智能车速度控制系统的设计与实现.

智能车速度控制系统的设计与实现.
智能车速度控制系统的设计与实现.

智能车速度控制系统的设计与实现

引言

在智能车竞赛中,速度控制不能采用单纯的PID,而要采用能够在全加速、紧急制动和闭环控制等多种模式中平稳切换的“多模式”速度控制算法,才能根据不同的道路状况迅速准确地改变车速,实现稳定过弯。

系统硬件设计

按照竞赛要求,本文设计的智能车速度控制系统,以飞思卡尔

MC9S12DG128 单片机为核心[1],与车速检测模块、直流电机驱动模块、电源模块等一起构成了智能车速度闭环控制系统。单片机根据赛道信息采用合理的控制算法实现对车速的控制,车速检测采用安装于车模后轴上的光电编码器,直流电机驱动采用了由四个MOS管构成的H桥电路如图1所示,电源模块给单片机、光电编码器和驱动电机等供电。

系统建模

一个针对实际对象的控制系统设计,首先要做的就是对执行器及系统进行建模,并标定系统的输入和输出。为了对车速控制系统设计合适的控制器,就要对速度系统进行定阶和归一化[2]。对此,分别设计了加速和减速模型测定实验。通过加装在车模后轮轴上的光电编码器测量电机转速。编码器齿轮与驱动轮的齿数比为33/76,编码器每输出一个脉冲对应智能车运动1.205mm。车模可以通过调节加给电机的PWM波的占空比进行调速。单片机上的PWM模块可以是8位或16位的,为了提高调速的精度,电机调速模块选用16位PWM,其占空比调节范围从0到65535,对应电机电枢电压从0%到100%的电池电压。

将车模放置在一段长直跑道上,采用开环方式给驱动电机加上不同的电压,记录车模在速度进入稳定后的速度值。然后将所测得的电枢电压与车速进行拟合的曲线如图2所示,由图1可将智能车加速模型近似为线性模型。

根据实验数据可以确定车速执行器系统的零点和增益。车速V与占空比PWM_Ratio的关系见公式1:

V = PWM_Ratio×402 + 22000 (1)

其中:PWM_Ratio的取值范围为0-65535

车模减速有三种方法:自由减速、能耗制动和反接制动。自由减速动力来自摩擦阻力,基本认为恒定。能耗制动是将能量消耗到电机内阻上,制动力随着车速的降低而降低,也可通过控制使加速度减小得更快。反接制动通过反加电压实现,制动力与所加的反向电压有关。

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴

2013 年12 月13 日 汽车运动控制系统仿真设计 10级自动化2班姜鹏 2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

智能婴儿车设计报告样本

智能婴儿车设计报 告

智能制造论文 专业:机械设计制造及其自动化 学号: 学生姓名: 指导老师: 多功能智能婴儿车

一、简介: 本设计是涉及触摸感应和电磁感应的触摸感应式婴儿车智能刹车装置,哭声检测智能摇摆及报警装置,大小便检测报警装置,婴儿车智能追踪定位装置,手动可调摇篮摇摆频率装置。这些智能设计旨在防止婴儿车在有坡度的地方无人推行时发生溜动而造成的安全事故,而且跟踪定位婴儿车的位置,使婴儿车时时刻刻都在身边,哭声检测智能摇摆及报警装置和手动可调摇篮摇摆频率装置是用于减轻婴儿照看者的负担,不用时时刻刻守在婴儿旁边,大小便检测报警装置是为了提醒照看者婴儿是否大小便,方便照看者给婴儿换尿布。 本创造结构简单,安装方便,能实现婴儿车在有人控制时正常行驶,无人控制时停止锁住无法滑动,避免发生事故,而且提醒照看人婴儿车内婴儿的各种信息。 二、技术背景: 照顾孩子的父母或是保姆不可能时时刻刻待在孩子身边,特别是在晚上,而且人们不可能因为孩子其它事什么都不做。基于以上几点我们设计出了智能婴儿车,它能帮助父母花更少的时间更好得照顾好婴儿,使婴儿更加健康茁壮的成长,而且能在照顾好孩子的同时做些家务及一些其它事情。智能婴儿摇篮能够提供给宝宝舒适摇晃,又能够经过自动移动和自动避障及自动追踪,使得妈妈们也可腾出手来处理家务或者休息。从而大大的减轻了

