铁电陶瓷材料

铁电陶瓷材料
铁电陶瓷材料

材料工程基础课程铁电陶瓷材料

院系:材料与冶金

专业:金属材料工程

班级:10-材料-1

学号:1061107127

姓名:周联邦

日期:2012-12-3

摘要:本文论述了铁电陶瓷的性质、原理、效应。着重介绍了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。最后,对未来的研究与应用前景进行了展望。

关键词:铁电陶瓷;铁电性;性质;效应;钙钛矿;应用;研究

铁电陶瓷是指具有铁电性的陶瓷。材料在一定温度范围内能够自发极化,且自发极化能随外电场取向的性质。

铁电陶瓷特性

铁电陶瓷,主晶相为铁电体的陶瓷材料。

它的主要特性为:

(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;

(2)存在电畴;

(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;

(4)极化强度随外加电场强度而变化,形成电滞回线;

(5)介电常数随外加电场呈非线性变化;

(6)在电场作用下产生电致伸缩或电致应变。

(7)电性能:高的抗电压强度和介电常数。低的老化率。在一定温度范围内介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。铁电陶瓷原理

某些电介质可自发极化,在外电场作用下自发极化能重新取向的现象称铁电效应。具有这种性能的陶瓷称铁电陶瓷。铁电陶瓷具有电滞回线和居里温度。在居里温度点,晶体由铁电相转变为非铁电相,其电学、光学、弹性和热学等性质均出现反常现象,如介电常数出现极大值。1941年美国首先制成介电常数高达1100的钛酸钡铁电陶瓷。

主要的铁电陶瓷系统有钛酸钡-锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷,钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。铁电陶瓷的制造工艺大致相同。例如,钛酸钡系陶瓷用超纯、超细的等摩尔碳酸钡和二氧化钛原料混合均匀,在1150°C左右预烧成钛酸钡。加入少量为改善工艺和电性能所需要的附加剂,如产生阳离子缺位的三价镧、三价铋或五价铌离子附加剂,产生氧离子空位的三价铁、三价钪或三价铝离子,置换钡离子使晶格畸变的二价锶离子以及生成液相、降低烧成温度的氧化镁或二氧化锰等附加剂。经过粉磨或其他方法充分混合,用干压、辊压或挤压等方法成型,再在1350°C左右的氧化气氛中烧成。还可采用热压烧结,高温等静压烧结等方法,以提高产品的质量。

铁电陶瓷材料确定原则

铁电陶瓷配方的确定原则:先移后展,有所侧重;单独考虑,综合调整。

铁电陶瓷的三大效应

展宽效应、移动效应和重叠效应是铁电陶瓷改性的三大效应。

(1)铁电陶瓷居里峰的展宽效应

展宽效应:指铁电陶瓷的ε与温度关系中的峰值扩张得尽可能的宽旷平坦,即不仅使居里峰压低,而且要使峰的肩部上举,从而使材料既具有较小的温度系

数αε,又具有较大的ε值。

展宽效应的获得:前面介绍过相变扩散可使居里区展宽,但这不是唯一展宽效应,虽然成分起伏和结构起伏引起的相变扩散作用较明显,但要使居里峰能大幅展宽,又能具有较大的ε数值,还必须考虑其他效应。

固溶缓冲型展宽效应:引入展宽剂。

粒界缓冲型展宽效应:铁电陶瓷多晶结构的微粒化,也能起到明显的展宽效应。

(2)铁电陶瓷居里峰移动效应

铁电体居里点及其他转变点,随着组成成分的变化,作有规律地移动现象。

(3)铁电陶瓷重叠效应

当两个转变点相互靠近时,不仅两峰值的高度本身有所提高,且两峰之间的区段也提高,类似于两分立峰的叠加,因而又叫重叠效应。

(4)铁电陶瓷的疲劳与老化现象

铁电老化:初生产出来的铁电陶瓷,其某些介质参数会随储存时间逐渐变化,尤其是铁电特性变弱,这种现象就称为铁电老化。

铁电疲劳:初生产出来的铁电材料,在长时间的交变电场作用下,其铁电性随着电场交变次数的增加而削弱称为铁电疲劳。

铁电陶瓷的应用

铁电陶瓷材料是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达 0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。

常见的铁电陶瓷多属钙钛矿型结构,如钛酸钡(BaTiO3)陶瓷及其固溶体,也有钨青铜型、含铋层状化合物和烧绿石型等结构。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途。

