导数与函数的综合问题

导数与函数的综合问题
导数与函数的综合问题

导数与函数的综合问题

题型一 用导数解决与不等式有关的问题 命题点1 解不等式

例1 设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,有xf ′(x )-f (x )

x 2<0恒成立,则

不等式x 2f (x )>0的解集是( ) A .(-2,0)∪(2,+∞) B .(-2,0)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-2)∪(0,2)

答案 D

解析 x >0时????f (x )x ′<0,∴φ(x )=f (x )

x 为减函数,

又φ(2)=0,∴当且仅当00, 此时x 2f (x )>0.

又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2). 命题点2 证明不等式 例2 证明:当x ∈[0,1]时,2

2

x ≤sin x ≤x . 证明 记F (x )=sin x -22

x , 则F ′(x )=cos x -

2

2

. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π

4]上是增函数;

当x ∈(π4,1)时,F ′(x )<0,F (x )在[π

4,1]上是减函数.

又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0, 即sin x ≥

2

2

x . 记H (x )=sin x -x ,

则当x ∈(0,1)时,H ′(x )=cos x -1<0, 所以H (x )在[0,1]上是减函数, 则H (x )≤H (0)=0,即sin x ≤x . 综上,

2

2

x ≤sin x ≤x ,x ∈[0,1].

命题点3 不等式恒成立问题

例3 已知定义在正实数集上的函数f (x )=1

2x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y

=f (x ),y =g (x )有公共点,且在该点处的切线相同. (1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).

(1)解 设两曲线的公共点为(x 0,y 0), f ′(x )=x +2a ,g ′(x )=3a 2

x

由题意知f (x 0)=g (x 0),f ′(x 0)=g ′(x 0),

即???

12

x 2

0+2ax 0=3a 2ln x 0+b ,x 0

+2a =3a

2

x

.

由x 0+2a =3a 2

x 0,得x 0=a 或x 0=-3a (舍去).

即有b =12a 2+2a 2-3a 2ln a =5

2a 2-3a 2ln a .

令h (t )=5

2t 2-3t 2ln t (t >0),则h ′(t )=2t (1-3ln t ).

于是当t (1-3ln t )>0,即0

3时,h ′(t )>0;

当t (1-3ln t )<0,即t >e 1

3

时,h ′(t )<0.

故h (t )在(0,e 13)上为增函数,在(e 1

3,+∞)上为减函数,

于是h (t )在(0,+∞)上的最大值为h (e 13)=32e 2

3,

即b 的最大值为3

2

2

3e .

(2)证明 设F (x )=f (x )-g (x )=1

2x 2+2ax -3a 2ln x -b (x >0),

则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )

x

(x >0).

故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).

思维升华 (1)利用导数解不等式,一般可构造函数,利用已知条件确定函数单调性解不等式;

(2)证明不等式f (x )

(3)利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.

已知函数f (x )=ln x -a

x

.若f (x )

解 ∵f (x )

x

又x >0,∴a >x ln x -x 3,

令g (x )=x ln x -x 3,则h (x )=g ′(x )=1+ln x -3x 2, h ′(x )=1

x -6x =1-6x 2x ,

∵当x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(1,+∞)上是减函数, ∴h (x )

∴当a ≥-1时,f (x )

例4 (2014·课标全国Ⅱ)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;

(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2

a =-2,所以a =1.

(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.

当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增, g (-1)=k -1<0,g (0)=4,

所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).

h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)单调递减,在(2,+∞)单调递增, 所以g (x )>h (x )≥h (2)=0.

所以g (x )=0在(0,+∞)没有实根. 综上,g (x )=0在R 有唯一实根,

即曲线y =f (x )与直线y =kx -2只有一个交点.

思维升华 研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.

已知函数f (x )=x 2+x sin x +cos x 的图象与直线y =b 有两个不同交点,求b 的

取值范围.

解 f ′(x )=x (2+cos x ), 令f ′(x )=0,得x =0.

∴当x >0时,f ′(x )>0,f (x )在(0,+∞)上递增. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上递减. ∴f (x )的最小值为f (0)=1.

∵函数f (x )在区间(-∞,0)和(0,+∞)上均单调,

∴当b >1时,曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,b 的取值范围是(1,+∞). 题型三 利用导数解决生活中的优化问题

例5 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =

a

x -3

+10(x -6)2,其中3

(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.

解 (1)因为x =5时,y =11,所以a

2+10=11,a =2.