婴幼儿父母的劳动负担。 婴儿车是一种为婴儿户外活动提供便利而设让的工具车,有各种车型,一般0到4岁的孩子用的是婴儿车,是宝宝最喜爱的散步交通工具,更是妈妈带宝宝上街购物出游时的必须品,而当今的婴儿车的刹车装置方面还存在一定的缺陷,使得婴儿车存在一定的安全隐患。 由于婴儿车停放位置不当或婴儿的活动等其它原因,婴儿车可能会发生溜动,从而引发意外事故,而婴儿坐在婴儿车内不具有制止婴儿车运动的能力以致发生碰撞而导致惨剧发生。现已发生多起因为家长的疏忽导致的婴儿车滑动引起的安全事故。因此安全性是购买婴儿车的最重要的指标,如果婴儿车不具备很强的安全性,就极其容易伤害到脆弱的婴儿。因此出于安全因素的考虑,婴儿车应具有自动制动的能力,特别是在无人看管时。 现有的婴儿车安全装置旨在人工制动,需要在停放时人工打开刹车,可是很多家长往往意识不到安全隐患的存在从而忽略这个步骤,导致安全事故的发生,因此现在的婴儿车安全装置并不能解决无人看管时引发的安全隐患。 该创造正是要实现婴儿车智能化,具有很强的可控性,很大程度上减少了安全隐,很大地提高婴儿车的安全性,这个设计的应用范围较广,同样也能够用于残疾人的推车等。该设计轻巧方便,功耗低,成本较低,具有很高的实用性。 三、关键词:

线控两轮平衡车的建模与控制研究

线控两轮平衡车的建模 与控制研究 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

线性系统理论 上机实验报告 题目:两轮平衡小车的建模与控制研究 完成时间:2016-11-29 1.研究背景及意义 现代社会人们活动范围已经大大延伸,交通对于每个人都十分重要。交通工具的选择则是重中之重,是全社会关注的焦点。 随着社会经济的发展,人民生活水平的提高,越来越多的小汽车走进了寻常百姓家。汽车快捷方便、省时省力,现代化程度高,种类繁多的个性化设计满足了不同人的需求。但它体积大、重量大、污染大、噪声大、耗油大、技术复杂、使用不便、价格贵、停放困难,效率不高,而且还会造成交通拥堵并带来安全隐患。相比之下,自行车是一种既经济又实用的交通工具。中国是自行车大国,短距离出行人们常选择骑自行车。自行车确实方便,但在使用之前需要先学会骑车,虽然看似简单,平衡能力差的人学起来却很困难,容易摔倒,造成人身伤害。另外,自行车毕竟不适宜长距离的行驶,遥远的路程会使人感到疲劳。 那么,究竟有没有这样一种交通工具,集两者的优点于一身呢?既能像汽车一样方便快捷又如自行车般经济简洁,而且操作易于掌握,易学又易用。两轮自平衡车概念就是在这样的背景下提出来的。 借鉴目前国内外两轮自平衡车的成功经验,本文提出的研究目标是设计一款新型的、结构简单、成本低的两轮自平衡车,使其能够很好地实现自平衡功能,同时设计结果通过MATLAB进行仿真验证。

2.研究内容 自平衡式两轮电动车是一个非线性、强耦合、欠驱动的自不稳定系统,对其控制策略的研究具有重大的理论意义。我们通过分析两轮平衡车的物理结构以及在平衡瞬间的力学关系,得到两轮车的力学平衡方程,并建立其数学模型。运用MATLAB 和SIMULINK 仿真系统的角度θ、角加速度? θ、位移x 和速度的? x 变化过程,对其利用外部控制器来控制其平衡。 3.系统建模 两轮平衡车的瞬时力平衡分析如图1所示。下面将分析归纳此时的力平衡方程[1-3],并逐步建立其数学模型。 对两轮平衡车的右轮进行力学分析,如图2所示。 依据图2对右轮进行受力分析,并建立其平衡方程: =R R R R M X f H ? - (1) R R R R J C f R ??? =- (2) 同理,对左轮进行受力分析,并建立其平衡方程: =R L L L M X f H ? - (3) L L L L J C f R ??? =- (4) 两轮平衡车摆杆的受力分析如图3所示,由图3可以得到水平和垂直方向的平衡方程以及转矩方程。 水平方向的平衡方程: H H x R L p m +=? ? (5) 其中θsin L x x m p +=,则有:

汽车车灯智能控制系统毕业设计

本科生毕业设计(论文) 学院:____________________ 专业:____________________ 学生:_____________________ 指导教师:_____________________ 完成日期年月

汽车车灯智能控制系统设计 Design of Intelligent Control System for Automobile Lamp 总计:24页 表格:1个 插图:18幅

