高考数学 考点31 矩阵与变换

高考数学 考点31  矩阵与变换

- 1 - 考点31 矩阵与变换

1.(2010·江苏高考·T21(B))在平面直角坐标系xOy 中,已知点A(0,0),B(-2,0),C(-2,1)。设k 为非零实数,矩阵M=??????100k ,N=??

????0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值。

【命题立意】本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力。 【思路点拨】利用矩阵的乘法求解. 【规范解答】由题设得0010011010k k MN ??????==????????????

由00220010001022k k --??????=??????--??????

,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2)。 计算得△ABC 面积的面积是1,△A 1B 1C 1的面积是||k ,则由题设知:||212k =?=。

所以k 的值为2或-2。

2.(2010·福建高考理科·T21)已知矩阵1M b ?= ? 1a ???,0c N ?= ? 2d ???,且22MN ?= -?

00???。 (Ⅰ)求实数,,,a b c d 的值; (Ⅱ)求直线3y x =在矩阵M 所对应的线性变换作用下的像的方程。

【命题立意】本小题主要考查矩阵与变换等基础知识,考查运算求解能力。 【思路点拨】(1)由二阶矩阵的乘法即矩阵的相等可求得a ,b ,c ,d ,(2)可用点的变化进行求解,也可以用相关点转移法进行求解。

【规范解答】

(1)??????-=??????++=????????????=020*******d b bc ad c d c b a MN ,对应系数有???????-==-==????????=+-==+=1

212022022a d b c d b bc ad c ; (2)取x y 3=上一点),(y x ,设经过变换后对应点为)','(y x ,则??

????--=??????????

??--=??????x y y x y x y x 1111'', 从而''x y -=,所以经过变换后的图像方程为x y -=。

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

分块矩阵的初等变换及应用_百度文库.

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到定义1分块矩阵的行(列初等变换是指: (1)交换两行(列的位置; (2)第i行(列的各个元素分别左乘(右乘该行(列的一个阶左(右保秩因子H; (3)第i行(列的各个元素分别左乘(右乘一个阶矩阵K后加到第j行. 定义2 对应于分块矩阵的初等分块矩阵是指: (1)= 或=

(2)=或= 其中H为第i行(列的一个左(右保秩因子; (1 = (2 或= 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1(1交换的第i行与第j行,相当于左乘一个m阶初等分块矩阵,其中中的元素为h(i阶单位矩阵,为h(j阶单位矩阵, 当r≠i且r≠j时,为h(r阶单位矩阵;交换的第i列与第j列相当于右乘一个n阶初等分块矩阵,其中为l(i阶单位矩阵,为l(j阶单位矩阵,当r≠i且r≠j时,为l(r阶单位矩阵;

(2 的第i行的每一个元素左乘一个矩阵H相当于左乘一个m阶分块矩阵 中H为h(i阶方阵; 的第i列的每一个元素右乘一个矩阵H,相当于 右乘一个n阶初等到变换矩阵,其中H为l(i阶方阵; (3 的第j行的每个元素分别左乘一个h(i×h(j矩阵K后加到第i行,相当 于左乘一个初等分块矩阵;第j列的每一个元素分别右乘l(j×l(i矩阵K后加到第i列,相当于右乘. 定理2设A为方阵,则分块矩阵施行第一种行初等变换后,对应的行列式为 , 其中 h(i,j=h(ih(j-l+h(i+l]+…+h(j[h(i+h(i+j+…+h(j-l], l(i,j=l(ih(j-l+l(i+l]+…+l(j[l(i+l(i+j+…+l(j-l], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: ,显然成立. 下证,所在的第1行逐次与它相邻的行交换,移至前,共进行h(i-1+h(i+1+…+h(j-1次交换两行,第2行逐次与它相邻的行交换,移至前,同样进行相同次交换两行,依此类推,把所在的行移至所在的行前,共进行 h(i[h(i-1+h(i+1+…+h(j-1]次交换两行,然后把移至适当的位置,同理共进行h(j[h(i+h(i+1+…+h(j-1]次交换两行,所以交换两行的总次数为h(i,j,故 ;同理. 所以有==(-1或==(-1) ==或= ==== 定理3 分块矩阵进行初等变换后,秩不变.