(2)由(1)可知,该商品每日的销售量为 y =2x -3

+10(x -6)2. 所以商场每日销售该商品所获得的利润为 f (x )=(x -3)[2

x -3+10(x -6)2]

=2+10(x -3)(x -6)2,3

从而,f ′(x )=10[(x -6)2

+2(x -3)(x -6)] =30(x -4)(x -6).

于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:

由上表可得,x =所以,当x =4时,函数f (x )取得最大值,且最大值等于42.

答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.

思维升华 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.

某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-39

2

x 2-40x (x >0),为使

耗电量最小,则速度应定为________. 答案 40

解析 由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于040时,y ′>0.

所以当x =40时,y 有最小值.

一审条件挖隐含

典例 (12分)设f (x )=a

x

+x ln x ,g (x )=x 3-x 2-3.

(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈[1

2

,2],都有f (s )≥g (t )成立,求实数a 的取值范围.

(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M (正确理解“存在”的含义) [g (x 1)-g (x 2)]max ≥M

挖掘[g (x 1)-g (x 2)]max 的隐含实质

g (x )max -g (x )min ≥M

求得M 的最大整数值

(2)对任意s ,t ∈[1

2,2]都有f (s )≥g (t )

(理解“任意”的含义) f (x )min ≥g (x )max 求得g (x )max =1 a

x

+x ln x ≥1恒成立 分离参数a a ≥x -x 2ln x 恒成立

求h (x )=x -x 2ln x 的最大值 a ≥h (x )max =h (1)=1 a ≥1 规范解答

解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .[2分] 由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x (x -2

3).

令g ′(x )>0得x <0,或x >2

3

又x ∈[0,2],所以g (x )在区间[0,23]上单调递减,在区间[23,2]上单调递增,所以g (x )min =g (2

3)

=-85

27,

g (x )max =g (2)=1.

故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =112

27

≥M , 则满足条件的最大整数M =4.[5分]

(2)对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,等价于在区间[1

2,2]上,函数f (x )min ≥g (x )max .[7

分]

由(1)可知在区间[1

2

,2]上,g (x )的最大值为g (2)=1.

在区间[12,2]上,f (x )=a

x

+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.

设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在区间[1

2

,2]上是减函数,又h ′(1)

=0,

所以当1

2

0.[10分]

即函数h (x )=x -x 2ln x 在区间(1

2,1)上单调递增,在区间(1,2)上单调递减,所以h (x )max =h (1)

=1,

所以a ≥1,即实数a 的取值范围是[1,+∞).[12分]

温馨提醒 (1)“恒成立”、“存在性”问题一定要正确理解问题实质,深刻挖掘条件内含,进行等价转化.

(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离参数的方法,转化为求函数的值域问题.

[方法与技巧]

1.用导数方法证明不等式f (x )>g (x )时,找到函数h (x )=f (x )-g (x )的零点是解题的突破口. 2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.

3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较. [失误与防范]

1.利用导数解决恒成立问题时,若分离参数后得到“a

2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.

A 组 专项基础训练 (时间:35分钟)

1.已知函数f (x )=?

????

-x 2+2x (x ≤0),ln (x +1)(x >0),若|f (x )|≥ax ,则a 的取值范围是( )

A .(-∞,0]

B .(-∞,1]

C .[-2,1]

D .[-2,0]

答案 D 解析 |f (x )|≥ax ?

?

????

-(-x 2

+2x )≥ax (x ≤0), (1)ln (x +1)≥ax (x >0), (2)成立. ①由(1)得x (x -2)≥ax 在区间(-∞,0]上恒成立. 当x =0时,a ∈R ;

当x <0时,有x -2≤a 恒成立, 所以a ≥-2.故a ≥-2.

②由(2)得ln(x +1)-ax ≥0在区间(0,+∞)上恒成立,设h (x )=ln(x +1)-ax (x >0),则h ′(x )=

1

x +1

-a (x >0),可知h ′(x )为减函数. 当a ≤0时,h ′(x )>0,故h (x )为增函数, 所以h (x )>h (0)=0恒成立; 当a ≥1时,因为1

x +1∈(0,1),

所以h ′(x )=

1

x +1

-a <0,故h (x )为减函数, 所以h (x )

当00,满足h (x 0)=ln(x 0+1)-ax 0<0成立.如a =1

2时,取x 0=4,则h (x 0)=ln 5-2<0成立,可知0

故a ≤0.