汽车车灯智能控制系统设计 Design of Intelligent Control System for Automobile Lamp 学院:_______________________________ 专业:_______________________________ 学生姓名:_______________________________ 学号:_______________________________ 指导教师(职称):________________________ 评阅教师: 完成日期:

汽车车灯智能控制系统设计 电气工程及其自动化专业 [摘要]本系统是基于单片机控制的汽车车灯智能系统,模拟并显示出汽车驾驶过程的灯光控制。其中主要包括汽车的远近光灯的模拟显示。具体是通过单片机板上的超声波测距模块和光线感应模块来控制LED灯的亮灭显示状态。在本设计过程中,通过使用单片机来控制车灯的状态,并把模拟信息在LCD上显示出来,以此加强了对单片机的了解和使用。 [关键词]单片机;电路基础;汽车车灯控制系统;LED灯 Design of Intelligent Control System for Automobile Lamp Electrical Engineering and Automation Specialty LI Lin-jie Abstract: This system is the intelligent automobile lamp based on MCU control system simulation and to show the car driving lights control. Including the car made a left turn as far as light, brake and alarm switch, analog display. Is controlled by switching actions of the MCU Board LED lights shows a left turn, right turn, brake and other corresponding State. During the design process, through the use of Protel drawing schematics, makes the circuit more intuitive and deepened understanding of Protel application. Key words: Microcontroller; circuit theory; automobile lamp control system; LED lights

智能车控制算法.doc

实用标准文案 智能车转角与速度控制算法 1.检测黑线中点Center :设黑、白点两个计数数组black 、 white ,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加 1 ,并且白点计数器停止,以此类推扫描每一行;黑线中点= 白点个数 + (黑点的个数 /2 ) 2.判断弯直道: 找出黑线的平均位置avg ( 以每 10 行或者 20 作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和) 然后用 Curve的大小来确定是否弯直道(Curve的阀值待定)。 3.控制速度: 根据弯度的大小控制速度大小。 //*****************************弯度检测函数*******************************// Curvecontrol () { int black[N];// 黑点计数器

int white[N];// 白点计数器 int center[N];// 黑线中点位置 int avg;// 黑线中点平均位置int curve;//N行的相对位移之和 if( 白点 ) ++white[N];// 判断黑白点的个数else++black[N]; center[N]=white[N]+black[N]/2;// 每一行的黑线中点 avg=(center[1]+center[2]+...+center[N])/N;// 求出黑线中点的平均位置 curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N// 求出 N 行的相对位移之和 return curve;// 返回弯度大小 }

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计 摘要 两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用STC 公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。 整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。通过蓝牙,还可以控制小车前进,后退,左右转。 关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法 Design of Control System of Two-Wheel Self-Balance Vehicle based on Microcontroller Abstract Two-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer

汽车智能照明控制系统设计

毕业设计(论文) 汽车智能照明控制系统 学生姓名: 学号: 所在系部: 专业班级: 指导教师: 日期:二〇一七年五月

学位论文原创性声明 本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日 学位论文版权使用授权书 本学位论文作者完全了解学院有关保管、使用学位论文的规定,同意学院保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。 本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在年解密后适用本授权书。 2、不保密□。 (请在以上相应方框内打“√”) 作者签名:年月日 导师签名:年月日

摘要 在当今社会,人们生活得到了极大的提高,汽车拥有量也在不断增加。汽车作为快捷方便的交通工具,给我们的生活带来了诸多方便,同时也带来不少的交通安全问题。汽车照明系统作为现代汽车的必备安全系统之一,在安全性方面有很多值得改进的地方。大部分的汽车的照明系统目前还是以传统手动操作为主,因此,实现汽车照明的智能控制是非常有必要的。 本文首先对汽车智能照明控制系统的研究背景和国内外概况作了简要介绍,给出了设计任务要求和总体设计方案,并根据实际情况做了硬件设计。硬件设计部分包括主控部分、电源设计部分、数据采集部分和模拟车灯控制部分。本设计是通过STM32单片机对传感器采集到的数据进行分析后对模拟车灯进行控制,控制的具体步骤通过软件编程实现。本文还对实物模型的制作流程作了简单介绍,并给出了实物图。最后对现阶段的研究进行总结并得出了结论,最终结论表明该系统在实际应用中是可行的。 关键词:汽车车灯;STM32F103C8T6;传感器