目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。

为此,本文对层状铁电陶瓷、弛豫型铁电陶瓷、含铅型铁电陶瓷、无铅型铁电陶瓷以及反铁电陶瓷材料的研究现状和应用情况进行了综述,为未来的新型铁电陶瓷的研究提供参考。

1 、层状铁电陶瓷

1.1Bi系

目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅系列。此系列的突出优点是剩余极化较大 Pr 、热处理温度较低。但是随着研究的深入,人们发现在经过累计的极化反转之后 PZT 系列性能退化,主要表现在出

现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。该材料通式是(Bi2O2) 2+ n-1BnO3n+1)2-,( A 为 +1、+2 或+3 价离子,B 为+ 3、+ 4 或+ 5 价离子,n 为类钙钛矿层中氧八面体BO6 层数,其中类钙钛矿层(An-1BnO3n+1)2-与铋氧层(Bi2O2)2+交替排列。 SrBi4Ti4O15(n=4 、n = 5 或n = 7)陶瓷是铋系层状钙钛矿结构铁电陶瓷材料。研究发现:其剩余极化较大,单晶极化强度方向沿 a 或 b 轴时,(2Pr=58μC/cm2),热稳定性能也比较好(居里温度为 520℃),另外,SBTi 陶瓷又是非铅系列材料,是一种比较有前途的铁电陶瓷材料。但是由于 Bi 容易挥发,在材料制备和使用过程中容易成铋空位,从而形成氧空位,影响材料的抗疲劳性能和铁电性能。为了满足实际应用的需要,需要提高和改进该系列材料的铁电性能,因此,国内外研究者在改变制备途径、制备方法以及调整材料的组分等方面作了不少研究。

共生结构铁电材料(IBLSFs)是利用两种钙钛矿层数只相差一层的Bi系层状钙钛矿结构铁电材料组成。BLSFs 的通式也是:(Bi2O2)2+(Am-1BmO3m+1)2-,其中 A 为 Bi、Ba、Sr、Nd 等,B 为 Ti、V、Nb、W 等。 IBLSFs 整个结构可以看作是半个层数为 m 和 m+1 的单元沿 c 轴方向交替排列而成。由于其相对复杂的晶体结构和介电特性受到广泛的关注。其 Bi5TiNbWO15 (BW-BTN,m=1+2)是由 Bi2WO6(BW,m=1)和 Bi3TiNbO9(BTN,m=2)组构而成,在 c 轴方向上,m-1BmO3m+1)2-与(Bi2O2)2+层交替排列顺序为:…(Bi2O2)2+—(WO4)2-—(Bi2O2)2+—(BiTiNbO7)2-—(Bi2O2)2+…..。在共生结构中,由于(Bi2O2)2+层两侧的类钙钛矿层不一样,(Bi2O2)2+层受到的作用力也必然不同于层状钙钛矿结构,材料微观结构的复杂性大大提高。BW-BTN 中,(Bi2O2)2+层两侧的类钙钛矿层分别是 WO6 氧八面体和(Ti,Nb)O6 氧八面体, WO6 氧八面体中不存在单独的 A 位 Bi3+离子,个 Bi3+离子都和(Bi2O2)2+层共用。 2 (Ti,Nb)O6 氧八面体中,1 个 Bi3+占据了 A 位,剩下 2 个 Bi3+与(Bi2O2)2+层相连。所以,真正意义上的 A 位 Bi3+离子实际上只存在于(Ti,Nb)O6 氧八面体中,这是 BW-BTN 共生结构不同于其他共生的一个显著特点。目前的研究表明该共生结构具有很高的电导率和明显的介电弛豫行为,但铁电和介电性能不够理想,这可能与材料内部复杂的缺陷机制有关。

2 、弛豫型铁电陶瓷

2.1 弛豫型铁电体

弛豫型铁电体是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε

'(ω)值对应的温度 Tm 随ω的增加而向高温移动。该特征与结构玻璃化转变、自旋玻璃化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃,相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。因此,对现有弛豫铁电体性能的优化以及新型弛豫铁电体的合成,将具有重要的潜在应用价值,同时也是该领域的另一热点问题。SrTiO3 是一种无污染的功能陶瓷材料,因此以 SrTiO3 为基础合成的新材料有产业的优势。

研究发现在 SrTiO3 中引入 Bi 离子产生了典型的铁电弛豫行为,并对其进行了介电谱测量,但是最低测量频率为 100Hz,而一般认为,玻璃化转变的特征时间 50~102s,所以在更低的频率范围内对极性玻璃体的介电谱测量,无疑对理解其玻璃化转变机制是有价值的。