由①②可知a 的取值范围是[-2,0]. 2.若0ln x 2-ln x 1 B .e x 2-e x 1x 1e x 2 D .x 2e x 1

解析 设f (x )=e x

x ,则f ′(x )=x ·e x -e x x 2=e x (x -1)x 2

.

当0f (x 2),即e x 1x 1>e x 2

x 2,

∴x 2e x 1>x 1e x 2.

3.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件

D .4百万件

答案 C

解析 y ′=-3x 2+27=-3(x +3)(x -3), 当00; 当x >3时,y ′<0.

故当x =3时,该商品的年利润最大.

4.若函数f (x )=2x 3-9x 2+12x -a 恰好有两个不同的零点,则a 可能的值为( ) A .4 B .6 C .7 D .8 答案 A

解析 由题意得f ′(x )=6x 2-18x +12=6(x -1)(x -2), 由f ′(x )>0得x <1或x >2,由f ′(x )<0得1

在(1,2)上单调递减,从而可知f (x )的极大值和极小值分别为f (1),f (2),

若欲使函数f (x )恰好有两个不同的零点,则需使f (1)=0或f (2)=0,解得a =5或a =4, 而选项中只给出了4,所以选A.

5.设函数h t (x )=3tx -32

2t ,若有且仅有一个正实数x 0,使得h 7(x 0)≥h t (x 0)对任意的正数t 都成立,则x 0等于( ) A .5 B. 5 C .3 D.7 答案 D

解析 ∵h 7(x 0)≥h t (x 0)对任意的正数t 都成立, ∴h 7(x 0)≥h t (x 0)max ,记g (t )=h t (x 0)=3tx 0-32

2t , 则g ′(t )=3x 0-1

2

3t ,令g ′(t )=0,

得t =x 20,易得h t (x 0)max =g (x 20)=x 3

0,

∴21x 0-147≥x 30,将选项代入检验可知选D.

6.已知二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ),f ′(x )>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 答案 2

解析 ∵f ′(x )=2ax +b ,∴f ′(0)=b >0.

由题意知?

????

Δ=b 2

-4ac ≤0a >0,∴ac ≥b 2

4,∴c >0,

∴f (1)f ′(0)

=a +b +c b ≥b +2ac b ≥2b

b =2,当且仅当a =

c 时“=”成立.

7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,

则不等式(x +2 014)2f (x +2 014)-4f (-2)>0的解集为________. 答案 (-∞,-2 016) 解析 由2f (x )+xf ′(x )>x 2, x <0得2xf (x )+x 2f ′(x )

f (x )]′

令F (x )=x 2f (x )(x <0), 则F ′(x )<0(x <0),

即F (x )在(-∞,0)上是减函数,

因为F (x +2 014)=(x +2 014)2f (x +2 014),F (-2)=4f (-2), 所以不等式(x +2 014)2f (x +2 014)-4f (-2)>0, 即为F (x +2 014)-F (-2)>0,即F (x +2 014)>F (-2), 又因为F (x )在(-∞,0)上是减函数, 所以x +2 014<-2,所以x <-2 016.

8.若对于任意实数x ≥0,函数f (x )=e x +ax 恒大于零,则实数a 的取值范围是________. 答案 (-e ,+∞)

解析 ∵当x ≥0时,f (x )=e x +ax >0恒成立. ∴若x =0,a 为任意实数,f (x )=e x +ax >0恒成立. 若x >0,f (x )=e x +ax >0恒成立, 即当x >0时,a >-e x

x 恒成立.

设Q (x )=-e x

x

.

Q ′(x )=-e x x -e x x 2=(1-x )e x

x 2

.

当x ∈(0,1)时,Q ′(x )>0,则Q (x )在(0,1)上单调递增,

当x ∈(1,+∞)时,Q ′(x )<0,则Q (x )在(1,+∞)上单调递减. ∴当x =1时,Q (x )取得最大值.Q (x )max =Q (1)=-e , ∴要使x ≥0时,f (x )>0恒成立,a 的取值范围为(-e ,+∞). 9.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;

(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R , 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2.

于是当x 变化时,f ′(x ),f (x )的变化情况如下表:

故f (x )单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,

极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a . (2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,

g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.

于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).

而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0. 即e x -x 2+2ax -1>0,

故当a >ln 2-1且x >0时,e x >x 2-2ax +1.

10.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域;

(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.

解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意200πrh +160πr 2=12 000π, 所以h =1

5r (300-4r 2),

从而V (r )=πr 2h =π

5(300r -4r 3).

因为r >0,又由h >0可得r <53, 故函数V (r )的定义域为(0,53). (2)因为V (r )=π

5

(300r -4r 3),

所以V ′(r )=π

5

(300-12r 2).

