光的干涉在技术中的应用,薄膜干涉

光的干涉在技术中的应用,薄膜干涉
光的干涉在技术中的应用,薄膜干涉

光的干涉在技术中的应用

光的干涉在技术上的应用:

1、利用光的干涉检查平整度

取一个透明的标准样板,放在待检查的部件表面并在一端垫一薄片,使样板的平面与被检查的平面间形成一个楔形空气膜,用单色光从上面照射,入射光从空气层的上下表面反射出两列光形成相干光,从反射光中就会看到干涉条纹,如图甲所示。

如果被检表面是平的,那么空气层厚度相同的各点就位于一条直线上,产生的干涉条纹就是平行的(如图乙);如果观察到的干涉条纹如图丙所示,A、B处的凹凸情况可以这样分析:由丙图知,P、Q两点位于同一条亮纹上,故甲图中与P、Q对应的位置空气层厚度相同。由于Q位于P的右方(即远离楔尖),如果被检表面是平的,Q处厚度应该比P处大,所以,只有当A处凹陷时才能使P与Q处深度相同。同理可以判断与M对应的B处为凸起。

2、增透膜

由于“增透”只使两反射光相消,一定的d只能使一定的波长的光相消,我们常见的涂有增透膜的光学元件,是在自然光条件下增透,通常控制增透膜的厚度,使它对黄、绿光满足“增透”,而其他色光(红、橙、蓝、靛、紫)不能满足“增透”。因此从入射光方向看上去呈现其他色光形成的淡紫色。

薄膜干涉

薄膜干涉:

光照射到薄膜上,被膜的前、后表面反射的两列光形成相干光

①劈形薄膜厚度均匀变化时,干涉条纹是与劈棱平行的明暗相间的直条纹,相邻条纹间距相等。

②某处两反射光相遇时的路程差为该处薄膜厚度的2倍,即。

③观察薄膜干涉时观察者与光源应在薄膜的同侧。

④白光发生薄膜干涉时形成的是彩色条纹

干涉法检查平整度中凹凸情况的两种判定方法:

1.基本方法

如图甲所示,两板之间形成一层空气膜,用单色光从上向下照射,入射光从空气膜的上下表面反射出两列光波,形成干涉条纹。如果被检查平面是光滑的,得到的干涉图样必是等间距的。如果某处凹下去,则对应亮纹(或暗纹)提前出现,如图乙所示;如果某处凸起来,则对应条纹延后出现,如图丙所示。(注:“提前”与“延后”不是指在时间上,而是指由左向右的位置顺序上)

2.旋转法

这是一种方便快捷地判定被检查平面上是凸起还是凹陷的经验性方法,而不是能从定理或定律推导得出的理论结果。具体方法是将干涉图样及装置一起在纸面内旋转90。。旋转方向是使装置的劈形空气膜劈尖向下,即装置成“V”字形。如在图甲中需逆时针转过90。,此时干涉条纹成水平状态,其上条纹弯曲处的凸起与凹下情况与被检查平面凸、凹情况一致。如在图中,逆时针旋过90。后,乙图中条纹凹陷,丙图中条纹凸起,说明对应于乙图的被检查平面上有凹下的地方,对应于丙图的有凸起处。

牛顿环:

凸透镜的弯曲表面是个球面,球面的半径叫做这个曲面的曲率半径。把一个凸透镜压在一块平面玻璃上,让单色光从上方射入(如图),从上往下看凸透镜,可以看到亮暗相问的圆环状条纹。这个现象是牛顿首先发现的,这些环状条纹叫做牛顿环,它是由两个玻璃表面之间的空气膜发生的薄膜干涉造成的。

在一平玻璃板上放一曲率半径很大的平凸透镜,如图所示,凸球面与平玻璃接触并构成尖劈形空气薄膜。当平行单色光垂直入射时,显示的一组等厚条纹是以接触点O为圆心的同心圆环,就是牛顿环。其亮、暗条纹的半径分别为

亮条纹:

暗条纹:

式中j为干涉级数,λ为波长,R为透镜的曲率半径。光从光疏介质射到光密介质界面发生反射时存在半波损失,故反射光所产生的牛顿环条纹的中心处是一暗点。对于透射光所产生的牛顿环条纹的中心是一亮点。牛顿环所产生的干涉条纹的规律是越靠近中心,条纹的级越低,条纹的宽度越宽。这一点可用劈尖干涉的结论来理解。如图,靠近中心处劈尖顶角

减小,增大。

利用牛顿环可以精确检测光学元件表面的精确度.可精密地测定压力或长度的微小变化。

光的干涉及其应用

光的干涉及其与应用 (作者:赵迪) 摘要我们通过对光的干涉本质、种类及其各种应用做了一定的查阅与思考,汇总成为该文章。中文中重点介绍的是,光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用,由于文章内容和字数的限制,我们不能对所有提到的应用做出详细的表述,仅取其中的几个例子进行具体的介绍。 关键词光的干涉等倾干涉等厚干涉照相技术天文学 1 绪论 我们知道在光学的发展史上,“光的本质”这个问题进行了将近4个世纪的争论,直到爱因斯坦提出“波粒二象性”才将这个问题的争论暂时告一段落,本文所提到的的光的干涉现象就是这段精彩历史上不可磨灭的一部分。 1801年的英国由托马斯·杨设计的杨氏双缝干涉实验使得“微粒说”近乎土崩瓦解,并强有力的支持了“波动说”。1811年,阿拉格首先研究了偏振光的干涉现象。现代生活中,光的干涉已经广泛的用于精密计量、天文观测、光弹性应力分析、光学精密加工中的自控等许多领域。 虽然“波粒二象性”已经作为主流说法,终结了这个问题的争论,但是对于现代生活来说,光的干涉及其理论所带来的影响却是不可或缺的。我们将在本文中简单介绍一下光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用。 2 光的干涉现象与产生 2.1 现象简介 干涉,指满足一定条件的两列相干波相遇叠加,在叠加区域某些点的振动始终加强,某些点的震动始终减弱,即在干涉区域内振动强度有着稳定的空间分布,而忽略时间的影响。