3 、含铅型铁电陶瓷

3.1 铌镁酸铅

铌镁酸铅 Pb(Mg1.3Nb2.3)O3铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。铁电材料的研究主要集中在新材料体系的开发、现有材料的改性(主要是掺杂改性)以提高其使用性能。晶界的控制是调节和改善铁电陶瓷材料性能的关键所在。PMN 基铁电陶瓷通过掺杂,可改变内部的晶界结构,解决其烧结温度过高(大约在 1200℃左右)、居里温度较低、负温损耗较大、工艺复杂以及难以工业化生产等缺陷。掺杂改性技术的应用,无疑会对这类陶瓷材料的研究、开发应用和生产起积极的推动作用。PMN 早期的掺杂改性剂主要有Si、Ge 等,其效果不是很明显。后来逐渐集中在非铁电性改性剂或非铁电性和铁电性改性剂的复合体系上。已有不少学者研究过 PMN 的稀土、碱土、过渡金属等掺杂。

通过选择合适的掺杂剂、掺杂方式可以改变 PMN 系铁电陶瓷的介电性能、压电性能、热释电性能、显微结构和烧结温度。稀土元素、碱土元素的掺杂主要是提高介电稳定性并降低烧结温度,某些单一掺杂对陶瓷介电性能与温度稳定性的改善效果不一致,可通过多组分掺杂同时提高 PMN 铁电陶瓷的介电常数、降低烧结温度;过渡金属(如 Cr、Mn)对 PMN 铁电陶瓷的烧结温度、畸态影响很明显,且兼具“软掺杂”和“硬掺杂”双重特性。PMN 掺杂机理遵循缺陷化学原则,离子掺入时可能会完全进入晶格,也可能会滞留在晶界。由于离子掺入时伴随着铅空位浓度、Mg2+和 Nb5+ 离子比的变化,相应的有序化过程的缺陷化学和动力学机理尚需深入研究。目前,PMN 铁电陶瓷掺杂主要是单一掺杂,存在介电性能、频率色散、弥散相变、居里温度以及烧结温度之间改善效果的不一致,今后可向多组分掺杂转变,以此弥补单一掺杂所存在的不足。

4 、无铅型铁电陶瓷

4.1 BaTi2O5

BaTi2O5粉体不含铅,是一种新型绿色环保的铁电材料,近几十年来,人们一直认为 BT2 是一种顺电材料,其热稳定性差,高温易分解,当温度高于 1150℃时分解为 BaTiO3(BT)和 Ba6Ti17O40(B6T17)。直到 2003 年人们才发现了合成的 BT2 单晶具有优异的铁电性。而采用浮区- 熔融法和淬火法合成的多晶体在475℃时,沿 b 轴方向也显示出较高的介电性能。但利用这些方法难以获得大尺寸的晶体,故很难在实际中应用。因而,有必要采用常规的烧结方法来制备多晶BT2。由于 BT2 的热稳定性差,所以不能采用固相合成法获得单相的 BT2 粉体,只能采用液相合成法合成单相 BT2 粉体。通常制备 BT2 的方法有化学共沉淀法、熔融固化法、无压烧结法、硬脂酸凝胶法、水热反应法、Sol-gel 法等。Sol-gel 法因其能实现原料均匀混合,化学反应较易进行,合成温度低,合成的粉体粒径均匀等优点而在 BT2 的制备中备受青睐,但现在常用的 Sol-gel 法存在着原料多为有毒物,有机成分复杂,制备工艺条件要求较高等问题,故需对现有的 Sol-gel 法进行改进。

5 、反铁电陶瓷

5.1 锆锡钛酸铅

锆锡钛酸铅 Pb(Zr,Sn,Ti)O3是一种反铁电陶瓷。上世纪60年代末,美国Clevite 实验室在其开发的具有高压电性能的锆钛酸铅 Pb(Zr,Ti)O3压电材料基础上,针对 PZT 压电陶瓷机电转换能力不足的问题,研制出了一种具有大机电转换能力的新型有源材料—PZST 反铁电相变陶瓷,即通过对 PZT 基铁电材料掺杂改性得到能够在室温条件下由反铁电相被电场诱导转变成铁电相的 PZST 反铁电陶瓷,相变过程会产生大的体积应变量。