智能小车控制程序1

/*实现前进与后退功能*/ /*控制智能车向前行驶10秒,然后停3秒,再向后行驶6秒,停止*/ /********************************************************/ #include #define uint unsigned int /*进行端口声明时,应与具体硬件连接相对应,如不相互对应,将影响程序功能的正常实现*/ sbit S1=P1^3; //对电机端口声明 sbit S2=P1^4; sbit S3=P1^5; sbit S4=P1^6; /*功能函数定义*/ void delay(uint del) //延时函数,延时del毫秒 { uint i,j; for(i=0; i

{ go(); //前进 delay(10000); //前进10秒 stop(); //停止 delay(3000); //停3秒 back(); //后退 delay(6000); //后退6秒 stop(); //停止 }

智能婴儿车设计报告材料

智能制造论文 专业:机械设计制造及其自动化 学号: 学生姓名: 指导老师:

多功能智能婴儿车 一、简介: 本设计是涉及触摸感应和电磁感应的触摸感应式婴儿车智能刹车装置,哭声检测智能摇摆及报警装置,大小便检测报警装置,婴儿车智能追踪定位装置,手动可调摇篮摇摆频率装置。这些智能设计旨在防止婴儿车在有坡度的地方无人推行时发生溜动而造成的安全事故,并且跟踪定位婴儿车的位置,使婴儿车时时刻刻都在身边,哭声检测智能摇摆及报警装置和手动可调摇篮摇摆频率装置是用于减轻婴儿照看者的负担,不用时时刻刻守在婴儿旁边,大小便检测报警装置是为了提醒照看者婴儿是否大小便,方便照看者给婴儿换尿布。 本发明结构简单,安装方便,能实现婴儿车在有人控制时正常行驶,无人控制时停止锁住无法滑动,避免发生事故,并且提醒照看人婴儿车内婴儿的各种信息。 二、技术背景: 照顾孩子的父母或是保姆不可能时时刻刻待在孩子身边,特别是在晚上,而且人们不可能因为孩子其他事什么都不做。基于以上几点我们设计出了智能婴儿车,它能帮助父母花更少的时间更好得照顾好婴儿,使婴儿更加健康茁壮的成长,而且能在照顾好孩子的同时做些家务及一些其他事情。智能婴儿摇篮可以提供给宝宝舒适摇晃,又可以通过自动移动和自动避障及自动追踪,使得妈妈们也可腾出手来处理家务或者休息。从而大大的减轻了婴幼儿父母的劳动负担。

婴儿车是一种为婴儿户外活动提供便利而设让的工具车,有各种车型,一般0到4岁的孩子用的是婴儿车,是宝宝最喜爱的散步交通工具,更是妈妈带宝宝上街购物出游时的必须品,而当今的婴儿车的刹车装置方面还存在一定的缺陷,使得婴儿车存在一定的安全隐患。 由于婴儿车停放位置不当或婴儿的活动等其他原因,婴儿车可能会发生溜动,从而引发意外事故,而婴儿坐在婴儿车内不具有制止婴儿车运动的能力以致发生碰撞而导致惨剧发生。现已发生多起因为家长的疏忽导致的婴儿车滑动引起的安全事故。因此安全性是购买婴儿车的最重要的指标,如果婴儿车不具备很强的安全性,就极其容易伤害到脆弱的婴儿。所以出于安全因素的考虑,婴儿车应具有自动制动的能力,特别是在无人看管时。 现有的婴儿车安全装置旨在人工制动,需要在停放时人工打开刹车,但是很多家长往往意识不到安全隐患的存在从而忽略这个步骤,导致安全事故的发生,所以现在的婴儿车安全装置并不能解决无人看管时引发的安全隐患。 该发明正是要实现婴儿车智能化,具有很强的可控性,很大程度上减少了安全隐,很大地提高婴儿车的安全性,这个设计的应用范围较广,同样也可以用于残疾人的推车等。该设计轻巧方便,功耗低,成本较低,具有很高的实用性。 三、关键词: 婴儿车哭声检测尿床检测室内自由移动智能跟踪自动摇摆智能刹车

