工程电磁场报告

工程电磁场报告
工程电磁场报告

学习工程电磁场的总结及体会

经过一个学期的学习,让我对工程电磁场有了很深刻的了解和体会。

首先,工程电磁场是一个基础学科,可以为我们在以后的学习中打下坚实的基础。特别是电力和自动控制领域,在很多方面都将会用到电磁场的基本知识。例如,电力的输送问题,我们要考虑电场的影响以及依据电磁场理论进行一系列的防雷措施。同样,在自动控制领域我们要考虑各种电磁干扰,那么工程电磁场为我们做了理论基础,运用工程电磁场的理论知识我们将会很好的解决电磁干扰的问题。作为电气化与自动化得学习者,学习电磁场的基本知识将会让我们获益匪浅,为我们今后的工作和学习打下理论基础。

工程电磁场,是面向工程的电磁场内容体系,内容主要是库仑定律、电荷守恒定律、安培定律、法拉第定律和麦克斯韦位移电流假设、静电场、恒定电场、恒定磁场和时变电磁场的基本方程及其边值问题、镜像法的基本原理、基于加权余量的工程中常用的有限元法和边界元法、电磁场的能量和力、平面电磁波和电路参数计算原理、电气工程中典型的电磁场问题(包括变压器的磁场、电机的磁场、绝缘子的电场、三相输电线路的工频电磁环境以及三相输电线路的电容和电感参数)。场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其

运动变化规律由麦克斯韦方程组确定。交变电磁场与瞬变电磁场。时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。

工程电磁场的应用是多方面的。

就电力方面来说,交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。电力系统的定义是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心,通过各种设备再转换成动力、热、光等不同形式的能量,为地区经济和人民生活服务。工程电磁场在电力系统中的应用现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。

就自动控制方面来说,

就工业领域来说,

工程电磁场除了在电力、自控方面将得到很广泛的应用,当然,在生活中也将会给我们带来诸多的好处。例如,当你在野外遇到特殊情况导致高压输电线断落在地,而你又刚好离它很近,那么该如何保护好自己呢?在我们学了工程电磁场后这个问题就将很好的解决了。当你遇到这个问题以后首先要做的就是立马停下来并且并拢双腿,然

后跳离并且向有关单位反映情况。这个原理很简单,带电的输电线在你靠近的时候会在你身上感应出电荷。如果你的双腿打开的话就会在两腿之间产生电场形成电势差,这样的话你将会很容易的就有触电的危险。当然如果双腿并拢的话将不会有太大的电势差,自然触电的危险就少了很多。所以,学习好电磁场对我们来说是大有裨益的。

工程电磁场是一个比较注重理论教学的学科,那么如何在这么一个枯燥的课程里能够学习好理论知识就显得比较重要了。我在学习的过程中会遇到很多问题,比如在上课的时候,有时候对某些知识根本听不懂或者上课之后就会产生疲劳感。那么对这样一个乏味的的过程如何进行调节呢?我是这样做的,首先,我对工程电磁场建立了兴趣,我想去了解它,并且想在生活中运用它。其次基于兴趣的建立接下来我会认真的听课,跟着老师的思路走。最后,由于理论性较强,因此,在上课的过程中将会有很多东西是不能理解和听不懂的。这样,我会在下来的时间里再去看一看课本,从而慢慢的去理解它。所以,在学习中我们不但要有方法,而且还要有耐心。

武大电气工程电磁场仿真实验报告

武汉大学 工程电磁场及高电压综合实验

一、题目 有一极长的方形金属槽,边宽为1cm,除顶盖电位为100sinπxV外,其他三面的电位均为零,试用差分法求槽内电位的分布。 二、解题原理:均匀媒质中的有限差分法 我们在求解场的分布时,当边界形状比较复杂时,解析分析法不再适合了,我们可以采用数值计算的方法,数值计算法的基本思想,是将整体连续的场域划分为若干个细小区域,一般称之为网格或单元,如图1所示,然后用所求的网格交点(一般称为节点或离散点)的数值解,来代替整个场域的真实解。因而数值解,即是所求场域离散点的解。虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点数目也愈多,近似解(数值解)也就愈逼近于真实值。 实解。在此处键入公式。 图1场域的剖分,网格节点及步长

