分子大小;2、琼脂糖浓度; 3、DNA构想; 4、所用的电压; 5、琼脂糖种类; 6、电泳缓冲液 核酸电泳中常用的染色剂是溴化乙锭(ethidium bromide EB)。溴化乙锭是一种扁平分子,可以嵌入核酸双链的配对碱基之间。在紫外线照射BE-DNA复合物时,出现不同的效应。254nm的紫外线照射时,灵敏度最高,但对DNA损伤严重;360nm紫外线照射时,虽然灵敏度较低,但对DNA损伤小,所以适合

对DNA样品的观察和回收等操作。300nm紫外线照射的灵敏度较高,且对DNA 损伤不是很大,所以也比较适用。 三、材料、试剂及器具 1、材料 不同大小的基因组片段; 2、试剂 Hind III digest DNA Marker(分子量标准)(TaKaRa);D2000(TianGen);BIOWESTAGAROSE(西班牙琼脂糖);加样缓冲液(6x):溴酚黄;电泳缓冲液(1×TAE);溴化乙锭(EB); 3、仪器及器具 (1)移液器、吸头、锥形瓶 (2)电泳系统:电泳仪、水平电泳槽、托盘、胶托、梳子等。 (3)紫外透射仪、微波炉、电子天平 四、操作步骤 1.器具清洗:首先将配胶、电泳、染胶所需要的器具清洗干净,包括托盘、胶托、梳子、电泳槽、染胶盘(EB污染,需独立清洗)。清洗流程为:先用自来水冲洗三次,然后用纯水冲洗三次,最后用纸巾或医用纱布擦干。若需对电泳产物进行胶回收,则还需用75%酒精对器具进行消毒。 2.配胶:根据基因组片段大小,配置相应浓度的琼脂糖凝胶。首先将锥形瓶洗干净并加入少量纯水煮沸,然后量取一定量的电泳缓冲液(1×TAE)至锥形瓶中,再称取相应量的BIOWESTAGAROSE(西班牙琼脂糖)倒入锥形瓶中,摇匀并

毒性试验整理

实验一发光细菌的急性毒性评价试验 一、实验器材 1.菌株 明亮发光杆菌(Photobacterium phosphoreum) 2.培养基 酵母膏0.5%,胰蛋白胨或多聚蛋白胨(Polypetone)0.5%,甘油0.3%,NaCl 3%,Na2HPO4 0.5%, KH2PO4 0.1%,pH6.5。固体培养基再加琼脂2%。 3.溶液、试剂及待测物质 酵母粉,蛋白胨,NaCl(AR),Na2HPO4(AR),KH2PO4(AR),甘油(AR),二甲基亚砜(AR),乙酸乙酯(AR),HCl(1M),去离子水。 4.仪器及其他用品 生物毒性测试仪;电热恒温鼓风干燥箱;振荡培养箱;DELTA 320pH计;氮吹仪;镊子,移液枪,三角锥形瓶等。 二、目的要求 1.学习了解发光细菌的急性毒性评价试验的基本原理。 2.掌握发光细菌的急性毒性评价试验的操作要领和评价方法。 三、基本原理 发光细菌是指在正常的生理条件下能够发射肉眼可见的蓝绿色荧光的细菌,这种可见荧光波长在450-490 nm之间,在黑暗处肉眼可见。不同种类发光细菌的发光机理是相同的,都是由特异性的荧光酶(LE),还原性的黄素(FMNH2),八碳以上长链脂肪醛(RCHO),氧分子(O2)所参与的复杂反应,大致历程如下: FMNH2+LE→FMNH2·LE+O2→LE·FMNH2·O2+RCH→LE·FMNH2·O2·RCHO→LE+FMN+ H2O+RCOOH+光 具体来说,生物发光反应由分子氧作用,胞内荧光酶催化,将还原态的黄素单核苷酸(FMNH2)及长链脂肪醛氧化为FMN及长链脂肪酸,同时释放出最大发光强度在波长为 407-409 nm处的蓝绿光。 发光细菌法是利用灵敏的光电测量系统测定毒物对发光细菌发光强度的影响。发光细菌含有荧光素、荧光酶、ATP等发光要素,在有氧条件下通过细胞内生化反应而产生微弱荧光。当细胞活性升高,处于积极分裂状态时,其ATP含量高,发光强度增强。发光细菌在毒物作用下,细胞活性下降,ATP含量水平下降,导致发光细菌发光强度的降低。实验显示,毒物浓度与菌体发光强度呈线性负相关关系,因而,可以根据发光细菌发光强度判断毒物毒性大小,用发光度表征毒物所在环境的急性毒性。