智能小车速度控制程序

/************************************************************************** ** 简单寻迹程序:接法 EN1 EN2 PWM输入端,本程序不输入PWM,直接使插上跳线帽,使能输出,这样就能全速运行 接上测速模块 测速模块电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口 把测速模块输出OUT1 OUT2 接入单片机P3。2 P3。3 P1_0 P1_1 接IN1 IN2 当P1_0=1,P1_1=0; 时左上电机正转左上电机接驱动板子输出端(蓝色端子OUT1 OUT2) P1_0 P1_1 接IN1 IN2 当P1_0=0,P1_1=1; 时左上电机反转 P1_0 P1_1 接IN1 IN2 当P1_0=0,P1_1=0; 时左上电机停转 P1_2 P1_3 接IN3 IN4 当P1_2=1,P1_3=0; 时左下电机正转左下电机接驱动板子输出端(蓝色端子OUT3 OUT4) P1_2 P1_3 接IN3 IN4 当P1_2=0,P1_3=1; 时左下电机反转 P1_2 P1_3 接IN3 IN4 当P1_2=0,P1_3=0; 时左下电机停转 P1_4 P1_5 接IN5 IN6 当P1_4=1,P1_5=0; 时右上电机正转右上电机接驱动板子输出端(蓝色端子OUT5 OUT6) P1_4 P1_5 接IN5 IN6 当P1_4=0,P1_5=1; 时右上电机反转

P1_4 P1_5 接IN5 IN6 当P1_4=0,P1_5=0; 时右上电机停转 P1_6 P1_7 接IN7 IN8 当P1_6=1,P1_7=0; 时右下电机正转右下电机接驱动板子输出端(蓝色端子OUT7 OUT8) P1_6 P1_7 接IN7 IN8 当P1_6=0,P1_7=1; 时右下电机反转 P1_6 P1_7 接IN7 IN8 当P1_6=0,P1_7=0; 时右下电机停转 P3_2接四路寻迹模块接口第一路输出信号即中控板上面标记为OUT1 P3_3接四路寻迹模块接口第二路输出信号即中控板上面标记为OUT2 P3_4接四路寻迹模块接口第三路输出信号即中控板上面标记为OUT3 P3_5接四路寻迹模块接口第四路输出信号即中控板上面标记为OUT4 四路寻迹传感器有信号(白线)为0 没有信号(黑线)为1 四路寻迹传感器电源+5V GND 取自于单片机板靠近液晶调节对比度的电源输出接口 关于单片机电源:本店驱动模块内带LDO稳压芯片,当电池输入6V时时候可以输出稳定的5V 分别在针脚标+5 与GND 。这个输出电源可以作为单片机系统的供电电源。 ****************************************************************************/ #include

智能小车控制系统设计

智能小车控制系统设计 ——ARM控制模块设计 EasyARM615是一款基于32位ARM处理器,集学习和研发于一体的入门级开发套件,该套件采用Luminary Micro(流明诺瑞)公司生产的Stellaris系列微控制器LM3S615。本系统设计是以EasyARM615开发板为核心,通过灰度传感器检测路面上的黑线,运用PWM直流电机调速技术,完成对小车运动轨迹等一系列的控制。同时利用外扩的液晶显示器显示出各个参数。以达到一个简易的智能小车。 本文叙述了系统的设计原理及方法,讨论了ISR集成开发环境的使用,系统调试过程中出现的问题及解决方法。 据观察,普通的玩具小车一般需要在外加条件下才能按照自己的的设想轨迹去行驶,而目前可借助嵌入式技术让小车无需外加条件便可完成智能化。在小车行驶之前所需作的准备工作是在地面上布好黑线轨迹,设计好的小车便可按此黑线行驶,即为智能小车。其设计流程如下: 1、电机模块 采用由达林顿管组成的H型PWM电路。PWM电路由四个大功率晶体管组成,H桥电路构成,四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关状态,根据调整输入控制脉冲的占空比,精确调整电机转速。这种电路由于管子工作只在饱和和截止状态下,效率非常没。H型电路使实现转速和方向的控制简单化,且电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调整技术。 具体电路如下图所示。本电路采用的是基于PWM原理的H型驱动电路。该电路采用TIP132大功率达林顿管,以保证电动机启动瞬间的8安培电流要求。

2、传感器模块 灰度测量模块,是一种能够区分出不同颜色的的电子部件。灰度测量模块是专为机器人设计的灰度传感器。例如:沿着黑色轨迹线行走,不偏离黑色轨迹线;沿着桌面边沿行走,不掉到地上,等等。足球比赛时,识别场地中灰度不同的地面,以便于进行定位。不同的物体对红外线的反射率不同,黑色最低,白色最高;它通过发射红外线并测量红外线被反射的强度来输出反映物体颜色的电压信号,有效距离3-30毫米。 其技术规格如下: 已知灰度传感器的输出电压为0-3.3V,所以可通过ARM615开发板上的ADC 模块转换成数字信号,最后通过不断测试得出黑线与白线的大概参数值,完成对小车传感器部分的设计。 在本次设计中选择二个灰度传感器,其实现效果与布局如下所示。