(一)、场域的剖分、网格节点及步长 由边界Γ所界定的二维平行平面场(见图1),若采用直角坐标系则可令该场处在xoy 平面内。 所谓场域的剖分就是场域的离散化,即将场域剖分为若干个网格或单元。最常见最简单的剖分为正方形剖分,这种剖分就是在xy 平面上作许多分别与x 轴及y 轴平行的直线,称为网格线。网格线的交点称为节点或离散点,场域内的节点称为内节点,场域边界上的节点称为边界节点。两相邻网格线间距离称为步长,一般以h 表示。若步长相等则整个场域就被剖分为许多正方形网格,这就是正方形剖分。节点(离散点)的布局不一定采用正方形剖分,矩形剖分也常采用,正三角形剖分偶尔也被应用,不过最常见的最简单的仍然是正方形剖分。 (二)、差分与微分 从前面的分析可知,稳恒电、磁场的求解问题,归根到底是求解满足给定边界条件的偏微分方程(泊松方程或拉普拉斯方程)的解的问题所谓差分方法,就是用差商近似代替偏微商,或者说用差分代替微分,从而把偏微分方程转换为差分方程,后者实际上为代数方程。因此这种转化有利于方程的求解。 下面分别对一阶及二阶的差分公式进行推导。首先回顾有关偏导数的定义,有 00(,)(,)(,)(,) lim lim x x f f x x y f x y f x y f x x y x x x →→?+---==? (1) 因此当|x| 充分小时,可近似地用(,)(,)f x x y f x y x +- 或(,)(,) f x y f x x y x -- 代 替 f x ??,所谓差分公式,即是基于上述观点推得的。 设图1所示场域中的位函数为A ,任取一网格节点0,它在xy 平面上的坐标为(x ,i i y ),记节点0的矢量磁位为,i j A ,并把与节点0相邻的其他四个节点1、2、3、4的矢量磁位分别记为1,i j A +、,1i j A +、1,i j A -、,1i j A -,将节点0处函数A 的 一阶偏微商A x ??,用1、0两点函数值的差商1,,i j i j A A h +-近似代替,则有

工程电磁场数值计算

工程电磁场数值计算 大作业报告 一、大作业要求 运用FEM法求解算题5—8,删去要求(2),设其具有平行平面磁场分布的特征。 作业题目如下所示:

二、问题分析及建立模型 根据P149对平行平面场的静电场和磁场统一的数学模型的描述 我们可以得到此问题对应的偏微分方程及相应的定解问题为: 3 22220000300; ;0;ρρμρ?===???+=????? ==????=???-y x H A A s y A A A in x n 进而可以求得此题对应的泛函及等价的变分问题为: 2422 2 2 1()221min(0;0)2S l l S A A A F A JA dxdy dl x y n A A A dxdy J x y n μ+ ?????????=+--?? ? ???????????? ?????????=+===?? ? ???????????? ????? 0;==y A 3 003;ρρμρ?==-H sin A

根据以上条件,我们可以把此题与例5-2作比较,他们的边界条件形式已经基本一致了,所以我们可以利用EMF2D的程序对此题进行计算。 下面所以下我们的主要解题思路。 1、由于是一个圆形区域,且是对称的,所以我们只需求1/4圆周即可。我们运用圆域剖分程序CAMG对整个区域进行剖分。这里我们需要注意的是最外层的边界条件,我们选用选定10倍半径,即1米,进行三段剖分。 2、运用程序EMF2D,把圆域剖分出来的结果当作此程序的输入。需要注意的是需要对剖分出来的最外层的点,进行“手动输入”。我们需要注意两个程序的输入输出的格式进行统一,修改EMF2D 的强制边界条件程序FB。 三、程序及结果 1、圆域剖分 我们并没有改变什么CAMG程序,程序如下