上世纪80 年代后期,具有大电致应变和大机电转换能力的 PZST 反铁电陶瓷作为换能器或大位移致动器有源材料方面的研究工作逐步出现。美国Pennsylvania 大学材料研究所开展了 PZST 反铁电陶瓷作为大位移致动器有源材料应用的可行性研究工作,针对“方宽”型电滞回线的 PZST 反铁电陶瓷进行了一系列改性优化,降低相变场强,增大纵向应变量,最大纵向应变量达到0.85%(相变场强为 48 kV/cm,电滞宽度为 20 kV/cm ),指出“方宽”型电滞回线的反铁电陶瓷在交变电场下表现出严重的电滞损耗,因而不适于交变状态下应用。

此后,西安交通大学开展了反铁电材料的研究和应用工作。研究了化学组份和不同外场对反铁电陶瓷相变性能的影响和变化规律,针对该类材料丰富的相变性能在不同应用领域开展工作,给出了性能优化途径,比如,利用压致相变制作大功率脉冲爆电电源,利用场诱相变制作电压调节器[8]等。在利用其大电致应变特性方面,也开展了系统的研究工作,通过掺杂改性和优化制备工艺,重点解得到了具有大电致应决 PZST 反铁电陶瓷相变场强较高和电滞损耗偏大等问题,变量、低相变场强和小电滞损耗的“细长”型电滞回线的 PbLa(Zr,Sn,Ti)O3反铁电陶瓷,这种材料的电致应变量比 PZT 压电陶瓷高出 10 倍以上,其杨氏模量在 100~110GPa 之间,应变能是 PZT 压电陶瓷的 100 倍以上。考虑到材料电滞损耗因素,要尽量工作在低频状态,以减小交流电场下的热损耗,使器件稳定工作。

6 、其它研究进展

近年来,铁电材料的研究在其它方面也取得不少新的进展,其中最重要的有以下几个方面:1、第一性原理的计算。现代能带结构方法和高速计算机的发展使得对铁电性起因的研究变为可能。通过第一性原理的计算,对铁电体材料,得出了电子密度分布,软模位移和自发极化等重要结果,对阐明铁电性的微观机制有重要作用;2、尺寸效应的研究。随着铁电薄膜和铁电超微粉的发展,铁电尺寸效应成为一个迫切需要研究的实际问题。近年来,人们从理论上预言了自发极化、相变温度和介电极化率等随尺寸变化的规律,并计算了典型铁电体的铁电临界尺寸。这些结果不但对集成铁电器件和精细复合材料的设计有指导作用,而且是铁电理论在有限尺寸条件下的发展;3、集成铁电体的研究。铁电薄膜与半导体的集成构成集成铁电体。当前的材料和技术使集成铁电体出现新特点:一是采用薄膜,使极化反转电压易于降低,可以和标准的硅或电路集成。二是在提高电滞回线矩形度的同时,在电路设计上采取措施,可以防止信息输出与输入出错。三是疲劳特性大有改善,已制出反转次数达数亿次仍不显示任何疲劳的铁电薄膜。

7 、展望

高性能的铁电陶瓷材料是一类具有广泛应用前景的功能材料,从目前的研究

现状来看,对于具有高性能的铁电陶瓷材料的研究和开发应用仍然处于发展阶段。研究者们选用不同的铁电陶瓷材料进行研究,并不断探索制备工艺,只是到目前为止对于铁电陶瓷材料的一些性能的研究还没有达到令人满意的地步。比如,用于制备铁电复合材料的陶瓷粉体和聚合物的种类还很单一,对其复合界面的理论研究也刚刚开始,铁电记忆器件抗疲劳特性的研究还有待发展。

总之,铁电陶瓷材料是一类具有广阔发展前景的重要功能材料,对于其特性的研究与应用还需要我们不断的探索,并给予足够的重视。

参考文献:

[1]王栋,徐卓,冯玉军. 用于电压调节器的 PZST 反铁电陶瓷研究[J]. 压电与声光,2005,27(5): 532-534.