令V ′(r )=0,解得r =5或-5(因为r =-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.

B 组 专项能力提升 (时间:30分钟)

11.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ).若x =-1为函数g (x )=f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象的是( )

答案 D

解析 设h (x )=f (x )e x ,

则h ′(x )=(2ax +b )e x +(ax 2+bx +c )e x =(ax 2+2ax +bx +b +c )e x . 由x =-1为函数f (x )e x 的一个极值点. ∴c -a =0,∴c =a .∴f (x )=ax 2+bx +a .

若方程ax 2+bx +a =0有两根x 1,x 2,则x 1x 2=a

a

=1,D 中图象一定不满足条件.

12.已知函数f (x )=ax 3-3x +1对x ∈(0,1]总有f (x )≥0成立,则实数a 的取值范围是________. 答案 [4,+∞)

解析 当x ∈(0,1]时不等式ax 3-3x +1≥0可化为a ≥3x -1x 3,设g (x )=3x -1

x 3

,x ∈(0,1], g ′(x )=3x 3

-(3x -1)·3x

2

x 6=-6(x -1

2)

x

4

. g ′(x )与g (x )随x 的变化情况如下表:

因此g (x )则实数a 的取值范围是[4,+∞).

13.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是________. 答案 (-∞,-2)

解析 a =0时,不符合题意, a ≠0时,f ′(x )=3ax 2-6x , 令f ′(x )=0,得x =0或x =2

a

若a >0,则由图象知f (x )有负数零点,不符合题意. 则a <0,由图象f (0)=1>0知, 此时必有0

2a <1, 即0

a 2+1<1,

化简得a 2>4, 又a <0,所以a <-2.

14.设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;

(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0, 所以f ′(x )=a 2

x -2x +a =-(x -a )(2x +a )x .

由于a >0,

所以f (x )的增区间为(0,a ),减区间为(a ,+∞). (2)由题意得f (1)=a -1≥e -1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增, 要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.

只要?

????

f (1)=a -1≥e -1,

f (e )=a 2-e 2+a e ≤e 2

, 解得a =e.

15.设函数f (x )=a ln x +1-a 2x 2

-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.

(1)求b ;

(2)若存在x 0≥1,使得f (x 0)

a -1

,求a 的取值范围.

解 (1)f ′(x )=a

x +(1-a )x -b ,由题设知f ′(1)=0,解得b =1.

(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2

-x ,

f ′(x )=a

x +(1-a )x -1=1-a x ???

?x -a 1-a (x -1).

①若a ≤12,则a

1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增,所以,

存在x 0≥1,使得f (x 0)

a -1,解得-2-1

-1.

②若12

1-a

>1,故当x ∈????1,a 1-a 时,f ′(x )<0;

当x ∈????a 1-a ,+∞时,f ′(x )>0,f (x )在????1,a 1-a 上单调递减,在???

?a 1-a ,+∞上单调递增.

所以,存在x 0≥1,使得f (x 0)

a a -1. 而f ????a 1-a =a ln a 1-a +a 2

2(1-a )+a a -1>a

a -1,所以不合题意.

③若a >1,则f (1)=1-a 2-1=-a -12

.

综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).

精选-高考数学大二轮复习专题二函数与导数2-3二导数的综合应用练习

2.3(二)导数的综合应用 【课时作业】 A 级 1.(2018·昆明市高三摸底调研测试)若函数f (x )=2x -x 2 -1,对于任意的x ∈Z 且x ∈ (-∞,a ),都有f (x )≤0恒成立,则实数a 的取值范围为() A .(-∞,-1] B .(-∞,0] C .(-∞,4] D .(-∞,5] 解析: 对任意的x ∈Z 且x ∈(-∞,a ), 都有f (x )≤0恒成立,可转化为对任意的x ∈Z 且x ∈(-∞,a ),2x ≤x 2 +1恒成立. 令g (x )=2x ,h (x )=x 2 +1, 当x <0时,g (x )h (x ). 综上,实数a 的取值范围为(-∞,5],故选D. 答案: D 2.已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+ x >0,则函数F (x ) =xf (x )+1 x 的零点个数是() A .0 B .1 C .2 D .3 解析: 由F (x )=xf (x )+1 x =0, 得xf (x )=-1 x , 设g (x )=xf (x ), 则g ′(x )=f (x )+xf ′(x ), 因为x ≠0时,有f ′(x )+x >0, 所以x ≠0时, +x >0, 即当x >0时,g ′(x )=f (x )+xf ′(x )>0,此时函数g (x )单调递增,