电磁场与电磁波设计报告

电磁场与电磁波设计报告 题目:电磁场与电磁波设计报告 系别: 班级: 姓名: 指导老师:

目录: 静电场的基本概念------------------------------------------3 恒定磁场的基本概念----------------------------------------5 时变磁场的基本概念----------------------------------------6 电场和磁场之间的关系--------------------------------------7 电磁场应用之变频电磁场处理油田水防垢技术------------------8 背景---------------------------------------------------8 原理结构图--------------------------------------------11 除垢、防垢工作原理------------------------------------12 电磁场处理对溶液电导率的影响--------------------------13 电磁场对溶液表面张力的影响----------------------------13 电磁场处理对溶液pH值的影响---------------------------14 实验结果分析------------------------------------------16 从水分子的结构方面---------------------------------16 电磁场诱导微晶的形成-------------------------------18

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

工程电磁场实验报告

实验一 实验目的和要求:学习矢量的定义方法(例A=[1,2,3]),加减运算,以及点积dot(A,B)、叉积cros s (A,B)、求模运算n orm(A)。 实验内容: 1、通过调用函数,完成下面计算【p31,习题1.1】。 给定三个矢量A 、B 和C 如下: 23452x y z y z x z A e e e B e e C e e =+-=-+=- 求(1)A e ;(2)||A B -; (3)A B ?; (4)AB θ (5)A 在B 上的投影 (6)A C ?; (7)()A B C ??和()C A B ??; (8)()A B C ??和()A B C ?? 程序如下: A=[1,2,-3]; B=[0,-4,1]; C=[5,0,-2]; ea=A/norm(A) T2=norm(A-B) T3=dot(A,B) theta=acos(dot(A,B)/(norm(A)*norm(B))) theta*180/pi T5=norm(A)*cos(theta) T6=cross(A,C)

T71=dot(A, cross(B,C)) T72=dot(cross(A,B), C) T81=cross(cross(A,B),C) T82=cross(A,cross(B,C)) 运行如图: 结果如下:

2、三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三角形的面积;(2)与该三角形所在平面垂直的单位矢量。 程序如下: A=[6,-1,2]; B=[-2,3,-4]; C=[-3, 1,5]; n=cross(B-A, C-A); S=1/2*norm(n)

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

电磁场实验报告

实验一:静电场的分析与求解 1.求二维标量场u(r)=y^2-x的梯度 [x,y]=meshgrid(-2:.2:2,-2:.2:2); z=y.^2-x; [px,py]=gradient(z,.2,.2); contour(z) hold on quiver(px,py) hold off title('等值线与梯度'); 2.2个等量同号点电荷组成的点电荷系的电势分布图clear v='1./((x-3).^2+y.^2).^0.5+1./((x+3).^2+y.^2).^0.5'; xmax=10; ymax=10; ngrid=30; xplot=linspace(-xmax,xmax,ngrid); [x,y]=meshgrid(xplot); vplot=eval(v); [explot,eyplot]=gradient(-vplot); clf; subplot(1,2,1),meshc(vplot); xlabel('x'); ylabel('y'); zlabel('电位');

subplot(1,2,2),axis([-xmax xmax -ymax ymax]); cs=contour(x,y,vplot); clabel(cs); hold on quiver(x,y,explot,eyplot) xlabel('x'); ylabel('y'); hold off 3.电偶极子的场(等位线和梯度) clear; clf; q=2e-6; k=9e9; a=1.5; b=-1.5; x=-6:0.6:6; y=x; [X,Y]=meshgrid(x,y); rp=sqrt((X-a).^2+(Y-b).^2); rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); [Ex,Ey]=gradient(-V); AE=sqrt(Ex.^2+Ey.^2); Ex=Ex./AE; Ey=Ey./AE; cv=linspace(min(min(V)),max(max(V)),49);