[2] 冯玉军,徐卓,郑曙光. 铁电爆电换能电源研究[J]. 西安交通大学学报,2002,36

[3] 赁敦敏,肖定全,朱建国,余萍,鄢洪建. 铌酸盐系无铅压电陶瓷的研究与进展无铅压电陶瓷20年专利分析之四[J] .功能材料. 2003(06)

[4] 许煜寰等编.铁电与压电材料[M] . 科学出版社, 1978

[5] 汪小红,吕文中,刘坚,梁飞,周东祥. MgO对Ba0.6Sr0.4TiO3铁电陶瓷材料结构及低频特性的影响[J] . 硅酸盐学报 . 2004(06)

[6] 王恩信,邓宏,姜斌. 掺杂弛豫铁电陶瓷材料的电阻──温度特性[J]. 电子科技大学学报.1999(02)

史上最全的陶瓷材料3D打印技术经验解析

精心整理史上最全的陶瓷材料3D打印技术解析 南极熊3D打印网2017-07-11现在已经陆续出现一些陶瓷3D打印机,价格100万到500万人民币的都有。南极熊希望下文可以给读者带来全面的认识。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余 体模型,而后用分层软件对其进行分层处理,即将三维模型分成一系列的层,将每一层的信息传送到成型机,通过材料的逐层添加得到三维实体制件。跟传统模型制作相比,3D打印具有传统模具制作所不具备的优势:1.制作精度高。经过20年的发展,3D打印的精度有了大幅度的提高。目前市面上的3D打印成型的精度基本上都可以控制在0.3mm以下;2.制作周

期短。传统模型制作往往需要经过模具的设计、模具的制作、制作模型、修整等工序,制作的周期长。而3D打印则去除了模具的制作过程,使得模型的生产时间大大缩短,一般几个小时甚至几十分钟就可以完成一个模型的打印;3.可以实现个性化制作。3D打印对于打印的模型数量毫无限制,不管一个还是多个都可以以相同的成本制作出来,这个优势为3D打印开 陶瓷材料烧结性能非常重要,陶瓷颗粒越小,表面越接近球形,陶瓷层的烧结质量越好。陶瓷粉末在激光直接快速烧结时,液相表面张力大,在快速凝固过程中会产生较大的热应力,从而形成较多的微裂纹。目前,陶瓷直接快速成型工艺尚未成熟,国内外正处于研究阶段,还没有实现商品化。目前,比较成熟的快速成型方法有如下几种:分层实体制造(简称LOM);

熔化沉积造型(简称FDM);形状沉积成型(简称SDM);立体光刻(简称SLA);选区激光烧结(简称SLS);喷墨打印法(简称IJM)。2.1分层实体制造(LOM)分层实体制造采用背面涂有热熔胶的薄膜材料为原料,用激光将薄膜依次切成零件的各层形状叠加起来成为实体件,层与层间的粘结依靠加热和加压来实现。LOM最初使用的材料是纸,做出的部件相当于木 和 面LOM LOM ABS 末和有机粘结剂相混合,用挤出机或毛细血管流变仪做成丝后用FDM设备做出陶瓷件生胚,通过粘结剂的去除和陶瓷生胚的烧结,得到较高密度的陶瓷件。适用于FDC工艺的丝状材料必须具备一定的热性能和机械性能,黏度、粘结性能、弹性模量、强度是衡量丝状材料的四个要素。基于这样的限制条件,Rutgers大学的陶瓷研究中心开放出称为RU系列的有机粘结

铁电陶瓷材料的应用以及生产工艺之七

铁电陶瓷材料的应用以及生产工艺之七 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可制作红外探测器等。也用于制造光阀、光调制器、激光防护镜和热电探测器等。 广泛应用于航天、军工、新能源产品。 这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。另一方面是顺便了解一下这特种陶瓷的用途。 室温研磨法固相反应制备铁电陶瓷粉末: ――机械合金化制备的铁电体:锆钛酸铅 锆钛酸铅(Pb(ZrxTi1-X)O,或PZT)是PT和锆酸铅(PbZrO3或PZ)的 固溶体,具有杰出的铁电、压电、热电和光电性能,广泛应用于传感器、声纳、微动台、旋转式激励器和热电传感器中。 有专家研究了用具有碳化钨筒和球的行星高能球磨机对(PbO、ZrO2和TiO2)混合物球磨不同时间后PZT相的形成情况。球磨4h没有形成PZT,但PbO衍射峰大大变宽并弱化,球磨15和24h后,PZT成为主要相。球磨过程中,相变会导致不同程度的体积膨胀。研究表明,延长球磨时间,体积膨胀程度减小,意味着未反应的氧化物数量减少。球磨24 h的混合物反应完全,故几乎没有观察到体积膨胀。 有专家通过行星球磨机对PbO、ZrO2、TiO2氧化物强化粉碎(高的 球磨速度和大的球料比)5—480min后发现,球磨lh便得到PZT相及少量未反应的ZrO2,球磨2h时后相组成相同,未反应的ZrO2量达到最少。对球磨粉末做比表面积测试后发现,球磨30min后其比表面积达到最大,并促进了初始氧化物间的反应,以致球磨1h后几乎得到纯PZT相,

