数学分析3(80学时)试题及答案

数学分析3(80学时)试题及答案
数学分析3(80学时)试题及答案

考试形式: [闭卷] _____班姓名________ 考试题组:[ A ] 考务编号…………………………………………………○……装……………订……………线……○………………………………………………………

命题教师:教研室主任审核:

三、(10分)

证明:设22212,1F x y z F x y z =++=++-,则 (1)

111

2

2

21,2,2,2F F F F F F x y z x y z

x

y

z ??????======??????在点11

(,,0)22

P -邻域内连续; (2)12()()0F P F P ==;

(3)1211(,)

4

022(,)

2

p p F F x y x y ?=

=-≠? 由定理3知,在点00z =的邻域内存在唯一一组有连续导数的隐函数组12(),()x f z y f z ==,将方程两边对z 求导:

1dx dy

dz dz

dx dy x y z dz

dz ?+=-????+=-??, 解得:,dx z y dy x z

dz y x dz y x

--=

=-- 四、(10分)解:设长方体的长、宽、高分别是,,x y z ,体积V ,则表面积2()S xy xz yz =++满足条件V xyz =,设 2()()L xy xz yz xyz V λ=+++-

令 2()02()02()00x y

z L y z yz L x z xz L x y xy L xyz V λ

λλλ=++=??=++=??=++=??=-=? 解得3x y z V ===

所以体积一定而表面积最小的长方体是正方体。32min 6S V = 五、(10分)

cos 8,cos 7x x P

Q

e y e y y

x

??=+=+??

补上有向线段0:0:0A y x a =→,由格林公式

20

(sin 8)(cos 7)(1)8

x x c A D

e y y dx e y x dy dxdy a π

++++=--=

?

??

而0

(sin 8)(cos 7)0x x A e y y dx e y x dy +++=?,所以2(sin 8)(cos 7)8

x x c

e y y dx e y x dy a π

+++=

?

六、(10分)补上曲面1:0S y =,取左侧,则1S S +形成闭合曲面,取外侧,由奥-高公式得

2

1

22

42

2222

3320

32()()2(4)3

r S S V

yzdydz x z ydzdx xydxdy x z dxdydz d dr r dy r r dr πθππ-++++=+==-=

????????

? 而 1

22()0S yzdydz x z ydzdx xydxdy +++=??,所以2232

()3

S

yzdydz x z ydzdx xydxdy π+++=

??。

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

数学分析第三版答案下册

数学分析第三版答案下册 【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分): 1、126; 2、2; 3、1?x?x2???xn?o(xn); 4、arcsinx?c (或?arccos x?c);5、2. 二、选择题(每小题3分,共15分) 1、c; 2、a; 3、a; 4、d; 5、b 三、求极限(每小题5分,共10分) 1??1、lim1?2? 2、limxlnx ?n??x?0 ?n? ? n 1?? ?lim?1?2?n??n?? 1 n n2? 1n 1 lnx(3分) ?lim?li?? x?0x?011 ?2 xx (3分) (?x)?0 (2分)?lime?1(2分) ?lim? n?? x?0 3n2 ?3 。四、利用数列极限的??n定义证明:lim2(10分) n??n?3 证明:当n?3时,有(1分) 3n299 (3分) ?3??22 n?3n?3n 993n2

因此,对任给的??0,只要??,即n?便有2 ?3?? (3分) n?n?3 3n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。 ?n?3 9 3n2 ?3(1分)即得证lim2 n??n?3 五、证明不等式:arctanb?arctana?b?a,其中a?b。(10分) 证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分) f(b)?f(a)?f?(?)(b?a)? 1 (b?a),2 1?? (a???b) (3分) 所以有 f(b)?f(a)?(b?a) (2分) bn?arctaan?b?a (2分)即 arcta 六、求函数的一阶导数:y?xsinx。(10分) 解:两边取对数,有: lny?sinxlnx (4分) 两边求一次导数,有: y??xsinx(cosxlnx? y?sinx (4分) ?cosxlnx? yx sinx )(2分) x 七、求不定积分:?x2e?xdx。(10分)解: 2?x2?x xedx?xde = (2分) ?? = ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分) = ?x2e?x?2xe?x?2?e?xdx (2分) =?e?x(x2?2x?2)?c (2分) 15 八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。(10 42

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

数学分析3期末测试卷

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n n ∞=1n n n n ∞= D. 1 sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数0 21n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. ){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要 条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则 z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. () ()du x v y dx D. ()()u x v y x y ??+?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ?? ????=???? ; 20.若22arctan y x y x +=,则dy dx =______________________。 三、判断题(请在你认为正确的题后的括号内打“√”,错误的打“×”,每题 1分,共10 题号 一 二 三 四 五 总分 复核人 分值 20 20 10 32 18 100 得分 评卷人 得分 得分 得分

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

数学分析答案第四版

数学分析答案第四版 【篇一:数学分析(4)复习提纲(全部版)】 >第一部分实数理论 1 实数的完备性公理 一、实数的定义 在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。 (1)域公理: (2)全序公理: 则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。 评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。 二、实数的连续性(完备性)公理 实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。主要有如下几个公理: 确界原理: 单调有界定理: 区间套定理: 有限覆盖定理:(heine-borel) 聚点定理:(weierstrass)

致密性定理:(bolzano-weierstrass) 柯西收敛准则:(cauchy) 习题1 证明dedekind分割原理和确界原理的等价性。 习题2 用区间套定理证明有限覆盖定理。 习题3 用有限覆盖定理证明聚点定理。 评注以上定理哪些能够推广到欧氏空间r?如何叙述? n 2 闭区间上连续函数的性质 有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4 最值定理:上册p169;下册下册p102,th16.8 介值定理和零点存在定理:上册p169;下册p103,th16.10 一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理 习题5 用致密性定理证明一致连续性定理 3 数列的上(下)极限 三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义 评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明 习题6 用区间套定理证明有界数列最大(小)聚点的存在性。 (p173) 习题7 证明上面三种定义的等价性。 第二部分级数理论 1 数项级数

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析课本(华师大三版)-习题及答案第十七章

第十七章 多元函数微分学 一、证明题 1. 证明函数 ?? ???=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微. 2. 证明函数 ?? ???=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222 在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微. 3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续. 4. 试证在原点(0,0)的充分小邻域内有 xy 1y x arctg ++≈x+y. 5. 试证: (1) 乘积的相对误差限近似于各因子相对误差限之和; (2) 商的相对误差限近似于分子和分母相对误差限之和. 6.设Z=() 22y x f y -,其中f 为可微函数,验证 x 1x Z ??+y 1y Z ??=2 y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明: x Z ?? sec x + y Z ??secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换 x=u cos θ-v sin θ, y=u sin θ+v cos θ 之下.()2x f +()2 y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ). 则必有()2x f +()2y f =()2u g +()2 v g .(其中旋转角θ是常数) 9.设f(u)是可微函数,

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

第三学期 数学分析(3)试卷

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ?=),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2_______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2x y y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。 3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

相关文档
最新文档