学年工程电磁场数值计算试题程序答案

2015-2016学年研究生工程电磁场数值计算试题 1 总结有限元法计算电磁场问题的步骤,并说明什么叫正问题和逆问题?(20分) 答:基本步骤分为三大步:前处理(Preprocession ),求解(Solution ),后处理(Postprocession )。 前处理主要包括:单元选择,材料定义,几何模型,网络划分,模型局部调整和施加荷载。 求解主要包括:分析问题的类型,设定分析参数,添加荷载条件,建立荷载工况和求解。 后处理主要包括:结果的文字输出(Result list ),结果的云图输出(Result contour ),结果的矢量输出(Result vector ),结果的路径输出(Result mapping ),Element Table 的提取,Load Case 及组合。 正文题:已知场源、边界和媒质,计算场量。给定场的计算区域、各区域的材料组成和特性,以及激励源的特性,求场域中的场量随时间、空间的分布规则。 逆问题:根据场量分布要求,求取场源。根据电磁装置设定的场量值及其有关的特性的要求,求解该装置的的结构、尺寸、媒质性能参数和激励参数等。 2 设计一个高压点火器,用分析其电场分布,说明影响点火器起火的主要参数,并说明怎样改变参数可以容易地点火?(20分) 建立模型如图 选择两个尖端为路径,电位图和电场强度图如下图所示 程序如下: /BATCH /COM,ANSYS RELEASE 12.0.1 UP20090415 21:32:18 01/14/2016 /input,menust,tmp,'',,,,,,,,,,,,,,,,1 /GRA,POWER /GST,ON /PLO,INFO,3 /GRO,CURL,ON /CPLANE,1 /REPLOT,RESIZE WPSTYLE,,,,,,,,0 /REPLOT,RESIZE /FILNAME,T2,0 /PREP7 !* /NOPR /PMETH,OFF,1 KEYW,PR_SET,1 KEYW,PR_STRUC,0 KEYW,PR_THERM,0 KEYW,PR_FLUID,0 KEYW,PR_ELMAG,1 KEYW,MAGNOD,0 KEYW,MAGEDG,0 KEYW,MAGHFE,0 KEYW,MAGELC,1 KEYW,PR_MULTI,0 KEYW,PR_CFD,0 /GO !* /COM, /COM,Preferences for GUI filtering have been set to display: /COM, Electric

工程电磁场实验报告

工程电磁场实验报告 姓名: 学号: 联系式: 指导老师:

实验一螺线管电磁阀静磁场分析 一、实验目的 以螺线管电磁阀静磁场分析为例,练习在 MAXWELL 2D 环境下建立磁场模型,并求解分析磁场分布以及磁场力等数据。 二、主要步骤 a) 建立项目:其中包括生成项目录,生成螺线管项目,打开新项目 与运行MAXWELL 2D。 b) 生成螺线管模型:使用MAXWELL 2D 求解电磁场问题首先应该选择求解 器类型,静磁场的求解选择Magnetostatic,然后在打开的新项目中定义画图平面,建立要求尺寸的螺线管几模型,螺线管的组成包括 Core 、Bonnet 、Coil 、Plugnut、Yoke。 c) 指定材料属性:访问材料管理器,指定各个螺线管元件的材料,其中部分 元件的材料需要自己生成,根据给定的BH 曲线进行定义。 图1 元件材料 图2 B-H曲线 d) 建立边界条件和激励源:给背景指定为气球边界条件,给线圈Coil 施加电 流源。 e) 设定求解参数:本实验中除了计算磁场,还需要确定作用在螺线管铁心上 的作用力,在求解参数中要注意进行设定。

f) 设定求解选项:建立几模型并设定其材料后,进一步设定求解项,在对话 框Setup Solution Options 进入求解选项设定对话框,进行设置。 三、实验要求 建立螺线管电磁阀模型后,对其静磁场进行求解分析,观察收敛情况,画各种收敛数据关系曲线,观察统计信息;分析 Core 受的磁场力,画磁通量等势线,分析P lugnut 的材料磁饱和度,画出其B H 曲线。通过工程实例的运行,掌握软件的基本使用法。 四、实验结果 1.螺线管模型 图3 2.自适应求解 图4 收敛数据