此时g (x )>g (0)=0, 当x <0时,g ′(x )=f (x )+xf ′(x )<0,此时函数g (x )单调递减,此时g (x )>g (0)=0, 作出函数g (x )和函数y =-1 x 的图象,(直线只代表单调性和取值范围),由图象可知函数 F (x )=xf (x )+1x 的零点个数为1个. 答案: B 3.定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x ),即f ″(x )=[f ′(x )]′. 定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x ) 在区间D 上为凹函数. 已知函数f (x )=x 3 -32 x 2+1在区间D 上为凹函数,则x 的取值范围是________. 解析: ∵f (x )=x 3-32 x 2+1,∴f ′(x )=3x 2 -3x ,∴f ″(x )=6x -3.令f ″(x )>0,即 6x -3>0,解得x >12.∴x 的取值范围是? ?? ??12,+∞. 答案: ? ?? ? ?12,+∞ 4.已知函数f (x )= ex x ,g (x )=-(x -1)2+a 2 ,若当x >0时,存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是________. 解析: 由题意得存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,等价于f (x )min ≤g (x )max . 因为g (x )=-(x -1)2 +a 2 ,x >0, 所以当x =1时,g (x )max =a 2 . 因为f (x )=ex x ,x >0, 所以f ′(x )=ex·x-ex x2 = -x2 . 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )min =f (1)=e.

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

2022年高考数学总复习:导数与函数的综合问题

第 1 页 共 15 页 2022年高考数学总复习:导数与函数的综合问题 命题点1 证明不等式 典例 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )= x -1x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e 2. 命题点2 不等式恒成立或有解问题 典例 已知函数f (x )=1+ln x x . (1)若函数f (x )在区间? ???a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.

2019年最新高考数学二轮复习 题型练8 大题专项(六)函数与导数综合问题 理(考试专用)

题型练8 大题专项(六)函数与导数综合问题1.(2018北京,理18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x. (1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a; (2)若f(x)在x=2处取得极小值,求a的取值范围. 2.已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}= (1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围; (2)①求F(x)的最小值m(a); ②求F(x)在区间[0,6]上的最大值M(a). 3.已知函数f(x)=x3+ax2+b(a,b∈R).

(1)试讨论f(x)的单调性; (2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值. 4.已知a>0,函数f(x)=e ax sin x(x∈[0,+∞)).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明: (1)数列{f(x n)}是等比数列; (2)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立. 5.(2018天津,理20)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间;

(2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明 x1+g(x2)=-; (3)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. 6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=a e(x-1). (1)求b的值; (2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围.

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

导数的综合应用练习题及答案

导数应用练习题答案 1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。 2(1)()23[1,1.5]f x x x =---; 2 1(2)()[2,2]1f x x = -+; (3)()[0,3]f x =; 2 (4)()1 [1,1]x f x e =-- 解:2 (1)()23 [1,1.5]f x x x =--- 该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14 ξ=。 解:2 1(2)()[2,2]1f x x = -+ 该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1 (2)5 f = ,满足罗尔定理,至少有一点(2,2)ξ∈-, 使22 2()0(1)f ξ ξξ-'= =+,解出0ξ=。 解:(3)()[0,3]f x = 该函数在给定闭区间上连续,其导数为() f x '=,在开区间上可导,而且(0)0f =, (3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈, 使()0 f ξ'==,解出2ξ=。 解:2 (4)()e 1 [1,1]x f x =-- 该函数在给定闭区间上连续,其导数为2 ()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2 ()2e 0f ξξξ'==,解出0ξ=。 2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。 3 (1)()[0,](0)f x x a a =>; (2)()ln [1,2] f x x =; 32(3)()52 [1,0] f x x x x =-+-- 解:3 (1)()[0,](0)f x x a a =>