图2-1 复色光的干涉图样 由于光也具有波动性,因此,光也可以产生干涉现象,称为光的干涉。光的干涉通常表现为光场强度在空间作相当稳定的明暗相间的条纹或圆环的分布;有时则表现为,当干涉装置的某一参量随空间改变时,某一固定点处接收到的光强按一定规律作强弱交替变化。 2.2 产生条件 2.2.1 主要条件 两列波的产生干涉的条件是:两列光波频率一致、相位差恒定、振动方向一致的相干光源才能产生光的干涉。 由于两个普通独立的光源发出的光不可能具有相同的频率,更不可能存在更不可能存在固定的相位差,因此,不可能产生干涉现象。 图2-2 单色光的干涉图样 2.2.2 补充条件 由于干涉图样的效果会受到称比度的影响,因此,两列相干波还须满足三个补充条件:①参与叠加的两束光光强不能相差太大;②参与叠加的两束光振动的夹角越小越好,虽然理论上小于2 即可产生叠加,但是对比度效果不好,即最好接近平行;③光程差不能相差太大。

薄膜干涉实验

薄膜干涉实验-高中物理自制教具 学习笔记2008-03-20 10:31:12 阅读275 评论5 字号:大中小订阅 高中物理讲薄膜干涉实验时,按书上的装置来做,虽能勉强做出,但笔者认为,效果还不十分理想。(1)金属丝圈在肥皂液里蘸过以后,环上形成的液膜,要等一阵,让液膜形成楔形截面才能看到干涉条纹。在这“等”的过程中,肥皂液膜由于受风吹,操作者的喘气,酒精灯火焰的热辐射等因素的干扰,液膜蒸发快,存留时间短(几秒至十几秒钟),往往刚出现干涉条纹,液膜随之破裂,让观察者大为扫兴,又得重新蘸皂液.这样来回多次,既浪费时间,又不能仔细观察.(2)老师们都做过肥皂泡上的光的干涉现象,有的老师还亲自配制肥皂液让学生自己吹出泡泡进行观察,如肥皂液配不好,泡泡吹不大,甚至吹不出来.吹出来的泡泡碰到物体,立刻破裂。(3)肥皂泡在空中飞动着,不便观察.笔者利用废弃材料对此实验进行改进,不仅克服了上述弊端,还巧得“牛顿环”、“液体表面张力”等多项实验.还将这些演示实验变成学生实验,教学效果令人满意。 现介绍如下。 1 制作方法 1.1 取无色透明塑料饮料瓶(350~1250 ml,笔者选用1250 ml)1个,截去小部分锥体。在瓶里放入4角匙洗衣粉,再加入400 ml,20oC的清水(洗衣粉溶液可静置数小时后,除去杂质,加入一些食糖水或甘油效果更好),制成洗衣粉溶液,如图1中的A所示。 1.2 制作金属丝(直径2 mm)长方形(长约7 mm,宽约6 cm)框架,留长杆部分33 cm(接头部分最好进 行焊接),如图1中的B所示。 1.3 另取同一规格的饮料瓶,截得大部分锥体(从圆柱体和圆锥体的结合部截下),保留待用,如图1中 的C所示.在瓶盖上打孔,能让长方形框架的长金属丝杆穿过 1.4 将有孔瓶盖在截下待用的锥体瓶口上拧紧,让长方形框架上的长金属丝杆从瓶盖的孔里穿出,用一 鳄鱼夹(或衣夹)夹住瓶口外的金属丝。 1.5 将装有金属丝框架的圆锥体套在前述截去锥体部分的装有洗衣粉溶液的饮料瓶上,如图2所示。 2 实验方法 2.1 薄膜干涉实验.松开鳄鱼夹,让长方形金属丝框在洗衣粉溶液里蘸一下,框架上就形成一层洗衣粉液膜,将液膜在瓶里提升到圆柱体中部,用鳄鱼夹夹住瓶口外金属丝杆,使液膜在饮料瓶中定位。稍待片刻,液膜由于重力作用,成了上薄下厚的楔形截面。此时图3 将点燃的酒精灯(可撒些食盐使火焰发黄光)放在饮料瓶前,就可以在薄膜上看到火焰的反射像,像上出现了明暗相间的水平干涉条纹.如用烛焰照射液膜,液膜上的反射像将出现彩色水平条纹。再如用白光照射上述液膜,薄膜上就出现各种不同颜色的水平直条纹,如图3所示。 2.2 洗衣粉液泡上光的干涉实验。另取一个1250 ml无色透明饮料瓶,往瓶里注入30 ml左右预先配制好的洗衣粉溶液,拧紧瓶盖,摇动饮料瓶,并注意让洗衣粉溶液能达到瓶口部分,或者来回翻转饮料瓶数次,瓶内就会出现多个大大小小的,同时也会在柱体部分或锥体部分出现一至二层液膜.在室内光线(太阳光下效果更佳)下,选出观察“对象”,将饮料瓶放在水平桌面上,稍待片刻,就可看到洗衣粉液泡泡上的弯曲 彩色图4 条纹,如图4所示。 2.3 观察“牛顿环”。在上述液膜层上,观察者处于某一角度,即可看到彩色的同心圆环,变化万千,生动有趣,如图4所示.如果觉得洗衣粉液泡或液膜层(观察对象)形状不够理想,可用自行车辐条锉尖,在打火机的小火焰上稍加烘烤,制成“热针”,将瓶内的泡泡和液膜层一一刺破后,重新摇动瓶子,可得到较为 满意的泡泡或液膜层。 2.4 表面张力实验。自制几种不同形状的金属丝框架,在前述截下的圆锥体上,依次装入不同形状的金