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

工程电磁场学习心得

《工程电磁场》学习心得 班级:姓名:学号: 在开始学习“工程电磁场”之前,当我听到其学科名称的时候就产生了一种高深莫测的感觉,觉得电磁场应该是比较难的。但是出于对知识的渴望我怀着一颗求知的心投入了这个“新奇的”知识海洋。工程电磁场是电气专业的必修课程,对于我们电气专业的学生而言,其重要意义不言而喻。 电磁场是一门技术基础课,在我们的培养计划中起到很重要的作用。但由于电磁现象的抽象性和工程电磁场问题的复杂性,所以定性分析与定量计算都不易为我们所掌握。因此,这往往会造成我们的畏难情绪,缺乏兴趣,学习被动。为克服我们的上述问题,我觉得教材能起很大作用。教材的编排是我心目中的好教材。 1)教材能在我们已有的理沦基础上由浅人深,及时总结提 高,让我们感到经过努力可以掌握所学内容,从而增加我们的学习信心。 2)教材能从各个不同角度反复强调基本理论和计算公式的 适用条件,帮助我们建立清晰的物理概念和培养我们良好的科学习惯,避免我们盲目套用公式。 3)教材能处处以基本理论为指导,对现象和问题进行定性分

析和定量计算,则能培养我们正确的思维方法和分析问题的方法,提高我们运用理论知识解决实际问题的能力。4)教材能紧密联系实际,让我们能够学以致用,从而重视课 程内容,提高学习兴趣。 5)教材能帮助我们掌握“类比”这一科学的分析方法,既能 使我们复习和巩固已学的知识内容,又可缩短新内容的学习过程。 6)教材内容的安排,既有从特殊到一般的归纳方法,又有从 一般到特殊的演绎方法,则既能使我们易于接受新内容,又能培养我们的抽象思维能力。 7)教材注重吐故纳新,及时调整教学内容,使教材紧跟时代 的步伐,使我们看到科学技术的不断发展,产生努力学习的紧迫感。 8)教材能安排多种环节的配合,使我们完成一定深度的认知 过程,避免我们“考试完毕,知识归师”的走过场的现象。 下面是我从书中具体的内容来阐明我学到的东西: 1)在静电场的编排中,从电场强度的基本定义出发,利用我 已有的电场力做功的物理概念和线积分、面积分的数学概念,结合介绍电介质极化的物理过程,在很自然的情况下得出了静电场的两个基本规律;又从梯度、散度和旋度的基本定义出发推导出了它们在直角坐标系下的数学表达

工程电磁场实验报告

工程电磁场仿真实验 报告 ——叠钢片涡流损耗Maxwell 2D仿真分析(实验小组成员:文玉徐晨波葛晨阳郭鹏程栋)

Maxwell仿真分析 ——二维轴向磁场涡流分析源的处理在学习了Ansoft公司开发的软件Maxwell后,对工程电磁场有了进一步的了解,这一软件的应用之广非我们所想象。本次实验只是利用了其中很小的一部分功能,涡流损耗分析。通过软件仿真、作图,并与理论值相比较,得出我们需要的实验结果。 在交流变压器和驱动器中,叠片钢的功率损耗非常重。大多数扼流线圈通常使用叠片,以减少涡流损耗,但这种损耗仍然很大。特别是在高频情况下,交变设备由脉宽调制波形所产生的涡流损耗不仅降低了设备的整体性能,也产生了热,因此做这方面的分析十分有必要。 一、实验目的 1)认识钢的涡流效应的损耗,以及减少涡流的方法; 2)学习涡流损耗的计算方法; 3)学习用MAXWELL 2D计算叠片钢的涡流。 二、实验模型 实验模型是4片叠钢片组成,每一篇截面的长和宽分别是12.7mm和 0.356mm,两片中间的距离为8.12um,叠片钢的电导率为2.08e6 S/m, 相对磁导率为2000,作用在磁钢表面的外磁场H z=397.77A/m,即B z=1T。 考虑到模型对X,Y轴具有对称性,可以只计算第一象限的模型。 三、实验步骤