函数与导数的综合应用

函数与导数的综合应用 命题动向:函数与导数的解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合进行深入考查,体现了能力立意的命题原则. 这几年,函数与导数的解答题一直作为“把关题”出现,是每年高考的必考内容,虽然是“把关题”,但是同其他解答题一样,一般都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难.从近几年的高考情况看,命题的方向主要集中在导数在研究函数、方程、不等式等问题中的综合应用. 题型1利用导数研究函数性质综合问题 例1 [2016·山东高考]设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ), 求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 解题视点 (1)求出g (x )的导数,就a 的不同取值,讨论导数的符号;(2)f ′(x )=ln x -2a (x -1),使用数形结合方法确定a 的取值,使得在x <1附近f ′(x )>0,即ln x >2a (x -1),在x >1附近ln x <2a (x -1). 解 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).则g ′(x )=1 x -2a =1-2ax x . 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x ) 单调递增; 当a >0时,x ∈??? ?0,1 2a 时,g ′(x )>0,函数g (x )单调递增, x ∈????12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为????0,12a ,单调减区间为??? ?1 2a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当01,由(1) 知f ′(x )在????0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,x ∈????1,1 2a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在??? ?1,1 2a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,1 2a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<1 2a <1,当x ∈????12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为????12,+∞. 冲关策略 函数性质综合问题的难点是函数单调性和极值、最值的分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 题型2利用导数研究方程的根(或函数的零点) 例2 [2017·全国卷Ⅰ]已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解题视点 (1)先求函数f (x )的定义域,再求f ′(x ),对参数a 进行分类讨论,由f ′(x )>0(f ′(x )<0),得函数f (x )的单调递增(减)区间,从而判断f (x )的单调性;(2)利用(1)的结论,并利用函数的零点去分类讨论,即可求出参数a 的取值范围. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .

2019年高三一轮复习热点题型3.2课时3:导数与函数的综合问题(1)

例1设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有<0恒成立,则 解析x>0时?x?′<0,∴φ(x)= x 则F′(x)=cos x- 2 当x∈(0,)时,F′(x)>0,F(x)在[0,]上是增函数; 当x∈(,1)时,F′(x)<0,F(x)在[,1]上是减函数. 即sin x≥2 x. 课时3导数与函数的综合问题 题型一用导数解决与不等式有关的问题 命题点1解不等式 xf′(x)-f(x) x2 不等式x2f(x)>0的解集是() A.(-2,0)∪(2,+∞) C.(-∞,-2)∪(2,+∞)答案D B.(-2,0)∪(0,2) D.(-∞,-2)∪(0,2) ?f(x)?f(x) 为减函数,又φ(2)=0,∴当且仅当00, 此时x2f(x)>0. 又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数. 故x2f(x)>0的解集为(-∞,-2)∪(0,2). 命题点2证明不等式 例2证明:当x∈[0,1]时, 2 2x≤sin x≤x. 证明记F(x)=sin x- . 2 2 2x, ππ 44 ππ 44 又F(0)=0,F(1)>0,所以当x∈[0,1]时,F(x)≥0,2 记H(x)=sin x-x, 则当x∈(0,1)时,H′(x)=cos x-1<0, 所以H(x)在[0,1]上是减函数,

例 3 已知定义在正实数集上的函数 f(x)= x 2 +2ax ,g (x)=3a 2ln x +b ,其中 a>0.设两曲线 y ?2 3a x + 2a = .? x x 0 即有 b = a 2+2a 2-3a 2ln a = a 2-3a 2ln a. 令 h (t)= t 2 -3t 2ln t(t>0),则 h ′(t)=2t(1-3ln t). 于是当 t(1-3ln t)>0,即 00; 当 t(1-3ln t)<0,即 t >e 时,h ′(t)<0. 故 h (t)在(0,e )上为增函数,在(e ,+∞)上为减函数, 于是 h (t)在(0,+∞)上的最大值为 h (e )= e , 即 b 的最大值为 e 3 . (2)证明 设 F(x)=f(x)-g (x)= x 2 +2ax -3a 2ln x -b (x>0), 综上, 2 x ≤sin x ≤x ,x ∈[0,1] f ′(x)=x +2a , g ′(x)= , 则 F ′(x)=x +2a - = (x>0). 则 H(x)≤H(0)=0,即 sin x ≤x. 2 命题点 3 不等式恒成立问题 1 2 =f(x),y =g (x)有公共点,且在该点处的切线相同. (1)用 a 表示 b ,并求 b 的最大值; (2)求证:f(x)≥g (x)(x>0). (1)解 设两曲线的公共点为(x 0,y 0), 3a 2 x 由题意知 f(x 0)=g (x 0),f ′(x 0)=g ′(x 0), ?1x 2+2ax =3a 2 ln x +b , 即 2 0 0 3a 2 由 x 0+2a = ,得 x 0=a 或 x 0=-3a(舍去). 1 5 2 2 5 2 1 3 1 3 1 1 3 3 1 3 2 3 2 3 3 2 2 1 2 3a 2 (x -a )(x +3a ) x x

相关文档
最新文档