薄膜干涉中的半波损失问题处理方法浅探

龙源期刊网 https://www.360docs.net/doc/a97893459.html, 薄膜干涉中的半波损失问题处理方法浅探 作者:徐铁刚 来源:《中学物理·高中》2015年第11期 高中物理课中讲述肥皂膜、牛顿环、增透膜、增反膜等薄膜干涉问题时,经常遇到是否要考虑半波损失的问题.顾及到中学生难以理解,中学教材回避了半波损失问题.不少老师讲到这里时,往往对在什么情况下有半波损失,以及如何做到既不出现知识性错误,又不至于让学生越听越糊涂,感觉难以把握.[JP3]笔者拟从自己的教学实践出发,谈谈在处理这一问题的粗浅做法. 按照波动光学的理论,光从光疏介质射向光密介质时,若正入射(入射角趋近于0°), 其反射光有π的相位突变,对应有半波损失;光从光密介质进光疏介质时其反射光无相位突变,对应无半波损失;在任何情况下透射光都无相位突变,对应无半波损失.据此,笔者编了 句口诀:“疏进密,反有失;密进疏,均无辜”.意即光从光疏介质正射入光密介质时,只有反射光有半波损失,光从光密介质射向光疏介质时,其反射光、透射光都没有半波损失.根据上述 理论和口诀,对常见薄膜干涉建立如下四种模型:如图1所示,有三层介质,其绝对折射率(以下简称[JP3]为折射率)分别n1、n和n2,光趋近于垂直入射,可分别讨论如下. 1 应考虑半波损失的两种情况 (1) n1n2(疏密疏型),空气中的楔形肥皂膜上出现的薄膜干涉就是这种情况.如图2所示,光在界面1(疏进密)反射光a有π的相位突变,在界面2(密进疏)反射光b无相位突变.此时a、b光程差应附加π的相位突变,即有半波损失. (2) n1>n 在上述两种情况下,反射光a、b中一条有半波损失,另一条无半波损失.考虑到半波损失后,膜上出现亮纹的条件为光程差等于光在介质中半波长的奇数倍,膜厚应为介质中[SX (]1[]4[SX)]波长的奇数倍,即d=(2k+1)[SX(]λ[]4[SX)],(其中k=0,1,2,…),出现暗纹的条件为光程差等于光在介质中波长的整数倍,膜厚应为[SX(]1[]2[SX)]介质中波长的整数倍,即d=[SX(]kλ[]2[SX)],(其中k=1,2,…). 在实际中人们经常关心的只是条纹的相对变动,只关心相邻两条纹处膜厚的差值,即相邻明条纹上的光程差等于一个波长,因此相邻条纹对应的厚度差为介质中波长的一半,很少需要知道膜的厚度具体值.因此在中学物理教学中可回避讨论膜的厚度,只需指出:出现亮条纹是 两条反射光线干涉加强,暗条纹是两条反射光线干涉减弱,两相邻亮(暗)纹处肥皂膜的厚度差为[SX(]1[]2[SX)]介质中波长. 2 不要考虑半波损失的两种情况

薄膜干涉的应用

万方数据

万方数据

万方数据

薄膜干涉的应用 作者:陈明伟, Chen Mingwei 作者单位:山东省无棣县第一高级中学,山东省,无棣县,251900 刊名: 物理教学探讨 英文刊名:JOURNAL OF PHYSICS TEACHING 年,卷(期):2010,28(7) 本文读者也读过(10条) 1.赵丽娟.凌洁华.ZHAO Li-juan.LING Jie-hua薄膜干涉滤光片单色性的研究与应用[期刊论文]-光学仪器2007,29(4) 2.刘海增.靳晋中牛顿环现象及其应用[期刊论文]-郑州轻工业学院学报(自然科学版)2003,18(3) 3.陈明伟.Chen Mingwei薄膜干涉的应用[期刊论文]-物理教学探讨2010,28(3) 4.王憨鹰.余建立.王冬玲.WANG Han-ying.YU Jian-li.WANG Dong-ling关于薄膜干涉问题中产生附加位相差π的条件[期刊论文]-宜春学院学报2007,29(4) 5.祁胜文.张春平.张连顺.王新宇利用楔形薄膜干涉测定液体的折射率[期刊论文]-光电子·激光2002,13(1) 6.周香.李随源生活中的薄膜干涉现象[期刊论文]-技术物理教学2006,14(3) 7.赵水标薄膜干涉的教学探索[期刊论文]-宁波职业技术学院学报2003,2(1) 8.崔运国大学物理教学中的薄膜干涉问题研究[期刊论文]-中国科教创新导刊2010(32) 9.王述红效果显著的薄膜干涉现象[期刊论文]-中国教育技术装备2010(31) 10.郭小花薄膜干涉在检查光学元件表面时应用的分析与探讨[期刊论文]-科技资讯2006(25) 本文链接:https://www.360docs.net/doc/a97893459.html,/Periodical_wljxtt201007024.aspx

