风电系统PWM并网变流器

风电系统PWM并网变流器
风电系统PWM并网变流器

第二章风电系统PWM并网变流器

2.1直驱风力发电变流系统概述

直驱型风力发电机组需要做全功率的变流器变换"其交/直整流既可以采用IGBTPWM整流器,也可以采用二极管不控整流与升压斩波"后者使用的大功率IGBT开关管少,因而性价比更高"本文研究的MW 级风力发电变流系统采用二极管不控整流,升压斩波与两重并网逆变器的功率变换拓扑结构"通过控制升压斩波器的输入电流以控制有功功率,调节无功则通过控制作为电网接口的电压型PWM变流器"系统变流部分拓扑如图2一1所示"

图2一1直驱风力发电变流系统拓扑结构

发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往

不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM变换中产生的高频谐波"

系统结构具有以下特点:

1.电机采用多极永磁同步结构:实现了电机的低速运转,无齿轮箱:不需励磁,无滑环和电刷;大大减少了系统的机械维护成本"

2.电机与整流桥均采用六相结构,可减小电压脉动并降低对直流侧滤波电容量的要求"

3.升压斩波器和并网逆变器采用并联多重化结构,一方面分担电流;另一方面采用合理的调制模式可以有效地抑制高频谐波"

4.PWM变流器直流侧中点接地使三相电流独立控制,且对多重化结构能抑制环流,同时由于对直流电压中点的箱位降低了对直流母线绝缘性能的要求;而将直流电压分为两个独立变量,在控制上必须增加一个直流电压控制环或直流电压补偿器,加大了控制难度,且由于中线的连接,引入了零序电流"

5.斩波器输出之后加入了制动单元"当电网电压突然跌落时,由于风轮机的机械惯性,传递功率不变而使并网电流突增"此时使制动

单元IGBT导通,旁路PWM变流器,电阻能耗制动,降低并网电流"待电网电压恢复后再断开制动单元开关管,系统正常运行"

6.PWM变流器网侧采用LCL滤波,实现了风电变流系统与电网的隔离:既滤除PWM变换的高频谐波,又滤除电网尖峰信号对功率变换系统的干扰"变流系统控制主要针对斩波器和逆变器"斩波器通过调节输入电流控制系统传输的有功功率"因为斩波器输出侧直流电压由PWM变流器控制恒定,所以控制输入电流时,调节IGBT开关管的占空比即控制了升压斩波器的输出电流,进而控制输入风能的功率"对变速恒频系统,斩波器输入电压会随风速的变化而改变"为了控制系统的有功功率,其输入电流指令也必然会相应的改变"所以快速的动态跟随性是斩波器的重要指标"网侧逆变器有两个控制要求,其一要求控制直流侧电压恒定,其二要求控制并网输出电流谐波畸变(THD)小,且保持单位功率因数(unitypowerfactor),以控制系统无功功率为零"当然在必要的情况下,也应可以向电网发出需要的感性无功或容性无功"而网侧逆变器由于与风轮机和同步发电机隔离,其主要控制目标是保持良好的抗扰性能"当然在系统指令改变时,PWM变流器也应具有快速的动态响应"

2.2PwM变流器的分类及其拓扑

从电力电子技术的发展来看,变流器较早应用的一种形式就是AC 心C变换装置,即整流器"它的发展经历了由不控整流器(二极管整流)!相控整流器(采用半控开关器件,如晶闸管)到PwM整流器(采用全控开关器件,如IGBT)的发展历程"传统的相控整流器,应用的时间

较长,技术也较为成熟,但存在以下问题:图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM 变换中产生的高频谐波"

并网变流器作用

(l)晶闸管换相引起网侧电压波形畸变;

(2)网侧谐波电流对电网产生谐波污染;

(3)深控时功率因数很低;

(4)闭环控制时动态响应慢;

虽然二极管整流器改善了网侧功率因数,但是仍会产生网侧谐波电流而污染电网,另外二极管整流的不足还在于直流侧电压的稳定性差"针对上述不足,PWM整流器已对传统的相控及二极管整流器进行了全面改进"其关键性的改进在于用全控型功率开关管取代了半控型功率开关管或二极管,以PWM斩控整流取代了相控整流或不控整流,功能上也已经远远超过了最初的整流,所以名称也渐渐演变成变流器