的陶瓷材料D打印技术解析

史上最全的陶瓷材料3D打印技术解析 南极熊3D打印网2017-07-11 现在已经陆续出现一些陶瓷3D打印机,价格100万到500万人民币的都有。南极熊希望下文可以给读者带来全面的认识。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余材料,得到零部件,再以拼接、焊接等方法组合成最终产品。而“增材制造”与之不同,无需原胚和模具,就能直接根据计算机图形数据,通过增加材料的方法生成任何形状的物体,简化产品的制造程序,缩短产生的研制周期,提高效率并降低成本。陶瓷材料具有优良高温性能、高强度、高硬度、低密度、好的化学稳定性,使用其在航天航空、汽车、生物等行业得到广泛应用。而陶瓷难以成型的特点又限制了它的使用,尤其是复杂陶瓷制件的成型均借助于复杂模具来实现。复杂模具需要较高的加工成本和较长的开发周期,而且,模具加工完毕后,就无法对其进行修改,这种状况越来越不适应产品的改进即更新换代。采用快速成型技术制备陶瓷制件可以克服上述缺点。快速成型也叫自由实体造型,是20世纪60年代中期兴起的高兴技术。1.陶瓷3D打印快速成型技术的本质是采用积分法制造三维实体,在成型过程中,先用三维造型软件在计算机生成部件的三维实体模型,而后用分层软件对其进行分层处理,即将三维模型分

成一系列的层,将每一层的信息传送到成型机,通过材料的逐层添加得到三维实体制件。跟传统模型制作相比,3D 打印具有传统模具制作所不具备的优势: 1.制作精度高。经过20年的发展,3D 打印的精度有了大幅度的提高。目前市面上的3D打印成型的精度基本上都可以控制在0.3 mm 以下; 2. 制作周期短。传统模型制作往往需要经过模具的设计、模具的制作、制作模型、修整等工序,制作的周期长。而3D打印则去除了模具的制作过程,使得模型的生产时间大大缩短,一般几个小时甚至几十分钟就可以完成一个模型的打印;3. 可以实现个性化制作。3D打印对于打印的模型数量毫无限制,不管一个还是多个都可以以相同的成本制作出来,这个优势为3D打印开拓新的市场奠定了坚实的基础; 4. 制作材料的多样性。一个3D 打印系统往往可以实现不同材料的打印,而这种材料的多样性可以满足不同领域的需要。比如金属、石料、高分子材料都可以应用于3D 打印。 5. 制作成本相对低。虽然现在3D 打印系统和3D 打印材料比较贵,但如果用来制作个性化产品,其制作成本相对就比较低了。加上现在新的材料不断出现,其成本下降将是未来的一种趋势。有人说在今后的十年左右,3D 打印将会走进普通百姓家里。 2 陶瓷3D打印的主要技术分类3D 打印用的陶瓷粉末是陶瓷粉末和某一种粘结剂粉末所组成 的混合物。由于粘结剂粉末的熔点较低,激光烧结时只是将

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术 邱安宁5990519118 F9905104 1.概述 陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域. 纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能. 本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。 2.加工中的理论问题 2.1决定陶瓷性能的主要因素 决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5]. 2.2扩散及烧结 由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为 1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

铁电陶瓷

第四章铁电陶瓷 一、教学内容及要求 掌握铁电体的基本概念,理解电滞回线的形成,理解BaTiO3的结构与自发极化特性以及其介电性能的特点,掌握电畴的基本概念,电畴的成核与生长过程,180°畴和90°畴的异同。理解居里温区的相变扩张的机理,几种相变扩散的异同。掌握展宽效应,移动效应,重叠效应的作用机制。掌握铁电老化,铁电疲劳,去老化的概念。 二、基本内容概述 4.1概述 重点掌握的几个概念:自发极化、、剩余极化、、矫顽场、铁电体、电滞回线、电畴、铁电陶瓷 1、感应式极化:离子晶体中最主要的极化形式是电子位移极化和离子位移极化,这两种极化都属于感应式极化,极化强度大小依赖于外施电场。线性关系,E=0,P=0。 2、自发极化:铁电体所表现的自发极化,却是不依赖于外电场,并能随外电场反向而发生反转。非线性关系,E=0,P≠0。 3、铁电体(ferroelectric):具有自发极化,且自发极化方向能随外场改变的晶体。它们最显著的特征,或者说宏观的表现就是具有电滞回线。 4、电滞回线(hysteresis curve):铁电体在铁电态下极化对电场关系的典型回线。 5、电畴(domain):在铁电体中,固有电偶极矩在一定的子区域内取向相同的这些区域就称为电畴或畴。 6、畴壁(domain wall):畴的间界。 7、铁电相变:铁电相与顺电相之间的转变。当温度超过某一值时,自发极化消失,铁电体变为顺电体。 8、居里温度(Curie temperature or Curie point):铁电相变的温度。 9、铁电体的分类:1)按结晶化学;2)按力学性质;3)按相转变的微观机构;4)按极化轴多少。