双向凝胶电泳比较三种常用蛋白质提取方法

ISS N 100727626 C N 1123870ΠQ 中国生物化学与分子生物学报 Chinese Journal of Biochemistry and M olecular Biology 2005年10月 21(5):691~694 ?技术与方法? 双向凝胶电泳比较三种常用蛋白质提取方法 翁 瑜1),2), 曾群力2),3), 姜 槐2), 许正平2),3)3 (1)浙江大学生命科学学院;2)浙江大学医学院浙江省生物电磁学重点研究实验室;3)浙江大学医学院环境基因组学研究中心,杭州 310031) 摘要 组织(或细胞)的蛋白质提取效率直接影响蛋白质双向凝胶电泳(22DE)的分辨率.为探索建立适用于人乳腺癌细胞株MCF27蛋白质提取的最佳条件,比较目前在双向凝胶电泳中常用的3种蛋白质提取方法对MCF27细胞总蛋白的提取效率.MCF27细胞经培养后,分别采用M2PER试剂、标准裂解液或含硫脲裂解液提取其总蛋白质,然后进行双向凝胶电泳,并根据凝胶上蛋白质斑点的丰度和分布特点判断所得双向电泳图谱的质量,以确定MCF27细胞蛋白质提取的相对最佳方法.结果显示,M2PER试剂法得到的图谱分辨率较低,蛋白质主要集中分布在分子量15~70kD,pH417~613的范围内;标准裂解液法得到的图谱分辨率有所提高,蛋白质分布比M2PER试剂法得到的图谱广;硫脲裂解液法得到的图谱是三者中分辨率最高的,尤其是高丰度蛋白和高分子量蛋白分离效果比前两者好.结果表明,在3种常用的蛋白质提取方法中,硫脲裂解液对细胞蛋白质的溶解性最佳,相对更适合于提取MCF27细胞的蛋白质,并与双向凝胶电泳条件更兼容. 关键词 蛋白质提取,双向凝胶电泳,MCF27,条件优化 中图分类号 Q503 Comparison of Three Protein Extraction Methods by Tw o2 Dimensional E lectrophoresis WE NG Y u1),2),ZE NG Qun2Li2),3),J I ANG Huai2),X U Zheng2Ping2),3)3 (1)College o f Life Sciences,2)Bioelectromagnetics Laboratory,3)Research Center for Environmental G enomics, Zhejiang Univer sity School o f Medicine,Hangzhou 310031,China) Abstract Protein extraction from tissue or cells is a key step to achieve high2res olution protein separation in tw o dimensional electrophoresis(22DE).Three routine cellular total protein extraction methods were com pared in order to determine an optimal one for human breast cancer cell line MCF27.The cultured MCF27cells were lysed by M2PER kit,standard lysis buffer or im proved lysis buffer,respectively.Then the extracted total proteins were subjected to22DE,and the best extraction method was determined by the indexes of protein distribution and abundance on corresponding silver2stained gel.Data showed that use of M2PER kit gave the lowest res olution,in which m ost proteins were distributed in the pI ranging from417to613with m olecular weight between15kD and70kD.Standard lysis bu ffer im proved protein res olution with broader protein distribution pattern.Im proved lysis bu ffer generated the best res olution am ong these three methods,especially for the high2abundance and high m olecular weight proteins.Based on above results,we concluded that the im proved lysis bu ffer has the best protein s olubilization ability,which renders it much m ore suitable for cellular protein extraction from MCF27,and is m ore com patible with the conditions of22DE. K ey w ords protein extraction,tw o dimensional electrophoresis,MCF27,optimization 收稿日期:2004212203,接收日期:2005203221 国家自然科学基金项目(N o.50137030,30170792),浙江省自然科学基金项目(N o.301524)和浙江省卫生厅重点项目(N o.2004Z D006)资助 3联系人 T el:0571287217386,Fax:0571287217410,E2mail:zpxu@https://www.360docs.net/doc/a91728779.html, Received:December3,2004;Accepted:M arch21,2005 Supported by National Natural Science F oundation of China(N o.50137030,30170792),and Natural Science F oundation of Zhejiang Province(N o.301524),and K ey Program of Health Bureau of Zhejiang Province(N o.2004Z D006) 3C orresponding author T el:0571287217386,Fax:0571287217410,E2mail:zpxu@https://www.360docs.net/doc/a91728779.html,