一.单个钢片的涡流损耗分析 1、建立模型,因为是单个钢片的涡流分析,故位置无所谓,就放在中间, 然后设置边界为397.77A/m,然后设置频率,进行求解。 2、进行数据处理,算出理论值,并进行比较。 二、叠钢片涡流损耗分析 1、依照模型建立起第一象限的模型,将模型的原点与坐标轴的原点重 合,这样做起来比较方便。设置钢片的材质,使之符合实际要求。然 后设置边界条件和源,本实验的源为一恒定磁场,分别制定在上界和 右边界,然后考虑到对偶性,将左边界和下界设置为对偶。然后设置 求解参数,因为本实验是要进行不同的频率下,涡流损耗的分析,所 以设定好Frequency后,进行求解。 2、将Frequency分别设置为1Hz、60Hz、360Hz、1KHz、2KHz、5KHz、 10KHz,进行求解,注意每次求解时,要将Starting Mesh设定为 Initial,表示重新开始计算求解。记录下不同频率下的偶流损耗值和 最低磁通密度B min。 3、进行数据处理,把实验所得数据和理论值进行比较。得出实验结论。 四、仿真图样 叠钢片涡流分析 1、f=1HZ时 P=1.92719e-006 W

精品工程电磁场报告——maxwell

MAXWELL有限元分析 Maxwell仿真分析叠钢片涡流损耗分析 任课老师: 班级: 学号: 姓名: 2019/5/8

Maxwell仿真分析 ——二维轴向磁场涡流分析源的处理在学习了Ansoft公司开发的软件Maxwell后,对工程电磁场有了进一步的了解,这一软件的应用之广非我们所想象。本次实验只是利用了其中很小的一部分功能,涡流损耗分析。通过软件仿真、作图,并与理论值相比较,得出我们需要的实验结果。 在交流变压器和驱动器中,叠片钢的功率损耗非常重。大多数扼流线圈通常使用叠片,以减少涡流损耗,但这种损耗仍然很大。特别是在高频情况下,产生了热,进一步影响了整体性能。因此做这方面的分析十分有必要。 一、实验目的 1)认识钢的涡流效应的损耗,以及减少涡流的方法; 2)学习涡流损耗的计算方法; 3)学习用MAXWELL 2D计算叠片钢的涡流。 二、实验模型 第一个实验是分析单个钢片的涡流损耗值,所以其模型就是一个钢片,设置其厚度为0.356mm,长度为20mm>>0.356mm,外加磁场为1T。 实验模型是4片叠钢片组成,每一篇截面的长和宽分别是12.7mm和 0.356mm,两片中间的距离为8.12uA,叠片钢的电导率为2.08e6 S/m,相对 磁导率为2000,作用在磁钢表面的外磁场H z=397.77A/m,即B z=1T。考虑到模型对X,Y轴具有对称性,可以只计算第一象限内的模型。 三、实验步骤 一.单个钢片的涡流损耗分析 1、建立模型,因为是单个钢片的涡流分析,故位置无所谓,就放在中间, 然后设置边界为397.77A/m,然后设置频率,进行求解。 2、进行数据处理,算出理论值,并进行比较。