"PWM变流器可以取得以下优良性能:

(l)网侧电流近似正弦波;

(2)网侧功率因数控制(如单位功率因数控制);

(3)电能双向传输;

(4)较快的动态响应;

(5)可进行并网逆变;

目前已设计出多种的PWM变流器,电压型和电流型是最基本的分类方法"这两种类型的PWM变流器无论是在主电路结构!PWM信号发生以及控制策略等方面均有着各自的特点,并且两者存在着电路上的对偶性"电压型的PWM变流器研究和应用较多,因此本文主要介绍电压型PWM变流器(VSR)"

1.单相半桥!全桥VSR拓扑

图2一2分别示出了vsR单相半桥和单相全桥主电路拓扑结构I.4>"两者交流侧具有相同的电路结构,其中交流侧电感主要用以滤除网侧电流谐波"由图2一2(a)可看出,单相半桥VSR拓扑只有一个桥臂采用了功率开关,另一桥臂则由两电容串联组成,同时串联电容又兼作直流侧储能电容;单相全桥VSR拓扑结构则如图2一2(b)所示,它采用了具有4个功率开关的/H0桥结构"值得注意的是:电压型PWM 变流器主电路功率开关必须反并联一个续流二极管以缓冲PWM过程中的无功电能"比较两者,显然半桥电路具有较简单的主电路结构,!1.功率开关数只有全桥电路的一半,因而造价相对较低,常用于低成本!小功率应用场合"进一步研究表明,在相同的交流侧电路参数条件下,

要使单相半桥VSR以及单相全桥VSR获得同样的交流侧电流控制特性,半桥电路直流电压应是全桥电路直流电压的两倍,因此单相半桥VSR 的直流侧电压利用率低,功率开关管耐压要求相对提高,另外,为使半桥电路中电容中点电位基本不变,还需引入电容均压控制,可见单相半桥VSR的控制相对复杂"

2.三相桥式VSR拓扑结构

图2-3为三相桥式VSR拓扑结构,其交流侧采用三相对称的无中线连接方式,采用6个功率开关管,这是一种最常用的三相电压型PWM整流器,广泛应用于电力系统的有源滤波和谐波补偿,以及作为大功率拖动设备的前端整流。三相桥式VSR工作原理同单相全桥VSR 类似,但是脉冲调制的时候是三相调制

3.三电平VSR拓扑

图2-4是三电平VSR常见的拓扑结构。和二电平VSR相比而一言,三电jVSR的主要优点在于:一是对于同样的基波和谐波要求,它的开关频率低得多从而可以大幅度降低开关损耗:二是它适用于更高的交、直流侧电压规模(14]这两点都有利于加大变流机组的容量。不过三电平VSR的缺点也显而易见,-方面其主电路拓扑使用功率开关器件较多;另一方面,它的控制也要比二电一’VSR复杂,尤其需要解决中点电位平衡问题。

2.3三相电压型PWM变流器的工作原理

PWM变流器不同于传统意义上的AC/DC整流器,具有网侧功率因数控制、能量双向传输的性能。当PWM变流器从电网吸取电能时,其运行于整流工作状态,当PWM变流器向电网传输电能时,其运行于逆变工作状态。单位功率因数控制是指:当PWM变流器运行于整流状态时,网侧电压!电流同相,当PWM变流器运行于逆变状态时,其网侧电压!电流反相"进一步研究表明,PWM变流器其网侧电流及功率因数均可控,因而在风力并网变流器领域有着广泛的应用

图2一5给出了三相电压型PWM变流器的典型电路结构"图2一5中共有四个储能元件,三个交流电感L和直流电容C,另外R表示功率开关管损耗等效电阻与交流电感及网侧等效电阻之和,为PWM变流器交流侧等效电阻"