聚丙烯酰胺凝胶电泳 (1)

聚丙烯酰胺凝胶电泳 (Polyacrylamide gel electrophoresis,PAGE) 聚丙烯酰胺凝胶是由丙烯酰胺(acrylamide,Acr)单体相互聚合成多条长链,再与N,N-甲叉双丙烯酰胺(methylene-bisacrylamide,Bis)在引发剂和加速剂的作用下交联而成的凝聚胶多孔聚合物。凝胶孔径的大小可通过控制单体和交联剂的浓度来调节,从而满足不同分子量物质的分离要求。不同浓度的聚丙烯酰胺非变性凝胶的有效分离范围如表所示: 表1 DNA在聚丙烯酰胺凝胶中的有效分离范围 丙稀酰胺[%(w/v)]a有效分离范围(bp)二甲苯青FF b溴酚蓝b 3.51000-2000 460 100 5.080-500 260 65 8.060-400 160 45 12.040-200 70 20 15.025-150 60 15 20.0 6-100 45 12 a.N,N′-亚甲双丙稀酰胺占丙稀酰胺浓度的1/30 b.给出的数字是迁移率与染料相同的双链DNA片段的粗略大小(核苷酸对)。 聚丙烯酰胺凝胶的制备和电泳都比琼脂糖凝胶更为费事。聚丙烯酰胺凝胶几乎总是铺于两块玻璃板之间,两块玻璃板由间隔片隔开冰封以绝缘胶布。在这种配置形式下,大多数丙烯酰胺溶液不会与空气接触,所以氧对聚合的抑制仅限于凝胶顶部的一个窄层里。聚丙烯酰胺凝胶一律是进行垂直电泳,根据分离的需要,其长度可以在10-100cm之间。聚丙烯酰胺凝胶与琼脂糖凝胶相比有3个主要优点:(1)分辨力强,长度仅仅相差0.2%(即500bp中的1bp)的DNA分子即可分开;(2)所能装载的DNA分子量远远琼脂糖凝胶:多达10μg的DNA可以加样于聚丙烯酰胺凝胶的一个标准样品槽(1cm×1mm)而不致显著影响分辨力;(3)从聚丙烯酰胺凝胶中回收的DNA 纯度很高,可适用于要求最高的实验(如鼠胚胎微注射)。 常用的是两种聚丙烯酰胺凝胶: (1)用于分离和纯化双链DNA片段非变性聚丙烯酰胺凝胶 (2)用于分离、纯化单链DNA的变性聚丙烯酰胺凝胶

RNA的琼脂糖凝胶电泳实验原理和步骤

RNA的琼脂糖凝胶电泳实验原理和步骤 关键词:RNA琼脂糖电泳2012-03-09 00:00 来源:互联网点击次数:38148 一、实验目的 掌握植物总RNA非变性胶电泳的原理和方法。 二、实验原理 RNA电泳可以在变性及非变性两种条件下进行。非变性电泳使用1.0%--1.4%的凝胶,不同的RNA条带也能分开,但无法判断其分子量。只有在完全变性的条件下,RNA的泳动率才与分子量的对数呈线性关系。因此要测定RNA分子量时,一定要用变性凝胶。在需快速检测所提总RNA样品完整性时,配制普通的1%琼脂糖凝胶即可。