光源对干涉的影响及干涉的应用

光源对干涉的影响及干涉的实际应用 【摘要】利用光的波动特性的进行的干涉和衍射现象已用于科学研究和生产实践的各个领域,提高光波的相干性对充分利用干涉和衍射现象具有重要意义。光的干涉的应用广泛且极具价值。 【关键词】干涉条纹;光程差;相干时间;相干长度;应用; The influence of the light source of interference and interference in the practical application Abstract:To make use of light wave characteristics of interference and diffraction phenomenon has been used in the scientific research and production practice each domain, improve the coherence of the waves of light to make full use of interference and diffraction phenomenon has important significance. Light interference and extensive application of extremely value. Key words:interference fringe;Path length difference;coherence time;coherence length;apply; 第一章光源对干涉的影响 1.1单色光源对干涉条纹清晰度的影响 一般使用的单色光源其实并不是单一频率的理想光源,它的光谱线总 是有一定的宽度的,如图1所示,由于在这一波长分布范围内的每一波长的光均会形成各自的一组干涉条纹,而且各组干涉条纹除零级条纹完全重合外,其他各级条纹互相间均有一定的位移。这样各组条纹的非相干叠加的结果就会使条纹的可见度下降。 图1非理想单色光源的波长分布 若理想的单色光源照射双狭缝,产生等间距的平行直条纹,其间距为

光干涉应用的新前景

光干涉应用的新前景 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。 光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。 一.全息照相 但是,光是一种波,从被摄物体上各点反射出来的光不仅强度(它正比于光波振幅的平方)不同,而且位相也不同。全息照相就是一种既记录反射光的强度,又记录反射光的位相的照相术。这种照相术记录的是光波的振幅和位相的全部信息,所以称为全息照相。 全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。 全息照相较之普通照相有许多优点。第一,它再现出来的象是跟原来物体一模一样的逼真的立体像,跟观察实物完全一样;第二,把全息照片分成若干小块,每一小块都可以完整地现出原来物体的像,所以全息照片即使有缺损,也不会使像失真;第三,在同一张感光片上可以重叠记录许多像,这些像能够互不干扰地单独显示出来。 全息照相技术有重要的实际应用:全息照相在一张感光片上可以重叠记录许多像,这为信息的大容量高度储存提供了可能,例如用全息照相方法可以把一本几百页的书的内容存储在只有指甲大小的

光学薄膜技术及其应用

光学薄膜技术及其应用 张三1409074201 摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。 关键词:光学薄膜、薄膜干涉、应用、薄膜制备 引言: 光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。 光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。 本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。 正文: 1.光学薄膜的原理 光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。 2.光学薄膜的性质及功能 光学薄膜最基本的功能是反射、减反射和光谱调控。依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。 不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。 3.传统光学薄膜和新型光学薄膜 3.1传统光学薄膜 传统的光学薄膜是以光的干涉为基础。光波是一种电磁波,根据其波长的不同可分成红外线、可见光和紫外线等,当光波投射到物体上时,有一部分在它表面上被反射,其余部分经折射进入到该物体中,其中有一部分被吸收变为热能,剩的部分透射。不同的物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 传统光学薄膜就是利用材料的这种特性,对光线产生特异性行为。传统光学薄膜有反射膜、增透膜、滤光膜、纳米光学薄膜、偏振膜、分光膜、和位相膜等。 3.2新型光学薄膜 现代科学技术特别是激光技术和信息光学的发展,光学薄膜不仅用于纯光学器件,在光电器件、光通信器件上也得到广泛的应用。近代信息光学、光电子技术及光子技术的发展,对光学薄膜产品的长寿命、高可靠性及高强度的要求越来越高,从而发展了一系列新型光学薄膜及其制备技术,并为解决光学薄膜产业化面临的问题提供了全面的解决方案,包括高强度激光器、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜等。

高中物理光的干涉和薄膜干涉人教版第三册

光的干涉、薄膜干涉 教学目的 1.知识目标: (1)认识光的干涉现象及产生光干涉的条件. (2)理解光的干涉条纹形成原因,认识干涉条纹的特征. (3)了解双缝干涉条纹的特点. (4)知道薄膜干涉是如何获得相干光源的,了解薄膜干涉产生的原因,知道薄膜干涉在技术上的应用. 2.能力目标: 通过观察、实验,培养学生对物理现象的观察、表达、分析及概括能力. 3.情感目标: 通过介绍光的波动性的发现过程,渗透科学家认识事物的科学态度和辩证唯物主义观点. 教具 透明发波水槽,投影仪,光的干涉演示仪,激光干涉演示仪,灯泡,多媒体,电脑动画课件,酒精灯,肥皂溶液,铁丝圈,食盐,火柴,空气尖劈,牛顿圈,照相机镜头. 教学过程 引入新课 【演示】通过投影仪演示水波的干涉现象,提问: 1.这是什么现象? 2.干涉图样中的“明”“暗”条纹是如何形成的? 3.是否任何两列波在传播空间相遇都会产生这样的现象? 引导学生在复习旧知识的基础上解释波的干涉现象是两列波在传播中相遇叠加而形成的,是波的特性,产生稳定干涉现象的条件是有相干波源——频率相等且振