铁电材料的特性及应用综述

铁电材料的特性及应用综述 孙敬芝 (河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。 关键词:铁电材料;铁电性;应用前景 C haracteristics and Application of Ferroelectric material Sun Jingzhi ( Materials Science and Engineering college, Hebei United University Tangshan 063009,China ) Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market. Keywords: ferroelect ric materials Iron electrical development trend 0前言 晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。从对称性分析它们的晶体结构都具有所谓的极轴, 即利用对称操作不能实现与晶体的其它晶向重合的轴向, 极轴二端具有不同的物理性能。从物理性质上看, 它们不但具有自发极化, 而且其电偶极矩在外电场作用下可以改变方向。在介电强度允许条件下, 能够形成电滞回线。晶体这种性能称为铁电性, 具有铁电性的材料称为铁电材料。1920 年法国人V alasek 发现了罗息盐(酒石酸钾钠 ) 的特异介电性, 导致“铁电性”概念的出现(也有人认为概念出现更早)。现在各种铁电材料十分丰富,

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

多孔陶瓷材料的制备技术

第14卷第3期Vol.14No.3 材 料 科 学 与 工 程 Materials Science&Engineering 总第55期 Sept.1996多孔陶瓷材料的制备技术 朱时珍 赵振波 北京理工大学 北京 100081 刘庆国 北京科技大学 北京 100083 【摘 要】 本文评述了近年来多孔陶瓷材料制备技术的研究现状,对目前研究比较活跃,应用比较成功的几种制备技术进行了分析,并讨论了今后的发展趋势。 【关键词】 多孔陶瓷 制备 造孔剂 泡沫浸渍 Techniques For Preparation of Porous Ceramic Materials Zhu Shizhen Zhao Zhenbo Beij ing Institute of Technology Beijing 100081 Liu Qingguo Beij ing University of Science and Technology Beij ing 100083【Abstr act】 T he r ecent status of techniques for prepar ation of por ous ceramic mater ials was re-viewed.Var ious t echniques for pr epar ation of por ous cer amic mater ials resear ched mor e actively and ap-plied more successfully wer e analyzed,and the future development tr ends were discussed. 【Key wor ds】 Porous cer amics,F abr ication,P or e-form ing mat er ials,F oam impregna tion 一、前 言 近年来表面与界面起突出作用的新型材料日益受到重视,既发现一些新的物理现象和效应,在应用上又很有潜力,具有广泛的发展前景[1]。多孔陶瓷材料正是一种利用物理表面的新型材料。例如,利用多孔陶瓷的均匀透过性,可以制造各种过滤器、分离装置、流体分布元件、混合元件、渗出元件和节流元件等;利用多孔陶瓷发达的比表面积,可以制成各种多孔电极、催化剂载体、热交换器、气体传感器等;利用多孔陶瓷吸收能量的性能,可以用作各种吸音材料、减震材料等;利用多孔陶瓷低的密度、低的热传导性能,还可以制成各种保温材料、轻质结构材料等[2],加之其耐高温、耐气候性、抗腐蚀,多孔陶瓷材料的应用已遍及冶金、化工、环保、能源、生物等各个部门,引起了全球材料学界的高度重视,并得到了较快发展,每年这方面的专利都有近百篇,而且有逐年增长的趋势。但由于绝大多数制备工艺参数及关键问题处于技术保密状态,目前尚无系统论述各种制备技术的文章,本文结合作者研制用于高温固体氧化物燃料电池的多孔A l2O3陶瓷支持管(体)的研究工作,分析了多孔陶瓷材料制备技术的现状及今后的发展趋势。 ? 33 ?