三、实验材料、器具及药品 蘑菇的总RNA溶液。电泳仪,电泳槽,电子天平,移液器,枪头,微波炉,紫外透射检测仪等。琼脂糖,1XTAE电泳缓冲液,0.5μg/ml溴化乙锭(EB)10X载样缓冲液。 四、实验步骤 (1)用1×TAE电泳缓冲液制作琼脂糖凝胶,加1×TAE电泳缓冲液至液面覆盖凝胶。 (2)在超净工作台上,用移液器吸取总RNA样品4μl于封口膜上。在实验台上再加入5μl 1×TAE电泳缓冲液及1μl 的10X载样缓冲液,混匀后,小心加入点样孔。 (3)打开电源开关,调节电压至100V,使RNA由负极向正极电泳,约30min 后将凝胶放入EB染液中染色5min,用清水稍微漂洗。在紫外透射检测仪上观察RNA电泳结果。

RNA的变性琼脂糖凝胶检测 试剂: (1)MOPS缓冲液(10*):0.4mol/L 吗啉代丙烷磺酸(MOPS)(Ph7.0),0.1mol/L NaAc, 10mol/L EDTA。 (2)上样染料:50%甘油,1mmol/L EDTA ,0.4%溴酚蓝,0.4%二甲苯蓝。(3)甲醛。 (4)去离子甲酰胺。v电泳槽清洗:去污剂洗干净(一般浸泡过夜)——水冲洗——乙醇干燥——3%H2O2灌满——室温放置10分钟——0.1%DEPC水冲洗。 操作:

单细胞凝胶电泳——彗星实验方法的建立、改良与应用

陕西师范大学 硕士学位论文 单细胞凝胶电泳——彗星实验方法的建立、改良与应用 姓名:罗明志 申请学位级别:硕士 专业:动物学 指导教师:齐浩 20050501

单细胞凝胶电泳——彗星实验方法的建立、改良与应用 罗明志 摘要单细胞凝胶电泳(singlecellgelelectrosis,SCGE),又称彗星实验(cometassay),是一种在单细胞水平进行DNA损伤的检测方法,具有简便、灵敏、快捷、样品用量小等优点,广泛用于遗传毒性检测、环境毒性检测、分子流行病学和DNA损伤与修复等研究领域。 我们在本实验室建立了单细胞凝胶电泳技术,并对部分操作流程进行了改良,包括(1)制胶方法改良;(2)增加水洗;(3)进行梯度酒精脱水。在上述改良过程中,我们用“灌胶”法在载玻片上制胶,替代了传统的使用磨砂载玻片上“三明治”制胶,解决了彗星实验中常见的脱胶现象,脱水后有利于获得平整胶面:在裂解后增加了水洗步骤,以消除裂解液中的高盐和去垢剂对后续实验操作的影响;采用直流稳压电源进行单细胞电泳,保证了实验结果的可重复性;对染色的条件进行了筛选,确定了使用EB作为细胞DNA的荧光染料;以CASP(免费)作为彗星图像的分析软件,建立了图像分析的方法。这些实验步骤的改良以及实验流程的优化或标准化.简化了操作程序,节省了时间,并使结果分析更加简便。 为了验证上述改良后的实验系统是否可靠,我们用紫外线作为损伤因子处理细胞,诱导细胞DNA损伤,然后用彗星实验检测这一损伤。从这~阳性模型的结果分析来看,发现细胞损伤呈现出很好的时间依赖性,表明该实验系统的可靠性。我们同时筛选并评价了彗星实验中有关的DNA损伤分析指标,发现TailLength,CometLength,TailMoment和OliveTailMoment作为DNA损伤的评价指标比较可靠。 我们建立了肝细胞的组织块原代培养系统。在建立肝细胞组织块原代培养实验流程中,我们对实验的各个步骤,例如组织块贴壁需要的时间、细胞生长所需的培养基种类、培养基添加剂以及动物组织供体年龄等进行了筛选,建立了小鼠肝细胞组织块的原代培养系统。 我们用单细胞凝胶电泳方法对磁场和抗癌药物对人自血病细胞K562以及小鼠原代肝细胞的DNA损伤进行了检测。结果发现,K562细胞在9mT稳恒磁场中处理12h即可引起细胞的DNA损伤,这一损伤随处理时间的延长而增加,具有时间依赖效应;同样条件下对原代肝细胞的处理以及更长时间的处理(36h、48h、72h)均未发现细胞的DNA损伤。在使用较低浓度紫杉醇(50ng/mL)处理K562细胞12h后,即可导致细胞DNA损伤,并表现出时间依赖效应,而仅在高浓度长时阳J的紫杉醇(800ng/mL,24h)处理下才会引起肝细胞的DNA损伤。80099/mL环磷酰胺处理K562细胞12h即可引起细胞的DNA损伤,而在120099/mL时方才引起肝细胞的DNA损伤。 关键词:单细胞凝胶电泳;DNA损伤:UV;细胞培养;磁场;抗癌药物