动情况相同的两列波,干涉图样中的“明”“暗”条纹就是相干波源叠加形成的振动“加强区”和振动“减弱区”. 提问: 1.光有波动性吗?能否产生干涉现象? 2.怎样得到光的干涉图样? 【板书】第一节光的干涉 进行新课 引导学生思考:光若具有波动性,应会产生光的干涉现象,那么要得到稳定的干涉图样,必须具备什么前提条件呢? 由前面复习可知,必须要有相干光源及频率相同、振动情况相同的两列光波.如何得到相干光波呢?可由学生先讨论. 【演示】将两个通有同频率交流电的单丝灯泡作为两个光源,放在光屏前面,如图21-1所示,移动屏与灯泡之间的距离. 现象:屏幕上看不到明暗相间的现象. 【演示】把两支同样的蜡烛点燃作为两个相同光源也看不到光的干涉现象 提问:为什么不能看到干涉图样?是光没有波动性还是没有满足相干光源的条件? 引导学生讨论后得到:两个独立热光源的光波相遇得不到干涉现象,是由于光无波动性,还是实验设计有错误,没有满足相干条件?历史上很长时间内人们一直认为光不是波,所以没有波动性,也不会产生干涉现象.直到19世纪英国物理学家托马斯·杨改进实验设计,在历史上第一次得到了相干光源. 【板书】一、双缝干涉 介绍实验装置——杨氏双缝干涉仪. 说明双缝距离很近,约为0.1mm,强调双缝S1、S2与单缝S的距离相等,所以两单缝S1、S2处光的振动不仅频率相同,而且总是同相的.如图21-2.【演示】先用加有红色滤光片的双缝演示仪演示单色红光的干涉条纹.再用激

薄膜干涉原理

光学薄膜及其应用 目录 一、引言 二、什么是光学薄 膜? 三、光学薄膜干涉 原理 四、光学薄膜的应 用 五、薄膜的制备 六、应用于望远镜 的光学薄膜分 析第三版光学薄膜干涉原理 光是一种电磁波。可以设想光源中的分子或原子被某种原因激励而振动,这种振动导致分子或原子中的电磁场发生电磁振动。可以证明,电场强度与磁场强度两者有单一的对应关系,同时在大多光学现象中电场强度起主导作用,所以我们通常将电场振动称为光振动,这种振动沿空间方向传播出去就形成了电磁波。 电磁波的波长λ、频率f、传播速度v三者之间的关系为: v=λ?f 各种频率的电磁波在真空中的速度都是一样的,即3.0E+8m/s,常用C 表示。但是在不同介质中,传播速率是不一样的。假设某种频率的电磁波在某一介质中的传播速度为v,则C与v的比值称为这种介质对这种频率电磁波的折射率。频率不同的电磁波,它们的波长也不同。波长在 400~760nm这样一段电磁波能引起人们的视觉,称为可见光。普通光源如太阳、白炽灯等内部大量振动中的分子或原子彼此独立,各自有自己的振动方向、振幅及发光的起始时间。每个原子每一次振动所发出的光波只有短短的一列,持续时间约为1.0E-8秒。我们通常观察到的光都是光源内大量分子或原子振动辐射出来的结果,而观察不到其作为一种波动在传播过程中所能表现出来的特征———干涉、衍射和偏振等现象。这是因为实现光的干涉是需要条件的,即只有频率相同、相位差恒定、振动方向一致的两列光波才是相干光波,这样的两列波辐射到同一点上,彼此叠加,产生稳定的干涉抵消(产生暗影)或者干涉加强(产生比两束光能简单相加更强的光斑)图像,才是我们观察到的光的干涉现象。

《薄膜干涉》进阶练习(二)

《薄膜干涉》进阶练习 一、选择题 1.用如图所示的实验装置观察光的薄膜干涉现象.点燃酒精灯并在灯芯上洒些盐,竖立着一层肥皂液薄膜的金属丝圈.下面说法正确的是() A.火焰的像在肥皂液薄膜上 B.若要观察到图中的干涉图样,人应位于金属丝圈的前面与酒精灯同侧 C.观察的干涉图样的颜色应是白色的 D.由于重力作用,使肥皂液薄膜上薄下厚,相当于三棱镜,所以这一现象实际上是光的色散 2.如图所示,用干涉的办法比较放置在水平面上的加工工件和标准件的高度(工件和标准件上表面均平整,都能反射光线).在两者上方盖上平板玻璃,玻璃离开地面一定距离.则当光垂直入射后,从上向下看,下列说法正确的是() A.若工件高度略小于标准件高度,可看到干涉条纹 B.若工件高度略大于标准件高度,可看到干涉条纹 C.若工件高度等于标准件高度,可看到干涉条纹 D.若出现了干涉条纹,则整块平板玻璃区域都有条纹分布

3.凸透镜的弯曲表面是个球面,把一个凸透镜压在一块平面玻璃上,让单色光从上方射入,如图所示,从上往下看凸透镜,结果观察到同心的内疏外密的圆环状干涉条纹,称为牛顿环.关于牛顿环,以下说法正确的是() A.干涉条纹是凸透镜下表面和平板玻璃上表面的两列反射光叠加而成的 B.干涉条纹不等间距是因为空气膜厚度不是均匀变化的 C.若仅增大入射光的波长,则圆环状干涉条纹的半径变大 D.若仅增大凸透镜的半径,则圆环状干涉条纹变的密集 二、非选择题 4.如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部分.则图甲为______产生的干涉条纹(选填“黄光”或“蓝光”).若将两种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色光发生了全反射,则图乙对应的色光______(选填“一定”、“可能”或“不可能”)发生全反射. 5.(单选)图示中用刀片在涂有墨汁的玻璃片上划出有很小间隙的双缝. (1)双缝的作用是当激光照射它时 (A)在双缝处形成明暗相间等间距的条纹 (B)形成相干光并在光屏上出现中间宽两边窄的条纹 (C)形成两束增强的光并进行叠加形成明暗相间的条纹