电磁场实验报告

电磁场实验报告 姓名:KZY 班级:自动化1405 学号:090114050X 时间:2016年10月23日

实验名称单缝衍射实验、自由空间中电磁波参量的测量 一、实验目的 1、了解电磁波的空间传播特性 2、通过对电磁波波长、波幅和波节的测量进一步了解和认识电磁 波。 3、利用电磁波的干涉原理,研究均匀无耗媒质εr的测量方法。 4、熟悉均匀无耗媒质分界面对电磁波的反射和透射特性。 二、实验仪器设备 1、单缝衍射仪器配置 2、单缝衍射板 3、半透射板 4、全反射板 三、实验原理 1、单缝衍射原理 查阅参考书籍可知,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为Фmin=sin-1λ/α。其中λ是波长,α是狭缝宽度。两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角

度为:Фmin=sin-1(3/2·λ/α)。 2、迈克尔逊干涉原理 由于两列波存在一定关系的波程差,两列波将发生干涉。而两列波发生干涉,存在合成振幅会出现最大与最小的情况。实验中,为了提高测量波长的精确度,测量多个极小值的位置,设S0为第一个极小值的位置吗,S n为第(n+1)个极小值的位置,L=|S n-S0|,则波长λ=2L/n。 三、实验内容与实验步骤 (1)单缝衍射实验 1、打开DH1121B的电源; 2、将单缝衍射版的缝宽α调整为70mm左右,将其安放在刻度盘上,衍射版的边线与刻度盘上两个90°对齐。

电磁场的数值计算方法

电磁场的数值计算方法 摘要:数值计算方法是一种研究并解决数学问题数值近似解的方法,广泛运用于电气、军事、经济、生态、医疗、天文、地质等众多领域。本文综述了电磁场数值计算方法的发展历史、分类,详细介绍了三种典型的数值计算方法—有限差分法、有限元法、矩量法, 对每种方法的解题思路、原理、步骤、特点、应用进行了详细阐述, 并就不同方法的区别进行了深入分析, 最后对电磁场数值计算方法的应用前景作了初步探讨。 关键词:电磁场;数值计算;有限差分法;有限元法;矩量法 引言 自从1864年Maxwell建立了统一的电磁场理论,并得出著名的Maxwell方程以来,经典的数学分析方法是一百多年来电磁学学科发展中一个极为重要的手段, 围绕电磁分布边值问题的求解国内外专家学者做了大量的工作。在数值计算方法之前, 电磁分布的边值问题的研究方法主要是解析法,但其推导过程相当繁琐和困难,缺乏通用性,可求解的问题非常有限。上个世纪六十年代以来,伴随着电子计算机技术的飞速发展,多种电磁场数值计算方法不断涌现,并得到广泛地应用,相对于解析法而言,数值计算方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有一定的局限性,一个复杂的问题往往难以依靠一种单一方法解决,因此如何充分发挥各种方法的优势,取长补短,将多种方法结合起来解决实际问题,即混合法的研究和应用已日益受到人们的关注。本文综述电磁场的数值计算方法,对三种常用的电磁场数值计算方法进行分类和比较。 1电磁场数值计算方法的发展历史 在上世纪四十年代,就有人试探用数值计算的方法来求解具有简单边界的电磁场问题,如采用Ritz法[1],以多项式在整个求解场域范围内整体逼近二阶偏微分方程在求解域中的解。五十年代,采用差分方程近似二阶偏微分方程,诞生了有限差分数值计算方法,开始是人工计算,后来采用机械式的手摇计算机计算,使简单、直观的有限差分法得到应用和发展,该方法曾在欧、美风行一时。1964年美国加州大学学者Winslow以矢量位为求解变量,用有限差分法在计算机上成