分块矩阵及其应用

分块矩阵及其应用 【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。 【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式 目录 1引言 (2) 2矩阵分块的定义和性质 (2) 2.1 矩阵分块的定义 (2) 2.2 分块矩阵的运算 (2) 2.3 分块矩阵的初等变换 (3) 2.4 n阶准对角矩阵的性质 (3) 3分块矩阵在高等代数中的应用 (4) 3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4) 3.2 利用分块矩阵计算行列式 (7) 3.3 分块矩阵在求逆矩阵方面的应用 (11) 3.4 分块矩阵在解线性方程组方面的应用 (16) 4总结 (19) 参考文献 (20)

1 引言 矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

分块矩阵的初等变换及应用49554

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到 定义1 分块矩阵的行(列)初等变换是指: (1)交换两行(列)的位置; (2)第i行(列)的各个元素分别左乘(右乘)该行(列)的一个) (i h 阶)阶)((i l 左(右)保秩因子H; (3)第i行(列)的各个元素分别左乘(右乘)一个) (i h 阶)阶)((i l 矩阵K后加到第j行. 定义2 对应于分块矩阵t s ij A ?)(的初等分块矩阵是指: (1)))((k j i P i +=?????????? ? ? ?ss ll ii E E K E E 11 或ijk P =?????????? ? ? ?ii ll ii jj E O E E O E (2) )(H P il =???????? ??ss ll E H E 或)(H P ik =?? ? ?? ? ?? ? ?ii E H E 11 其中H为第i行(列)的一个左(右)保秩因子;

(1) ))((k j i P i +=??????????? ? ?ss ll ii E E K E E 11 (2) 或))((k j i P k +=?????????? ? ? ?ll ll ii E E K E E 11 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1 (1)交换t s ij A ?)(的第i行与第j行,相当于左乘一个m阶初等分块矩阵ijL P ,其中ijL P 中的元素ii E 为h(i)阶单位矩阵, jj E 为h(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为h(r)阶单位矩阵;交换t s ij A ?)(的第i列与第j列相当于 右乘一个n阶初等分块矩阵ijk P ,其中ii E 为l(i)阶单位矩阵, jj E 为l(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为l(r)阶单位矩阵; (2) t s ij A ?)(的第i行的每一个元素左乘一个矩阵H相当于t s ij A ?)(左乘一个m阶分块矩阵)(H P iL 中H为h(i)阶方阵; t s ij A ?)(的第i列的每一个元素右乘一个矩阵H,相当于t s ij A ?)(右乘一个n阶初等到变换矩阵) (H P ik ,其中H为l(i)阶方阵; (3) t s ij A ?)(的第j行的每个元素分别左乘一个h(i)×h(j)矩阵K后加到第i行,相当于t s ij A ?)(左乘一个初等分块矩阵))((k j i P L +;第j列的每一个元素分别右乘l(j)×l(i)矩阵K后加到第i列,相当于t s ij A ?)(右乘))((k j i P k +. 定理2设A为方阵,则分块矩阵t s ij A ?)(施行第一种行初等变换后,对应的行列式为 A j i h ) ,()(1-, 其中 h(i,j)=h(i)h(j)-l+h(i+l)]+…+h(j)[h(i)+h(i+j)+…+h(j-l)], l(i,j)=l(i)h(j)-l+l(i+l)]+…+l(j)[l(i)+l(i+j)+…+l(j-l)], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: H H P i =) (,A k j i P =+))((显然成立. 下证) ,()(j i h irL P 1-= ,ii E 所在的第1行逐次与它相邻的行交换,移至jj E 前,共进行h (i)-1+h(i+1)+…+h(j-1)次交换两行,第2行逐次与它相邻的行交换,移至jj E 前,同样进行相同次交换两行,依此类推,把ii E 所在的行移至jj E 所在的行前,共进行

分块矩阵的初等变换及其应用开题报告 [开题报告]

毕业论文开题报告 信息与计算科学 分块矩阵的初等变换及其应用 一、选题的背景、意义 1.选题的背景 在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。 通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。 2.选题的意义 矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。因此,如何直接对分块矩阵实行初等变换显得非常重要,本文的目的就是讨论分块矩阵的初等变换及其应用[1]。 二、研究的基本内容与拟解决的主要问题 2.1 分块矩阵及其初等变换 2.1.1 分块矩阵的定义: 将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。以子块为元素的矩阵A称为分块矩阵。 我们将单位矩阵E分块:

??? ? ? ??=s r r E E E 0 00 001O ,其中E r 是r i 阶单位矩阵(1

巧用初等变换求解分块矩阵

大理学院毕业论文 巧用初等变换求解分块矩阵 英文标题 学院:数学与计算机学院 项目组成员:解波 指导教师:熊明 专业:数学与应用数学 班级:2011级2班 起止日期:2014年6月—2014年12月 日期:2014 年9 月1日

内容摘要:本文把数字矩阵的初等变换推广到分块矩阵中,并且运用分块初等变换求矩阵的逆、矩阵的行列式、矩阵的秩是高等代数中常见的问题。而对于高阶矩阵而言,这些问题的求解过于困难,因此用分块矩阵的初等变换来解决有关分块矩阵的问题比较方便,本文总结如何使用初等变换求矩阵的逆、矩阵的行列式、矩阵的秩。 关键词:分块矩阵初等变换分块初等变换 I

相对数在教育评价中的应用 目录 引言 ....................................................... 错误!未定义书签。1矩阵初等变换及矩阵分块的相关概念.......................... 错误!未定义书签。 1.1 矩阵的初等变换.......................................... 错误!未定义书签。 1.2 初等变换.................................................................. 1.3 分块矩阵.................................................................. 1.4 分块初等变换.............................................................. 1.5分块初等矩阵.............................................................. 2 应用分块初等变换求解行列式.................................................. 3 应用分块初等变换求矩阵的逆.................................................. 4 应用分块初等变换求矩阵的秩.................................................. 6结束语...................................................................... 参考文献...................................................................... 致谢 ....................................................................... II

第五讲矩阵的分块、矩阵的初等变换.

第五讲 矩阵的分块、矩 阵的初等变换 教学目的: 1. 介绍矩阵分块时的代数运算; 2. 讲解矩阵的初等变换及其应用; 教学内容:第二章矩阵 §2.3分块矩阵; §2.4初等变换与初等矩阵; 教材相关部分: §2.3 分块矩阵 把一个规格较大的矩阵划分成若干小块, 用分块方式来处理,把大矩阵的运算转化为小 矩阵的 运算,不仅能使运算较为简明,更重要的是使运用微型计算机组合来计算大矩阵成为可能。 A 11 A 21 、矩阵的分块: 定义2.9 用一些纵、 各个小矩阵称为 分块矩阵, 横虚线将矩阵 A 的子块。 A 分割成若干小矩阵,以这些小矩阵为元素的矩阵称为 其中 A 11 也可以按行分块: 或按列分块: an A 21 A 22 a 21 a m1 a 11 a 12 a 1n a 21 a 22 a 2n A A 2 a m1 a m2 a mn a 12 a 22 a m2 a 1n a 2n a mn B B 2 B n 、分块矩阵的运算: 对分块矩阵进行运算时, 可以把每一个子块当作矩阵的一个元素来处理, 但应保证运算的可 行。 重点是初等变换的过程和应用 A 22

1.分块矩阵的加法、数乘、转置: 定义2.10设矩阵A、B是两个同规格矩阵,且分块法一致,即:

A 11 A 12 A 1r B 11 B 12 B 1r A 21 A 22 A 2r , B 21 B 22 B 2r , A 21 J B 21 A s1 A s2 A sr B s1 B s2 B sr 其中每一 A ij 与 B ij 的规格都对应相同,则规定加法为: A A 11 A 21 B 21 B 11 B 21 A 12 B 12 A 22 B 22 A 1r A 2r B 1r B 2r ; ; (2.26) A s1 B s1 A s2 B s2 A sr B sr A 11 A 12 A 1r 设 为数,则规定数乘为: A A 21 A 22 A 2r ; ; (2.27) A s1 A s2 A sr A 1T 1 A 2T 1 A s T 1 此外,规定转置为: A T A 1T 2 A 2T 2 A s T 2 。 。 (2.28) A 1T r A 2T r A s T r 2.分块矩阵的乘法: 定义2.11 设A 是m n 矩阵, B 是n p 矩 阵。 若将 A 分为r s 个子块(A j )r s ,将 B 分 三、分块对角阵: s 中A i 是r i 阶小方阵(阶数可不同),i 1,2, ,s , r i n ,而其余的非主对角子块都为零矩阵, i1 则称为A 的分块对角矩阵。例如:若记 为 s t 个子块 (B kj ) s t , 且A 的列与B 的行分块法 一 致, 则规定 A 与B 的乘法为 A 11 A 12 A 1s B 11 B 12 B 1t C 11 C 12 C 1t A 21 A 22 A 2s B 21 B 22 B 2t C 21 C 22 C 2t A r1 A r2 A rs B s1 B s2 B st C r1 C r 2 C rt s 其中 C ij A ik B kj , i 1,2, ,r;j 1,2, t 。 (2.29) 若n 阶方阵A 的一个分块形式只在主对角线上有非零子块,即 diag ( A 1 , A 2 , ,A s ) ,其 i1