凝胶电泳实验报告模板

凝胶电泳实验报告模板

降低了对流运动,故电泳的迁移率又是同分子的摩擦系数成反比的。已知摩擦系数是分子的大小、极性及介质粘度的函数,因此根据分子大小的不同、构成或形状的差异,以及所带的净电荷的多少,便可以通过电泳将蛋白质或核酸分子混合物中的各种成分彼此分离开来。在生理条件下,核酸分子的糖-磷酸骨架中的磷酸基因呈离子状态从这种意义上讲,D N A 和RNA多核苷酸链可叫做多聚阴离子( Polyanions ) 。因此,当核酸分子被放置在电场中时,它们就会向正电极的方向迁移。由于糖- 磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因而它们能以同样的速度向正电极方向迁移。在一定的电场强度下,DNA分子的这种迁移速度,亦即电泳的迁移率,取决于核酸分子本身的大小和构型,分子量较小的DNA分子比分子量较大的DNA 分子迁移要快些。这就是应用凝胶电泳技术分离DNA片段的基本原理。 聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 3.1 凝胶电泳的分类 按照分离物质来分凝胶电泳可以分为核酸凝胶电泳和蛋白质凝胶电泳;按照分离介质来分可以分为琼脂糖凝胶电泳技术和PAGE凝胶电泳。本次实验我们采用按介质的分类方法来学习的。 3.1.1琼脂糖凝胶电泳 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他

凝胶电泳实验原理与步骤

一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液按4:1混匀后,用微量移液器将混合液加到样品槽中,每槽加10-20μl,记录样品的点样次序和加样量。 6、电泳 安装好电极导线,点样孔一端接负极,另一端接正极,打开电源,调电压至3-5V/cm,电泳1-3hr,当溴酚蓝移到距凝胶前沿1-2cm时,停止电泳。 7、染色和观察 取出凝胶,放在含有溴化乙锭的染色液中染色30min,即可在254nm的紫外灯下观察,有橙红色荧光条带的位置,即为DNA条带,或在紫外灯下照相记录电泳图谱。溴化乙锭是致癌剂,操作时要小心,必须戴手套。 附: ⑴5×TBE(tris-硼酸及EDTA)缓冲液的配制(1000ml): Tris 54g,硼酸27.5g,0.5mol/L EDTA 20ml,将pH调到8.0,定容至1000ml,4℃冰箱保存,用时稀释10倍。 ⑵加样缓冲液的配制: 0.25%溴酚蓝,40%(W/V)蔗糖水溶液,4℃冰箱保存。 ⑶溴化乙锭的配制: 称取0.1g溴化乙锭,溶于10ml水,配成终浓度为10mg/ml的母液,4℃冰箱保存。染

