7.1.1-微分方程基础及ODE函数

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

微分方程基础知识与解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

武汉大学数学物理方法5_4用电像法求某些特殊区域的狄氏格林函数

§5.3格林函数的一般求法
一、泊松格林函数
1、三维泊松方程的基本解 对于 D G = -d ( M - M 0 ) M ?t (1) 1 ? 2 ?G 注意到 DG = (r ) 2 ?r ?r r ? ?G 1 ? 2G + (sin q )+ 2 ?r r sin q ?q r 2 sin q ? j 2 1 由于是点源产生场故问 题是球对称的 1 d 2 dG 故原定解问题 ? (r ) = d (r ) dr r 2 dr

r = MM 0 =
?
( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z 0 ) 2
(1)若 r 1 0 即 M 1 M 0 1 d 2 dG 则 (r )=0 2 dr dr r d 2 dG C1 ù é 2 dG 于是 ( r )=0?r = C1 ? êdG = dr ú 2 dr dr dr r ? ? 1 ? G = - C1 + C 2 取 C 2 = 0 r 1 仍为方程的解 G = - C1 r

( 2 ) 若 r = 0,则应考虑以 M 0 为中心任意小 e 为半径 的球体中情况
由(1), D Gdxdydz òòò
t
= - òòò d ( x - x0 , y - y 0 , z - z 0 )dxdydz
te
= -1
即 lim
e ?0
òòò
te
D Gdxdydz = - 1
(2)

又当 e 1 0时
òòò
te
DGdv =
òòò = ? Gd s = òò òò
te
? × ? G dv
se
?G ds s e ?r
= =
òò
se
C1
1
e2
ds
2p p
òò
0 0
C1 2 e sin dqdj 2 e
= C1 4p
对此式两边取极限
:

弹性力学基础知识归纳知识讲解

弹性力学基础知识归 纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,,,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常 系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组 ()()2222 1,1.d x d y y x x y x y x y d t d t =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()222222 112 d x y x y x y d t +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

最新弹性力学基础知识归纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静 力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单 的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时, 应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题? 应力边界条件,位移边界条件和混合边界条件。 4.弹性体任意一点的应力状态由几个分量决定?如何确定他 们的正负号?

由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想弹性体。 7.什么是差分法?写出基本差分公式? 差分法是把基本方程和边界条件近似地看改用差分方程(代

数学物理方法作业

目录 0 引言 (2) 1 格林函数法求解稳定场问题 (3) 2 泊松方程的格林函数 (4) 3 镜像法求格林函数. (5) 4 格林函数的对称性 (11) 5 求解泊松方程的第一类边值问题 (13) 6 用正交函数组展开格林函数 (14)

0引言 格林函数, 又名源函数,或影响函数,是数学物理中的一个重要概念。格林函数在电磁场理论中有着非常广泛的应用,如在求解静电场问题时,往往会涉及到求解感应电荷的问题,而一般来说感应电荷的量值是不易求得的,特别是对不规则形状的导体通过应用格林函数的倒易性来求解某些接地导体上感应电荷,能比较简便地解决这个问题。本文就在格林函数求解稳定场问题方面加以讨论。

1 格林函数法求解稳定场问题 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: 热力学方程.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 泊松方程.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入格林函数s 的概念。 格林函数:代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 格林函数. 下面,我们先给出格林函数s 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 格林函数s 。

MATALAB基础知识微分方程

实验五 1、求下列微分方程的解析解。 xy y dx dy x -=2 (1)、dsolve('Dy=(y-x*y)/(x^2)','x') ans = C1/exp(1/x)/x (2)、[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z','t') x = C1*exp(-t)+C3*exp(2*t) y = C1*exp(-t)+C2*exp(-2*t)+C3*exp(2*t) z = C2*exp(-2*t)+C3*exp(2*t) 2、求微分方程 2)0(,1)0(,2' '''-==+=+-x x t e x x t 的数值解。 y1=x,y2=y1’ 1'22'221(0)1,2(0)2t y y y e t y y y -=? ?=+-??==-? 先建立M 文件: function f=cxd(t,y) f=[y(2);2*exp(-t)+t-y(2)]

在输入指令: [T,Y]=ode15s('cxd',[0,3000],[1,-2]);plot(T,Y(:,1),'-') …… 050010001500200025003000 00.511.522.533.544.5x 10 6 3、实验内容 狼追击兔子问题 狼追击兔子问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。狼在追赶过程中所形成的轨迹就是追击曲线。狼是否会在兔子跑回洞穴之前追赶上兔子? 实验要求: 1.写出数学模型; 2.利用ode45命令求出微分方程数值解;

高等数学常微分方程的基础知识和典型例题

常微分方程 一、一阶微分方程的可解类型 (一)可分离变量的方程与一阶线性微分方程 1.(05,4分)微分方程_________.1 2ln (1)9 xy y x x y '+==-满足的解为 2222223332.+ln ,=ln . 111 ln ln ln . 339 111 (1)0ln . 939 dx x dy y x e x dx x d x x x dx x x xdx C xdx C x x x y C y x x x ?==+=+-=-=?=-??分析:这是一阶线性微分方程原方程变形为两边乘得 (y)= 积分得 y=C+由得 2.(06,4分) (1) y x x -'————.微分方程y = 的通解为 111 (1).ln ln .,C x x dy dx y x x C y e x e y x y Cxe C --=-=-+==分析:这是可变量分离的一阶方程,分离变量得 积分得,即因此,原微分方程的通解为 其中为任意常数. (二)奇次方程与伯努利方程 1.(97,2,5分)2 2 2 (32)(2)0x xy y dx x xy dy +-+-=求微分方程的通解. 22223122+1-23 , 1ln 13ln ,1=..y xu dy xdu udx u u dx x u du u du dx u u x u u x C u u Cx y C u x xy y x x -=-+-+-=-++-= +-=解:所给方程是奇次方程.令 =,则=+.代入原方程得 3(1-)+(1-2)=0. 分离变量得 积分得 即以代入得通解 2.(99,2,7分) 1(0(0),0 x y dx xdy x y =?+-=>??=??求初值问题的解.

热传导方程--抛物型偏微分方程和基本知识

1. 热传导的基本概念 1.1温度场 一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导, 即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。 温度场:在任一瞬间,物体或系统内各点的温度分布总和。 因此,温度场内任一点的温度为该点位置和时间的函数。 〖说明〗 若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳 态的导热状态。 若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态 的导热状态。 若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为 一维稳态温度场。 1.2 等温面 在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。 1.3 温度梯度 从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交 的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。 温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。 〖说明〗 温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。 稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律 物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和 温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。 傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。 定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比: q = dQ/ds = -λ·dT/dX 式中:q 是热通量(热流密度),W/m2 dQ是导热速率,W dS是等温表面的面积,m2 λ是比例系数,称为导热系数,W/m·℃ dT / dX 为垂直与等温面方向的温度梯度 “-”表示热流方向与温度梯度方向相反 3. 导热系数 将傅立叶定律整理,得导热系数定义式: λ= q/(dT/dX) 物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系 数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。 导热系数大小由实验测定,其数值随状态变化很大。 3.1 固体的导热系数 金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 〖说明〗

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

相关文档
最新文档