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

薄膜物理学实验报告薄膜干涉实验报告

薄膜物理学实验报告薄膜干涉实验报告 薄膜物理学实验报告| | 薄膜干涉实验报告 实验1、旋涂法制备薄膜1、实验原理旋涂法利用仪器高速旋转时产生的离心力使基片上的胶液由中心向4 周均匀分散而构成致密薄膜。实验用到的原料需要提早制备且1 般为溶液,实验上常见的是使用溶胶-凝胶法作为薄膜材料的之辈手段,本次实验是使用现成的或制备较为简单的溶液。 2、材料准备(1)实验原料:面粉、鸡蛋清、3 级水(2)溶液制备称取适当的面粉放置烧杯中,加入50mL3 级水,搅拌均匀,得到面粉胶体溶液;在烧杯中加入适当的鸡蛋清,加入适当3 级水,搅拌均匀,得到鸡蛋清胶体溶液。 3、实验进程(1)用玻璃棒沾取胶体溶液涂覆于载玻片上;(2)开启真空泵,将载玻片牢牢吸附于匀胶机的样品台上,盖上保护盖;(3)根据所用溶液的黏稠度、附着性选择转速和旋转时间,启动匀胶机;(4)关闭真空泵,用镊子将载玻片取出,避免到显微镜下视察成膜情况。 4、注意事项在匀胶机运行进程中不宜开启保护盖,溶液应当屡次涂覆以保证成膜的质量。 实验2、提拉法制备薄膜1、实验原理浸渍提拉法是将全部洗净的基板浸入预先制备好的溶胶当中,然后以精准控制的均匀速度将基板安稳地从溶胶中提拉出来,在粘度和重力作用下基板表面构成1 层均匀的液膜,紧接着溶剂迅速蒸发,因而附着在基板表面的溶胶迅

速凝胶化构成1 层凝胶膜。 2、材料准备(1)实验原料:面粉、鸡蛋清、3 级水(2)溶液制备称取适当的面粉放置烧杯中,加入50mL3 级水,搅拌均匀,得到面粉胶体溶液;在烧杯中加入适当的鸡蛋清,加入适当3 级水,搅拌 均匀,得到鸡蛋清胶体溶液。 3、实验进程将配置好的面粉清导入小烧杯;打开镀膜提拉电机源,取1 块干净的载玻片用夹具夹住其1/3 处;设置提拉机参数,提拉速度设置为20mm/min,提拉高度60mm,浸渍速度为20mm/min,浸渍时间30s 镀膜次数设置为4 次,镀膜间隔30s,点击“开始”按钮,开始镀膜;镀膜完成后取下载玻片,放到显微镜下视察。将面粉清换成液体胶,重复上述进程,取得液体胶薄膜。 最后将旋涂法及提拉法取得的薄膜基片放到烘箱60℃烘干1 个小时取出,得到薄膜样品。 实验3、层层自组装法制备薄膜1、实验原理层层自组装是利用逐层交替沉积的方法,借助各层份子间的弱相互作用(如静电引力、氢键、配位键等),使层与层自发地缔和构成结构完全、性能稳定、具有某种特定功能的份子聚集体或超份子结构的进程。 2、材料准备(1)实验原料:VB2、胶水、3 级水(2)实验仪器:傅里叶红外光谱仪、载玻片、烘干机、烧杯、玻璃棒(3)VB2 加入适当3 级水调制成VB2 溶液;胶水加入适当3 级水制成胶体溶液。

牛顿环光的等厚干涉的应用

实验十九光的等厚干涉的应用 【预习思考题】 1.光的干涉条件是什么 2.附加光程差产生的条件是什吗 3.什么是等候干涉 4.说出你所知道的测量微小长度的方法。 光的干涉是光的波动性的一种表现。若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。 牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉。 【实验目的】 1.观察和研究等厚干涉现象和特点。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.熟练使用读数显微镜。 4.学习用逐差法处理实验数据的方法。 【实验仪器】 测量显微镜,钠光光源,牛顿环,劈尖。

【实验原理】 1. 牛顿环 “牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度。但由于他主张光的微粒说(光 的干涉是光的波动性的一种表现)而未能对它做出正确的解释。直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。 图1 牛顿环干涉光路图 1.读数鼓轮 2.物镜调节螺钉 3.

薄膜干涉与双缝干涉

薄膜干涉与双缝干涉 图样 例题 现有毛玻璃屏A、双缝B、白光光源C、单缝D和透红光的滤光片E等光学元件,要把它们放在图1所示的光具座上组装成双缝干涉装置,用以测量红光的波长。 (1)将白光光源C放在光具座最左端,依次放置其他光学元件,由左至右,表示各光