工程电磁场的作业总结

个人总结 工程电磁场计算是电气专业的公共必修课程,对于我们电气专业的研究生而言,其重要意义不言而喻。今年的下学期在由邹玲老师教授的这门课程中,通过老师细心的讲解和独具一格的授课方式,我个人的收获匪浅并获得了巨大的理论知识飞跃和能力提升。 首先,我重新梳理了个人对于这门课程的认识。以往对于工程电磁场这门课程的理解仅仅局限于在电工理论的小圈子里面,对于电磁场的概念简单的认为是对于电路的一个微观视角。其中所了解的知识点也不过是静电场中的库伦定律、高斯定律已经安培环路定律,以及在高中物理学中所涉及到的电磁感应定律和洛伦兹力。总之以前的认识都是一些辅助于电路知识中的如何微观的算电流、电压,或者辅助于力学问题中的如何算受力的应用。而在本学期的课程中,我清醒的认识到电磁场不仅仅是用于辅助研究宏观的电路和力学问题,而是更加严谨的解释这些问题。我的理论知识从简单的静电场过度到了整个电场强度及分布问题的分析上来。通过数学的工具:积分和旋度。我了解到了麦克斯韦方程式,以及欧拉变换。进而通过麦克斯韦方程结合计算机知识来解决遇到的电场分布的问题。 其次,通过课堂授课和课下作业报告的方式,我进一步了解到了完成一件即使是非常普通的工程中也必不可少的艰辛。在我这一组的自动剖分的作业中,我担任了手算对比的工作,对于个人而言,计算的数据虽然不大,但是要计算好每个数值和顺序却是比较繁琐的。同样,我的同组成员中,其中2名同学进行基础理论的讲解,余下4名同学自己或者通过借鉴或者自创程序来运行完成要求任务,他们的工作量也都非常巨大,充满挑战。在上台演讲期间我们多次商定如何安排每一步工作流程,期间合作中每个人的交流能力和协作水平都有极大的提升。我们作为一个团队,工作中能细致安排每个人的任务细节,流程上能做到衔接得当毫无违和感,表达上能做到通俗易懂,这些都是我们在不断锻炼和磨砺中成长的表现。 最后,不得不感谢邹玲老师的悉心教导和其他组同学的热心支持,我们在完成任务期间向各位的问题求教和咨询中,各位能够在百忙中抽出空闲对我们进行帮忙斧正和指导,这就是对我们的最大鼓励。

工程电磁场课程教学大纲

工程电磁场课程教学大纲 《工程电磁场》课程教学大纲 英文名称:Engineering Electromagnetic Field 课程编号:02170060 课程类别:专业课, 选修课总学时数:36 学分:2 开课单位:电气与信息工程学院适用专业:电气工程及其自动化 一、课程的性质、目的和任务 本课程是电气工程及其自动化专业的一门专业选修课程。它讲授物质电磁属性存在的性质及电磁波运动形式及其规律。该课程主要目的和任务是培养学生:在大学物理和高等数学的基础上,系统掌握电磁场的基本概念、基本原理和基本规律,具备用场的观点对电气工程中的电磁现象和电磁过程进行定性分析与判断的初步能力;了解电磁场定量分析的基本途径,为进一步学习和应用各种较复杂的电磁场计算方法打下基础;掌握电场、磁场的基本性质及电磁波的运动形式,为微波通信、天线理论、光纤通信打下坚实的理论基础。通过电磁场理论的逻辑推理,使同学具有科学的思维方法和勇于探索问题、解决问题的能力。 二、课程教学内容及教学要求 第零章矢量分析及场的概念1.教学内容(1)矢量的代数运算(2)场的基本概念(3)标量场的梯度(4)矢量场的散度和旋度(5)矢量积分定理 2.重点、难点 重点:矢量距离、点乘、叉乘、梯度、散度、旋度、散度定理、斯托克斯定理、赫姆霍兹定理;难点:梯度、散度和旋度的物理意义 3.教学基本要求 理解学习工程电磁场的意义;掌握矢量分析的基本概念和定律;了解场论中梯度、散度、旋度、通量和环量等基本概念。 第二章静电场 1.教学内容 (2)高斯定理(3)静电场基本方程(4)静电场边值问题(5)静电场问题的计算方法(6)静电能量与力 2.重点、难点 重点:库仑定理;高斯定理;泊松方程;拉普拉斯方程;分离变量法;电轴法;镜像法 难点:电场强度与电位之间的关系、叠加原理的分别和独立作用原则、求解边值问题3.教学基本要求

相关文档
最新文档