智能车控制算法

智能车转角与速度控制算法 1.检测黑线中点Center:设黑、白点两个计数数组black、white,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加1,并且白点计数器停止,以此类推扫描每一行;黑线中点=白点个数+(黑点的个数/2) 2.判断弯直道: 找出黑线的平均位置avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和) 然后用Curve的大小来确定是否弯直道(Curve的阀值待定)。 3.控制速度: 根据弯度的大小控制速度大小。 //*****************************弯度检测函数*******************************// Curvecontrol () { int black[N]; //黑点计数器 int white[N]; //白点计数器 int center[N]; //黑线中点位置 int avg; //黑线中点平均位置 int curve;//N行的相对位移之和 if(白点) ++white[N]; //判断黑白点的个数 else ++black[N]; center[N]=white[N]+black[N]/2; //每一行的黑线中点avg=(center[1]+center[2]+...+center[N])/N; //求出黑线中点的平均位置 curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N //求出N行的相对位移之和 return curve; //返回弯度大小

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

智能车速度控制pid(电机闭环控制算法)

智能车速度控制pid(电机闭环控制算法) 对于智能车的电机闭环控制算法,我之所以标题没有写上智能车电机PID闭环控制算法是因为PID 算法根本就不是特别好的适用于智能车这种变化很快的系统,对于智能车,电机的调速可以说是时时刻刻再进行调速控制的,我上面说描述的经典PID 算法,都是针对一些惰性系统,也就是说是变化比较慢的系统的,所以对于智能车的电机调速采用完完整整的PID 算法,是根本不可取的,及时采用了,你必须要经过一些变换和改进才能使用。以上的简述只是鄙人自己的看法,如有错误,请各位高手指正。现在估计您会疑问,PID 不适用于智能车的电机控制,那什么才适用呢? 鄙人原来做过智能车,从鄙人本身的理解,P 算法控制电机,也就是比例控制是最好的,反应速度快,控制精度高,不存在积分和微分效应,非常适用于适用于控制周期短的系统,当然,对于一些特殊的逻辑控制算法,可能要采用PD算法,用微分来做补偿,防止震荡和超调。下面来说下电机控制算法从开始的加入到最终的确定的方法: 当然这一切的前提就是安装了编码器,车速有反馈,只有加上编码器,有了反馈,才能组成一个闭环系统。当然您也可以加上码盘,或者霍尔开关等一切可以返回车速的东西都可以。 (1)首先建议在车速比较慢的时候,采用PID 算法来控制电机,为什么开始要建议您采用PID 呢?主要是为了让您更加深刻理解PID 算法的精髓和调试步骤方法等,有助于以后对控制算法更加深入的研究和书写。调试PID 三个参数的方法,很多地方都提供了,我在这里简单的说下:首先将ID 参数都变为0,先调整P 比例参数,调整到速度基本上跟您给定的速度差不多,也就是说基本稳定在您给定的脉冲数,当然这个时候会非常的震荡,不要担心,接下来调整I,调整I 的结果就是震荡会消除很多,但是车速会变化缓慢,也就是说会有一些延迟,然后再调整D,调整D 的结果就是增强调节的灵活性和预见性,在给定速度变化的过程中,能够以一个平稳过渡来变换,而且速度可以长时间稳定在给定速度附近,然后PID 三个参数的基本范围就确定了,然后再根据实际的跑车来微调这些参数,当然在您调试PID之前,请仔细阅读PID 理论知识,这样有助于您的调试和理解,

Matlab汽车运动控制系统设计

1绪论 1.1选题背景与意义 汽车已经成为人们日常生活不可缺少的代步交通工具,在汽车发达国家,旅客运输的60%以上,货物运输的50%以上由汽车来完成,汽车工业水平和家庭平均拥有汽车数量已经成为衡量一个国家工业发达程度的标志。进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。因此,汽车运动控制系统的研究也显得尤为重要,在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,确定期望的静态指针(稳态误差)和动态指针(超调量和上升时间)。然后对汽车运动控制系统进行设计分析。从而确定系统的最佳静态和动态指针。 2 论文基本原理分析 2.1.1汽车运动横向控制 (1)绝对位置的获得方法 汽车横向方向的控制使用GPS(全球定位系统)的绝对位置信息。GPS信息的精度与采样周期、时间滞后等有关。为提高GPS的数据精度和平滑数据.采用卡尔曼滤波对采样数据进行修正。GPS的采样周期为200ms相对应控制的周期采用50ms。另外考虑通信等的滞后、也需要进行补偿,采用航位推测法(dead reckoning)解决此问题。通过卡尔曼滤波和航位推测法推算出的值作为汽车的绝对位置使用来控制车速、横摆角速度等车辆的状态量。GPS 的数据通过卡尔曼滤波减少偏差、通过航位推测法进行误差和迟滞补偿.提高了位置数据推算的精度。 (2)前轮转角变化量的算出方法 这里对前轮目标转角变化量(?δ)的算出方法作简要说明,横方向控制采用预见控制,可以从现在汽车的状态预测经过时间t p秒后的汽车位置,由t p秒后的预测位置和目标路径