彗星实验又称单细胞凝胶电泳实验

彗星实验又称单细胞凝胶电泳实验,是由Ostling等于1984年首次提出的一种通过检测DNA链损伤来判别遗传毒性的技术。它能有效地检测并定量分析细胞中DNA单,双链缺口损伤的程度。当各种内源性和外源性DNA损伤因子诱发细胞DNA链断裂时,其超螺旋结构受到破坏,在细胞裂解液作用下,细胞膜、核膜等膜结构受到破坏,细胞内的蛋白质、RNA以及其他成分均扩散到细胞裂解液中,而核DNA由于分子量太大只能留在原位。在中性条件下,DNA片段可进入凝胶发生迁移,而在碱性电解质的作用下,DNA发生解螺旋,损伤的DNA断链及片段被释放出来。由于这些DNA的分子量小且碱变性为单链,所以在电泳过程中带负电荷的DNA会离开核DNA 向正极迁移形成“彗星”状图像,而未受损伤的DNA部分保持球形。DNA受损越严重,产生的断链和断片越多,长度也越大,在相同的电泳条件下迁移的DNA量就愈多,迁移的距离就愈长。通过测定DNA迁移部分的光密度或迁移长度就可以测定单个细胞DNA损伤程度,从而确定受试物的作用剂量与DNA损伤效应的关系。该法检测低浓度遗传毒物具有高灵敏性,研究的细胞不需处于有丝分裂期。同时,这种技术只需要少量细胞。 彗星实验又称单细胞凝胶电泳实验,是由Ostling等于1984年首次提出的一种通过检测DNA链损伤来判别遗传毒性的技术。它能有效地检测并定量分析细胞中DNA单,双链缺口损伤的程度。当各种内源性和外源性DNA损伤因子诱发细胞DNA链断裂时,其超螺旋结构受到破坏,在细胞裂解液作用下,细胞膜、核膜等膜结构受到破坏,细胞内的蛋白质、RNA以及其他成分均扩散到细胞裂解液中,而核DNA由于分子量太大只能留在原位。在中性条件下,DNA片段可进入凝胶发生迁移,而在碱性电解质的作用下,DNA发生解螺旋,损伤的DNA断链及片段被释放出来。由于这些DNA的分子量小且碱变性为单链,所以在电泳过程中带负电荷的DNA会离开核DNA 向正极迁移形成“彗星”状图像,而未受损伤的DNA部分保持球形。DNA受损越严重,产生的断链和断片越多,长度也越大,在相同的电泳条件下迁移的DNA量就愈多,迁移的距离就愈长。通过测定DNA迁移部分的光密度或迁移长度就可以测定单个细胞DNA损伤程度,从而确定受试物的作用剂量与DNA损伤效应的关系。该法检测低浓度遗传毒物具有高灵敏性,研究的细胞不需处于有丝分裂期。同时,这种技术只需要少量细胞。 我最近做彗星实验,总是解决不了脱胶问题,要么是铺第二三层胶的时候第一层胶就松动,要么侥幸没动,在裂解、解旋、电泳、中和过程中都会出现胶脱落的现象,我愁死了,不知道是什么原因?我的步骤这样,请帮我分析分析好吗? 1.5%正常熔点琼脂糖120微升乘热滴于磨砂载玻片上,盖玻片,4度20分钟,0.8%低熔点琼脂糖和 细胞混合液80微升,0.8%低熔点琼脂糖80微升铺第二、三层胶,裂解液和电泳液中和液都按配方来

聚丙烯酰胺凝胶电泳原理及方法

聚丙烯酰胺凝胶电泳原理及方法 发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法 聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。 聚丙烯酰胺凝胶有以下优点: ①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。 ②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100 万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。 ③在一定浓度范围聚丙烯酰胺对热稳定。凝胶无色透明,易观察,可用检测仪直接测定。 ④丙烯酰胺是比较纯的化合物,可以精制,减少污染。合成聚丙

的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算: 公式 a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。 交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。可通过下式计算来选择适当的凝胶网孔。 公式 式中:P为网孔平均直径,C为多聚体浓度,d为该多聚体分子直径(若不是卷曲的分子应为5A),K为常数,K值取决于涨胶的几何构型,假如多聚体的链是以近似于直角交联的,则约为1.5根据此式,我们可以通过多聚体浓度C近似地计算出网孔直径,例如已知多聚体浓度为5%,其网孔平均直径应为: 公式

相关文档
最新文档