分块乘法的初等变换及应用举例(可编辑修改word版)

§7 分块乘法的初等变换及应用举例 将分块乘法与初等变换结合就成为矩阵运算中极端重要的手段. 现设某个单位矩阵如下进行分块: . 对它进行两行(列)对换;某一行(列)左乘(右乘)一个矩阵;一行(列)加上另一行(列)的(矩阵)倍数,就可得到如下类型的一些矩阵: . 和初等矩阵与初等变换的关系一样,用这些矩阵左乘任一个分块矩阵 , 只要分块乘法能够进行,其结果就是对它进行相应的变换: , (1) , (2) . (3) 同样,用它们右乘任一矩阵,进行分块乘法时也有相应的结果. 在(3)中,适当选择,可使.例如可逆时,选,则.于是(3)的右端成为 这种形状的矩阵在求行列式、逆矩阵和解决其它问题时是比较方便的,因此(3) 中的运算非常有用. 例1 设 , 可逆,求. 例2 设 , 其中可逆,试证存在,并求.

例3 证明行列式的乘积公式. 例4 设,且 则有下三角形矩阵使 =上三角形矩阵. 第四章矩阵(小结) 一、内容概述 1.矩阵运算 1)加法与减法 其中都是矩阵 2)数乘 其中是矩阵 3)乘法 其中是矩阵, 是矩阵,并且若是级矩阵,则 . 4)可逆矩阵

对于 级矩阵 ,若存在矩阵 ,使得 . 则 叫做可逆矩阵, 叫做 的逆矩阵,记做 2. 矩阵的运算规律 1) 满足加法的交换律,结合律,乘法的结合律,数乘对加法的分配律,乘法对加法的左右分配律.此外还有 . 2) 要注意下面的与数不同的性质 (1) (2) 可能 3. 几种特殊的矩阵 数量矩阵,对角矩阵,三角形矩阵,对称矩阵,反对称矩阵 4. 矩阵 可逆的充要条件 级矩阵 可逆 可以通过初等变换化为单位矩阵; 可以写成初等矩阵的乘积; 逆矩阵的求法: (1) 初等变换法 的秩为 ; 的行列式 . (2) 伴随矩阵法 5. 矩阵的秩 6. 初等矩阵与矩阵的初等变换 1) 三种初等矩阵

分块矩阵的方法,技巧与应用

分块矩阵的方法、技巧与应用 内容摘要有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的 一样。特别在运算中,把这些小矩阵当作数一样处理。这就是矩阵的分块。设A 是一个m*n 矩阵 11 121212221 2 n n m m mn a a a a a a A a a a ?????? =???? ?? 用若干横线将它分成s 块,若干竖线将它分成r 块,于是有*r s 的分块矩阵 1112121 2121 2 s s r r rs A A A A A A A A A A ?????? =???? ?? 其中 ij A 表示一个矩阵。 关键词矩阵,分块矩阵,逆矩阵,准对角矩阵 1. 导言 在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。对于这些矩阵,在运算时常常采用分块法,使大矩阵的运算化成小矩阵的运算。分块矩阵可以用来降低较高级数的矩阵级数,使矩阵的结构更清晰明朗,从而使矩阵的相关计算简单化,而且还可以用于证明一些与矩阵有关的问题。本文将主要介绍分块矩阵的一些初等变换的方法技巧,就分块矩阵的加法与数量乘法、乘法、转置、初等变换等运算性质,以及分块矩阵在矩阵求逆、行列式展开等方面进行一些基本研究。 2. 1.分块矩阵的简介 矩阵分块为矩阵运算带来便利,最常用的矩阵分块是2*2块

A B C D ?? ??? , 其中A 为*m m 矩阵块,D 为*n n 矩阵块。 例:在矩阵 2 1210000010012101 10 1E A A E ?? ? ?? ?== ? ?-?? ??? 中,2E 代表2级单位矩阵,而 11211A -??= ???,0000O ??= ??? 在矩阵 11 1221221032120124111 15 3B B B B B ?? ? -?? ?== ? ?-?? ?-?? 中, 111012B ?? = ?-?? ,123201B ??= ???, 211011B ??= ?--?? ,224120B ?? = ??? . 在计算AB 时,把A ,B 都看成事由这些小矩阵组成的,即按2阶矩阵来运算,于是 2 11 1211 12 12212211121 112220E B B B B AB A E B B A B B A B B ??????== ??? ? ++??????