大学毕业设计---基于arm的两轮自平衡车模型系统设计课程

中北大学 课程设计说明书 学生姓名: *杰学号:* 学院: 仪器与电子学院 专业: * 题目: 基于ARM的两轮自平衡车模型系统设计 指导教师:李锦明职称: 副教授 2015 年1 月30 日

摘要 近年来,两轮自平衡车的研究与应用获得了迅猛发展。本文提出了一种两轮自平衡小车的设计方案,采用陀螺仪L3G4200以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用飞思卡尔32位单片机Kinetis K60为控制核心,通过滤波算法实现车身控制,人机交互等。 整个系统制作完成后,各个模块能够正常并协调工作,小车可以在无人干预条件下实现自主平衡。同时在引入适量干扰情况下小车能够自主调整并迅速恢复稳定状态。 关键词:两轮自平衡陀螺仪姿态检测卡尔曼滤波数据融合

目录 1 课程设计目的 (1) 2 设计内容和要求 (1) 2.1 设计要求 (1) 2.2 研究意义 (1) 2.3 研究内容 (2) 3 设计方案及实现情况 (2) 3.1 两轮平衡车的平衡原理 (2) 3.2 系统方案设计 (3) 3.3 系统最终方案 (6) 3.4 系统软件设计 (9) 3.5 电路调试 (16) 4 课程设计总结 (18) 参考文献 (19) 附录 (20) 致谢 (21)

1 课程设计目的 (1)掌握嵌入式系统的一般设计方法和设计流程; (2)学习嵌入式系统设计,掌握相关IDE开发环境的使用方法; (3)掌握ARM的应用; (4)学习掌握嵌入式系设计的全过程; 2 设计内容和要求 2.1 设计要求 (1)学习掌握基于ARM Cortex-M4内核的Kinetis K60系列单片机的工作原理及应用;(2)学习掌握加速度计、陀螺仪的工作原理及应用; (3)设计基于PID控制的两轮自平衡车模型系统的工作原理图及PCB版图; 2.2 研究意义 近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科 学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也 越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。比如,户外 移动机器人需要在凹凸不平的地面上行走,有时环境中能够允许机器人运行的地方比 较狭窄等。如何解决机器人在这些环境中运行的问题,逐渐成为研究者关心的问题[1]。 两轮自平衡机器人的概念正是在这样一个背景下提出来的,这种机器人区别于其 他移动机器人的最显著的特点是:采用了两轮共轴、各自独立驱动的工作方式(这种驱 动方式又被称为差分式驱动方式),车身的重心位于车轮轴的上方,通过轮子的前后移 动来保持车身的平衡,并且还能够在直立平衡的情况下行驶。由于特殊的结构,其适 应地形变化能力强,运动灵活,可以胜任一些复杂环境里的工作。 两轮自平衡机器人自面世以来,一直受到世界各国机器人爱好者和研究者的关 注,这不仅是因为两轮自平衡机器人具有独特的外形和结构,更重要的是因为其自身 的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高 的研究价值。

单片机中汽车灯光控制系统实验报告讲解

《单片机原理与应用》 课程大作业 项目名称:汽车灯光控制系统 专业班级:智能监控121 学号: 120516127 姓名:朱小柳 连云港职业技术学院信息工程学院 2013 年10 月27 日

随着单片机的日益发展,其应用也越来越广泛,通过对“汽车灯光控制系统”设计,可以对单片机的知识得到巩固。本设计是设计一个单片机控制系统。在汽车进行左右转向灯、前主灯、倒车灯、故障灯时,实现对各种信号指示灯的控制。本设计主要是对单片机的并行输入、输出口电路的应用,通过对I/O口控制发光二极管的亮、灭、闪烁,加上一些复位电路、按键电路、驱动电路来模拟汽车尾灯的功能。 关键词单片机;汽车信号灯;电路基础;