学元件的字母排列顺序应为C、_________、A。 (2)本实验的步骤有: ①取下遮光筒左侧的元件,调节光源高度,使光束能直接沿遮光筒轴线把屏照亮; ②按合理顺序在光具座上放置各光学元件,并使各元件的中心位于遮光筒的轴线上; ③用米尺测量双缝到屏的距离; ④用测量头(其读数方法同螺旋测微器)测量数条亮纹间的距离。 在操作步骤②时还应注意___________________和___________________。 (3)将测量头的分划板中心刻线与某条亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图2所示。然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,记下此时图3中手轮上的示数_________mm,求得相邻亮纹的间距Δx为________mm。 (4)已知双缝间距d为 2.0×10-4m,测得双缝到屏的距离l为0.700m,由计算式λ=________,求得所测红光波长为__________nm。 解析:动手完成实验时,有许多细节要注意:许多实验室的单缝片、双缝片、遮光筒是一套组合,其单缝与双缝的间距是固定的,但是要是按照图中所表述的情况来看,这些间距是可调的,所以,单缝和双缝间距要调整为5~10 cm,并且要注意单缝与双缝平行放置。螺旋测微器的读数方法掌握,结合波长与条纹间距关系公式,可以求出所测得单色光的波长。 (3)螺旋测微器固定刻度读数为13.5 mm,可动刻度读数为37.0×0.01 mm,两者相加 为13.870 mm。图2的读数为:2.320mm,所以△x=13.870 2.320 5 - =2.310mm。 (4)根据△x=L d λ,知λ= d L △x,代入数据,λ=6.6×102 nm。 答案:(1)E D B (2)单缝和双缝间距5 cm~10c m,使单缝与双缝相互平行。 (3)13.870 2.310 (4)d x L ?,6.6×102

干涉的分类和薄膜干涉的分类

实验十五用牛顿环测量球面的曲率半径 一、干涉的分类和薄膜干涉的分类 干涉:是指满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布. 干涉的种类: 1、相长干涉(constructive interference): 两波重叠时,合成波的振幅大于成分波的振幅者,称为相长干涉或建设性干涉。 若两波刚好同相干涉,会产生最大的振幅,称为完全相长干涉或完全建设性干涉(fully constructive interference)。 2、相消干涉(destructive interference): 两波重叠时,合成波的振幅小于成分波的振幅者,称为相消干涉或破坏性干涉。 若两波刚好反相干涉,会产生最小的振幅,称为完全相消干涉或完全破坏性干涉(fully destructive interference)。 薄膜干涉的分类: 等倾干涉和等厚干涉是薄膜干涉的两种典型形式 等倾干涉:由薄膜上、下表面反射(或折射)光束相遇而产生的干涉.薄膜通常由厚度很小的透明介质形成.如肥皂泡膜、水面上的油膜、两片玻璃间所夹的空气膜、照相机镜头上所镀的介质膜等.比较简单的薄膜干涉有两种,一种称做等厚干涉,这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉.另一种称做等倾干涉.当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经上、下表面反射(或折射)后相遇形成同一条干涉条纹,不同的干涉明纹或暗纹对应不同的倾角,这种干涉称做等倾干涉.等倾干涉一般采用扩展光源,并通过透镜观察. 等厚干涉:把两块干净的玻璃片紧紧压叠,两玻璃片间的空气层就形成空气薄膜.用水银灯或纳灯作为光源,就可以观察到薄膜干涉现象.如果玻璃内表面不很平,所夹空气层厚度不均匀,观察到的将是一些不规则的等厚干涉条纹,通常是一些不规则的同心环.若用很平的玻璃片(如显微镜的承物片)则会出现一些平行条纹.手指用力压紧玻璃片时,空气膜厚度变化,条纹也随之改变.根据这个道理,可以测定平面的平直度.测定的精度很高,甚至几分之一波长那么小的隆起或下陷都可以从条纹的弯曲上检测出来.若使两个很平的玻璃板间有一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可用来测很小的长度. 二、等厚干涉的特点 明暗相间的同心圆环;级次中心低、边缘高;中心疏,边缘密的同心圆环. 三、牛顿环的历史

薄膜干涉实验的计算机模拟分析

目录 1 绪论 (1) 2 薄膜干涉的相关介绍 (2) 2.1薄膜干涉的理论基础 (2) 2.1.1 薄膜干涉公式推导 (2) 2.1.2 薄膜干涉的附加光程差和条纹特点 (4) 2.1.3 薄膜干涉中的半波损失与薄膜厚度 (6) 2.2 薄膜干涉实验种类 (8) 2.2.1 劈尖干涉 (8) 2.2.2 牛顿环干涉 (9) 2.2.3 迈克尔逊干涉 (9) 3 薄膜干涉实验的计算机模拟与分析 (10) 3.1 劈尖干涉实验的模拟与分析 (11) 3.2 牛顿环实验的模拟与分析 (14) 3.3 迈克尔逊干涉实验的模拟与分析 (16) 3.4 薄膜干涉实验仿真结果对比分析 (18) 结论 (20) 参考文献 (21) 致谢 (22) 附录Ⅰ、Ⅱ、Ⅲ (23)