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

陶瓷材料烧结技术的研究进展

Material Sciences 材料科学, 2017, 7(6), 628-632 Published Online September 2017 in Hans. https://www.360docs.net/doc/aa16751019.html,/journal/ms https://https://www.360docs.net/doc/aa16751019.html,/10.12677/ms.2017.76083 Research and Application on Sintering Technology of Ceramic Materials Haitao Zheng1, Tingting Pan2 1Harbin Aurora Optoelectronics Technology Co., Ltd., Harbin Heilongjiang 2Heilongjiang University of Finance and Economics, Harbin Heilongjiang Received: Sep. 3rd, 2017; accepted: Sep. 22nd, 2017; published: Sep. 28th, 2017 Abstract Advanced ceramic materials are widely used in aerospace, electronics, mechanical, biological, medical and other fields because of its fine structure and high strength, high hardness, high tem-perature resistant, corrosion resistance, wear-resisting property and a series of excellent features. The sintering technology of ceramic materials has an important influence on the structure and property of the material itself. This paper summarized the ceramic sintering mechanism, research progress and application, and indicated the future research direction. Keywords Sintering Technology, Mechanism, Research Development, Application 陶瓷材料烧结技术的研究进展 郑海涛1,潘婷婷2 1哈尔滨奥瑞德光电技术有限公司,黑龙江哈尔滨 2黑龙江财经学院,黑龙江哈尔滨 收稿日期:2017年9月3日;录用日期:2017年9月22日;发布日期:2017年9月28日 摘要 先进陶瓷材料由于其精细的结构组成及高强度、高硬度、耐高温、抗腐蚀、耐磨等一系列优良特性被广泛应用于航空航天、电子、机械、生物医学等各个领域。陶瓷材料的烧结技术对材料本身的结构及性能有着重要影响。本文对陶瓷材料的烧结机理、研究进展及应用进行了总结,并提出了今后的研究方向。

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一 铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。 可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。也可用于制造光阀、光调制器、激光防护镜和热电探测器等。广泛应用于航天、军工、新能源产品。 这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。另一方面是顺便了解一下这特种陶瓷的用途。 一般性描述: 铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。其电性能:高的抗电压强度和介电常数。在一定温度范围内(-55~+85℃)介电常数变化率较小。介电常数或介质的电容量随交流电场或直流电场的变化率小。 铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热

释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。 铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。利用其压电性可制作各种压电器件。此外,还有一种透明铁电陶瓷,具有电光效应,可用于制造光阀、光调制器、激光防护镜和热电探测器等。 目前,全球铁电元件的年产值己达数百亿美元。铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。 细分的品种有⑴层状铁电陶瓷,⑵弛豫型铁电陶瓷,⑶含铅型铁电陶瓷,⑷无铅型铁电陶瓷,⑸反铁电陶瓷材料,⑹可能的新型铁电陶瓷材料。

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

铁电陶瓷材料的研究现状和应用

铁电陶瓷材料的研究现状和应用 1、层状铁电陶瓷 (1)Bi系 目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。 (2)(Pb,Ba)(Zr,Ti)O3系 (Pb,Ba)(Zr,Ti)O3(简称PBZT)系陶瓷与Pb(Zr,Ti)O3(PZT)同属于ABO3型钙钛矿结构,具有较大的电致伸缩应变,在电子微位移动领域已得到广泛应用。但在使用过程中发现这类铁电陶瓷因其脆性和较低的强度影响了其产品的耐久性和使用寿命,因此改善其机械性能已引起人们的重视。 2、弛豫型铁电陶瓷 弛豫型铁电体(relaxation ferroelectrics,简称RF)是指顺电—铁电转变属于弥散相变的一类铁电材料,它同时具有铁电现象和弛豫现象。与典型铁电体相比,弛豫型铁电体的一个典型特征是复介电常数(ε*(ω) =ε'(ω) ?ε"(ω),ω为角频率)的实部ε'(ω)随温度变化呈现相对宽且变化平缓的峰,其最大ε'(ω)值对应的温度Tm随ω的增加而向高温移动。该特征与结构玻璃(structureglass)化转变、自旋玻璃(spin glass)化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型,所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。 3、含铅型铁电陶瓷 铌镁酸铅Pb(Mg1.3Nb2.3)O3(简称PMN)铁电陶瓷材料以很高的介电常数、相当大的电致伸缩效应、较低的容温变化率和几乎无滞后的特点,一直受到人们的关注,在多层陶瓷电容器、新型微位移器、执行器和机敏材料器件及新型电致伸缩器件等领域有着巨大的应用前景。

相关文档
最新文档