车灯是行车安全的必备件,除了具有照明作用,对行人和其他车辆还具有转向、会车、刹车等警示作用。其中汽车转向灯的控制就是一例。汽车转向和报警信号灯是汽车运动方向和车身状态的表示信号,关系着汽车的安全问题,因此基于单片机的汽车转向灯控制器的一直以来都是汽车电子设计中的一个十分重要的领域。 此次基于单片机的汽车转向灯的设计中,复位电路的设计、LED发光二极管的应用、4个按键开关、键盘扫描来控制LED灯点亮的方式都基本符合课程设计的要求。其中复位电路的作用是当单片机死机的情况下用来复位重启单片机,软件部分主要是用键盘扫描的方式来与程序中的设定值比较如果一致就执行该段子程序来实现LED的点亮方式。 汽车上的信号灯有:转向灯(左前灯、右前灯、仪表盘上的二个指示灯)。当汽车转弯、倒车、停靠时,转向灯发出不同的信号。目前国内广泛使用电热式闪光器产生闪光信号。闪烁频率在 50~110 次/ min,但是一般控制在 60~95 次min 之间。闪光器是通过调节镍铬丝的拉力和触点的间隙来满足频率要求的,灯泡功率的大小也会影响闪烁频率。因此在更换闪光器或灯泡时调整比较困难。同时,系统没有故检测,驾驶员无法知道车外的转向灯及示宽灯是否点亮,从而影响行车安全。到目前为止,我们还没有发现能检测灯丝断这种故障的有效方法。针对上述问题,我们用AT89C51单片机设计了一套汽车信号灯控制系统。用LED产生闪光信号,同时能自动检测信号灯故障。信号灯灯具的发展是随着汽车制造技术及电光源技术的发展而逐步完善的。它经历了机油(或煤油)灯、乙炔气灯到电光源灯的发展历程。现代汽车信号灯灯具已经开始使用发光二极管(LED)技术以及光导技术,这是信号灯灯具的一次飞跃。

倒退行走式智能车速度控制算法设计本科设计说明

. 本科毕业设计(论文)题目:倒退行走式智能车速度控制算法设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。 作者签名:日期:

学位论文原创性声明 本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于PLC的小车自动往返运动控制系统2

第一章概述 1完成本次循环工作后,停止在最初位置。其运动路线示意图如下图1-1所示。 如图1-1 小车运动路线示意图 第二章硬件设计 2.1 主电路图 如图2-1为小车循环控制的主电路原理图。该电路图利用两个接触器的主触点KM1、KM2分别接至电机的三相电源进线中,其中相对电源的任意两相对调,即可实现电机的正反转,也可达到小车左右运行的目的。假设接通KM1为正转(小车右行),则接通KM2为反转(小车左行)。

图2-1小车循环控制的主电路原理 2.2 I/O地址分配 如表2-1为小车循环运动PLC控制的I/O分配表。在运行过程中,这些I/O口分别起到了控制各阶段的输入和输出的作用,并且也使小车的控制过程更清晰明了,动作与结果显示更加方便直接。 表2-1

2.3 I/O接线图 如图2-2为小车循环运动PLC控制的I/O接线图。在进行调试过程时,在PLC模块上,当I0.0有输入信号,即按下SQ1;当I0.1有输入信号,也即按下SQ2,以此类推,I/O接线图就是把实际的开关信号变成调试时的输入信号。同理,输出信号也是利用PLC模块把小车的实际运动用Q0.0、Q0.1的状态表现出来。 图2-2小车循环运动PLC控制的I/O接线图 2.4 元件列表 如表2-2为小车循环运动PLC控制的元件列表。在本次设计中就是利用这些元件,用若干导线连接起来组成了我们需要的原理图、I/O接线图。 表2-2

第三章软件设计 3.1 程序流程图 如图3-1为小车循环运动PLC控制的程序流程图。小车在一个周期内的运动由4段组成。设小车最初在左端,当按下启动按钮,则小车自动循环地工作,若按下停止按钮,则小车完成本次循环工作后,停止在最初位置。 首先小车位于初始位置,按下SB1启动后,小车向右行驶;当碰到行程开关SQ4,小车转向,向左行驶;碰到行程开关SQ2,小车再一次转向,向右行驶;碰到行程开关SQ3,小车又向左行驶,直到再次碰到SQ1,然后开始依次循环以上过程。若不按下停止按钮SB2则小车一直进行循环运动,若此时按下停止按钮SB2,小车又碰到行程开关SQ1,则小车回到初始位置。

相关文档
最新文档