分块矩阵的初等变换及应用

分块矩阵的初等变换及应用 钱拓宽 (绍兴文理学院 数学系,浙江 绍兴 312000) 摘要:矩阵的初等变换与初等矩阵是矩阵理论的重要方法.在处理一些矩阵问题有着重要的作用,将分块矩阵的初等变换到分块矩阵上,使分块矩阵也有类似的初等变换和初等矩阵,从而在处理分块矩阵时起到事半功倍的效果.关于分块矩阵和初等矩阵有不少文章有所涉及,但是他们都不够全面本文做了一些总结性的工作. 关键词:分块矩阵;初等变换;应用 1、分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到 定义1 分块矩阵的行(列)初等变换是指: (1)交换两行(列)的位置; (2)第i行(列)的各个元素分别左乘(右乘)该行(列)的一个)(i h 阶) 阶)((i l 左(右)保秩因子H; (3)第i行(列)的各个元素分别左乘(右乘)一个)(i h 阶)阶)((i l 矩阵K后加到第j行. 定义2 对应于分块矩阵t s ij A ?)(的初等分块矩阵是指: (1)))((k j i P i +=?????????? ? ? ?ss ll ii E E K E E 11 或ijk P =? ???????? ? ? ??ii ll ii jj E O E E O E (2) )(H P il =???????? ??ss ll E H E 或)(H P ik =?? ? ?? ? ? ? ??ii E H E 11 其中H为第i行(列)的一个左(右)保秩因子;

(1) ))((k j i P i +=??????????? ? ?ss ll ii E E K E E 11 (2) 或))((k j i P k +=?????????? ? ? ?ll ll ii E E K E E 11 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1 (1)交换t s ij A ?)(的第i行与第j行,相当于左乘一个m阶初等分块矩阵ijL P ,其中ijL P 中的元素ii E 为h(i)阶单位矩阵, jj E 为h(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为h(r)阶单位矩阵;交换t s ij A ?)(的第i列与第j列相当于右乘一个n阶初等分块矩阵ijk P ,其中ii E 为l(i)阶单位矩阵, jj E 为l(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为l(r)阶单位矩阵; (2) t s ij A ?)(的第i行的每一个元素左乘一个矩阵H相当于t s ij A ?)(左乘一个m阶分块矩阵)(H P iL 中H为h(i)阶方阵; t s ij A ?)(的第i列的每一个元素右乘一个矩阵H,相当于t s ij A ?)(右乘一个n阶初等到变换矩阵)(H P ik ,其中H为l(i)阶方阵; (3) t s ij A ?)(的第j行的每个元素分别左乘一个h(i)×h(j)矩阵K后加到第i行,相当于t s ij A ?)(左乘一个初等分块矩阵))((k j i P L +;第j列的每一个元素分别右乘l(j)×l(i)矩阵K后加到第i列,相当于t s ij A ?)(右乘))((k j i P k +. 定理2设A为方阵,则分块矩阵t s ij A ?)(施行第一种行初等变换后,对应的行列式为 A j i h ) ,()(1-, 其中 h(i,j)=h(i)h(j)-l+h(i+l)]+…+h(j)[h(i)+h(i+j)+…+h(j-l)], l(i,j)=l(i)h(j)-l+l(i+l)]+…+l(j)[l(i)+l(i+j)+…+l(j-l)], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: H H P i =) (,A k j i P =+))((显然成立. 下证) ,()(j i h irL P 1-= ,ii E 所在的第1行逐次与它相邻的行交换,移至jj E 前,共进行h (i)-1+h(i+1)+…+h(j-1)次交换两行,第2行逐次与它相邻的行交换,移至jj E 前,同样进行相同次交换两行,依此类推,把ii E 所在的行移至jj E 所在的行前,共进行

相关文档
最新文档