1 绪论 近几十年来,现代光学的最重要的进展之一就是光学信息处理与数字光计算的飞速发展。光学信息处理是以傅里叶分析方法为核心,研究光学成像和光学变换的理论与技术。它以光子传递信息,利用光学或者光电子器件进行操作运算,用光的折射、干涉和衍射等特性来实现对输入信息的各种变换与处理。光学信息处理的历史可以追溯到1873年阿贝提出的二次成像理论。傅里叶光学的核心是基于标量衍射理论的菲涅尔衍射和夫琅和费衍射、透镜成像性质以及利用傅里叶变换分析光学成像系统等[1]。这些处理过程通常都需要在光学暗室中进行,而且很容易受到外界环境的影响。 在计算机高速发展的今天,计算机仿真作为虚拟实验手段已经得到了长足的发展。其具有良好的可控性(参数可以根据需要调整)、无破坏性(不会导致器件的损坏)、可重复性(受一些随机因素影响较小)、易观察性(不至于稍纵即逝)和经济性(不需要贵重仪器)。所以利用仿真结果指导实验,可以减少或者避免仪器不必要的损伤。国外的光学信息处理仿真是在模拟设计和优化光学系统的基础上发展起来的。最有代表性的是美国劳伦斯利弗莫尔实验室的Prop92和法国的光学传输软件Miro。俄罗斯也有一套较成熟的商业光传输软件菲涅尔。我国在这方面起步较晚,SG99刚在神光一Ⅲ上运行的可行性论证[2]。 事实上,利用MATLAB在科学计算上的优点借助计算机对真实实验的模仿,使用者可以通过计算机提示的信息直接参与模拟操作。可以与真实仪器相比较,而且比真实实验直观准确,减少仪器特别是贵重仪器的损伤率。在进行仪器设计之前,还能够对其性能作出评估以及可行性论证,节约时间和经费。长期以来,光学课程的抽象性较强,理论教学对实验的依赖性较大,给学生学习该门课程带来了诸多困难[3]。将MA TLAB这一工具引入到光学实验中,利用计算机对一些光学实验进行模拟,对计算结果可视化,化抽象思维为形象思维,从而更好地洞察含义、理解概念、发现规律。还可以在分析中改变参数值,便于理论研究,也给初学者带来方便。与传统的实验方式相辅相成,实现更好的教学效果[4]。

第五节 薄膜干涉

§10.5 薄膜干涉 薄膜干涉:如阳光照射下的肥皂膜,水面上的油膜,蜻蜓、蝉等昆虫的翅膀上呈现的彩色花纹,车床车削下来的钢铁碎屑上呈现的蓝色光谱等。 薄膜干涉的特点:厚度不均匀的薄膜表面上的等厚干涉和厚度均匀薄膜在无穷远出形成的等倾干涉。 一、薄膜干涉 当一束光射到两种介质的界面时,将被分成两束,一束为反射光,另一束为折射光,从能量守恒的角度来看,反射光和折射光的振幅都要小于入射光的振幅,这相当于振幅被“分割”了。 两光线 a , b 在焦平面上P 点相交时的光程差 / ()2cos m AB BC AD ne i ?=+-= Δ取决于n 1, n 2, n 3的性质。 1. 劈形膜 光程差: 上表面反射的反射光1光密到光疏,有半波损失;下表面反射的反射光2光疏到光密,没有半波损失(若是介质膜放在空气中,则上表面没有半波损失,下表面有半波损失)。 光程差 22 Δne λ =+ 1 n n <

或者 讨论: 1 在劈形膜棱边处e=0, 因而形成暗纹。 2 相邻两条明纹(或暗纹)在劈形膜表面的距离。 3、干涉条纹的移动 每一条纹对应劈尖内的一个厚度,当此厚度位置改变时,对应的条纹随之移动 应用:1)用劈形膜干涉测量薄片厚度 干涉条件为 (21),0,1,2 k k λ += , 1,2,k k λ= 明纹 暗纹 22 Δne λ =+ = 2λ ?= 12(1)2 k ne k λλ ++ =+22 k ne k λ λ + =1Δ2k k e e e n λ +=- = 2sin L n λ θ =2L n λ θ = tan h D θθ≈= 2D h nL λ = 2Δne == (21) ,0,1,2 k k λ += , 1,2,k k λ= 暗纹 ne = (21) ,0,1,4 k k λ += 2,1,2,4 k k λ = 暗纹 明纹 明纹

偏振光的干涉及其应用

§4 偏振光的干涉及其应用 习题4.1:平行于光轴切割一块方解石晶片,放置在主截面成350角的一对尼科耳棱镜之间,晶片的光轴平分此角,求: (1)从方解石晶片射出的O 光和E 光的振幅和光强。 (2)由第二个尼科耳棱镜射出的O 光和E 光的振幅和光强。 设入射自然光的光强为I 0=A 2。 习题4. 1解答: 如图所示: 已知:o 5.17=α (1)从方解石晶片射出的O 光和E 光的振幅和光强。 设由第一个尼科耳棱镜P1射出线偏振光的光强为I 1: 22 1021211A I A I === 得 A A 21 1= 从方解石晶片射出的O 光和E 光的振幅为:

o E o O A A A A A A 5.17cos 2 1cos 5.17sin 21sin 11====αα 从方解石晶片射出的O 光和E 光的强度为: o E E o O O I A I I A I 5.17cos 215.17sin 2 1202202 ==== (2)由第二个尼科耳棱镜射出的O 光和E 光的振幅和光强。 由第二个尼科耳棱镜射出的O 光和E 光的振幅为: o E Ep o O Op A A A A A A 5.17cos 2 1cos 5.17sin 2 1sin 2222====αα 光强为: o Ep o OP I A I I 5.17cos 2 15.17sin 2 1402402== 习题4.2:光强为I 0单色平行光通过正交尼科耳棱镜,中间插入四分之一波片,其主截面与第一个尼科耳轴棱镜的主截面夹角为600,求出射光强度。

习题4. 2解答: 如图: 已知:o o 30,60==βα 设入射自然光的光强为I 0=A 2 由第一个尼科耳棱镜P1射出线偏振光的光强为I 1: 22 1021211A I A I === 得 A A 21 1= 从方解石晶片射出的O 光和E 光的振幅为: o E o O A A A A A A 60cos 2 1cos 60sin 21sin 11====αα 由第二个尼科耳棱镜射出的O 光和E 光的振幅为:

相关文档
最新文档