交流电感的主要作用为:隔离电网电动势与变流器桥臂交流电压,控制变流器交流侧电压实现四象限运行;滤除交流电流谐波;储能,实现变流器与电网传递无功功率;使变换器具有升压变换(Boost)特性"直流电容的主要作用为:缓冲交流侧与直流负载之间的能量交换,稳定直流电压;使直流侧具有电压源特性,构成电压型PWM变流器;抑制

直流侧电压谐波"根据PWM变换电路的原理,直流电压由直流电压闭环控制,桥臂中点电压通过开关管的PWM模式控制,类似于同步电机励磁电压矢量的方向和幅值可控=.6]"图2一6表示电压型PwM变流器的等效电路图"根据正弦调制和载波比较技术对功率开关管进行PWM调制,可以在桥臂交流侧产生正弦调制的PWM电压波形,如图2-6所示"正弦调制PWM波含与调制波频率相同且幅值成正比的基波分量和与载波相关的高频谐波"这些高次谐波会产生电感电流脉动"忽略PWM高次谐波,如下相量方程(2一1)式成立:

其中E为电网电动势相量,U,为桥臂交流电压"!的基波分量的相量而夕表示线电流基波分量的相量"以电网电动势为参考,控制桥臂交流电压相量U!可以控制PWM变流器的运行状态,使其不仅能工作于单位功率因数的整流或逆变状态,也可以根据需要发出超前或滞后的无功"图2一7给出系统相量图"图2一7a)中U!超前E相角占,而电流夕超前云相角少"这里,,90",其有功分量少;与云相位相反,电路工作在逆变状态,实现了能量的回馈;同时电流无功分量了,超前E相角900,表明其具有超前的无功,呈现容性负载特性"图(2一7b)中U!滞

后E相角占,而电流I滞后云相角中"这里价<90",其有功分量2"与云相位相同,电路工作在整流状态:同时电流无功分量I;滞后E相角900,表明其具有滞后的无功,呈现感性负载特性"

实际上由于可以调节电流幅值的大小和电网电动势与线电流之间的相位差,系统既可以控制交直流侧有功功率的传递,又可以控制变流器从电网吸收或发出的无功功率,方便地实现了四象.限运行"由此可见,要实现PWM变流器运行状态的控制,关键在于网侧线电流的调节"一方面可以通过控制桥臂交流电压来间接控制网侧电流(幅值相位控制);另一方面,也可以通过网侧电流的闭环调节直接控制变流器的网侧电流"

2.4三相电压型PWM变流器的数学模型

对控制对象的数学建模主要是为了提出相应的控制策略,设计控制参数并分析系统的动!静态特性"本节建立两种数学模型:一般电路拓扑在三相静止坐标系(a-b一c)下的数学模型(包括低频和高频模型),两相旋转坐标系(d一q)下的数学模型"针对图2一8所示的主电路图,图中ea,气,ec为电源电压,ia,心,i.为电源电流,叽,叽,叽为整流前端输出PwM电压一几为直流回路输出电流,瓜为直流负载电流,红为直流滤波电容输入电流,呱为直流母线电压,UN(,为图中N点对O 点的电压,尺等效为开关损耗等效电阻和交流侧电感电阻含量之和,凡.为直流侧等效负载电阻,几为直流侧滤波电容值,e:为直流电动势"各电压电流量均为瞬时值,正方向如图2一8所示"为了简化分析作如下假设

(l)交流三相电网为理想电压源,即三相对称!稳定!内阻为零;

(2)三相回路等效电阻相等,均为尺;

(3)各相电感相等,均为入;

(4)忽略开关器件的导通压降和开关损耗;

(5)忽略分布参数的影响;

2:41静止坐标系数学模型

所谓静止坐标系数学模型就是根据三相电压型PWM变流器拓扑结构,在三相静止坐标系(a,b,")中,利用电路基本定律对变流器所建立的一般数学进行描述"如图2一6所示,当直流电动势气=o时,直流侧为纯电阻负载,此时三相vsR只能运行于整流模式;当气>Vuc时候,三相vSR既可运行与整流模式,又可运行于有源逆变模式,此时三相vSR将气所发电能向电网侧输送,有时也称这种模式为再生发电模式;当气<呱时,三相VSR则运行于整流模式"为便于分析,定义三相整流桥开关函数Sa,凡,Sc为:

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

全功率变流器风电机组的工作原理及控制策略

第五章全功率变流器风电机组的工作原理及控制策略 5.1 全功率变流器风电机组的工作原理 (1) 5.1.1全功率变流器风电机组传动链形式 (1) 5.1.2同步发电机 (1) 5.1.3永磁同步风力发电机结构及特点 (3) 5.1.4电励磁同步风力发电机结构及特点 (5) 5.2 全功率变流器风电机组变流器 (5) 5.2.1 电机侧变流器控制策略 (6) 5.2.1 电网侧变流器控制策略 (7) 5.1 全功率变流器风电机组的工作原理 5.1.1全功率变流器风电机组传动链形式 随着现代风电机组的额定功率呈现上升趋势,风轮桨叶长度逐渐增加而转速降低。例如:额定功率为5MW的风电机组桨叶长度超过60米,转子额定转速为10rpm左右。当发电机为两对极时,为了使5MW风力发电机通过交流方式直接与额定频率为50Hz的电网相连,机械齿轮箱变速比应为150。齿轮箱变速比的增加,给兆瓦级风电机组变速箱的设计和制造提出了挑战。风电机组功率及变速箱变速比增大时,其尺寸、重量及摩擦磨损也在增加。作为另外一种选择,风力发电机可以采用全功率变流器以AC/DC/AC的方式与电网相连。 全功率变流器是一种由直流环节连接两组电力电子变换器组成的背靠背变频系统。这两个变频器分别为电网侧变换器和发电机侧变换器。发电机侧变换器接受感应发电机产生的有功功率,并将功率通过直流环节送往电网侧变换器。发电机侧变换器也用来通过感应发电机的定子端对感应发电机励磁。电网侧变换器接受通过直流环节输送来的有功功率,并将其送到电网,即它平衡了直流环节两侧的电压。根据所选的控制策略,电网侧变换器也用来控制功率因数或支持电网电压。 5.1.2同步发电机 发电系统使用的同步发电机绝大部分是三相同步发电机。同步发电机主要包括定子和转子两部分。定子是同步发电机产生感应电动势的部件,由定子铁芯、三相电枢绕组和起支撑及固定作用的机座组成。转子的作用是产生一个强磁场,并且可以由励磁绕组进行调节,主要包括转子铁心、励磁绕组、滑环等。同步发电机的励磁系统一般分为两类,一类是用直流发电机作为励磁电源的直流励磁系统,另一类是用整流装置将交流变成直流后供给励磁的整流励磁系统。发电机容量大时,一般采用整流励磁系统。同步发电机是一种转子转速与电枢电动势频率之间保持严格不变关系的交流电机。 同步发电机的转子基木上是一个大的电磁铁。磁极有凸极和隐极两种结构。凸极转子结构和加工比较简单,制造成本低。中小容量电机一般采用凸极以降低成本;对大容量、高转速原动机,高速旋转的发电机转子将承受很大的离心力,采用隐极可以更好地固定励磁绕组。 同步发电机转子结构示意图 当转子励磁绕组中流过直流电流时,产生磁极磁场或称为励磁磁场。原动机拖动转子旋

风电并网对电力系统的影响及改善措施标准版本

文件编号:RHD-QB-K4609 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 风电并网对电力系统的影响及改善措施标准版 本

风电并网对电力系统的影响及改善 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的

能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建

风电变流器简介

风电变流器简介 快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有防尘、防盐雾等运行要求。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率QHVERT-DFIG型风电变流器基本原理 器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如下所示: 统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电本文将针对市场上主流的双馈型风电变流器进行简介。 型风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机关,目前已实现规模化的生产。 06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国变流器配电系统提供雷击、过流、过压、过温等保护功能。 的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风进行有功和无功的独立解耦控制。 机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要场远程监控系统的集成控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电转子侧逆变器、直流母线单元、电网侧整流器。 原理图如下: 控制器、监控界面等部件。 变流器主回路系统包含如下几个基本单元: QHVERT-DFIG型风电变流器系统构成 变流器由主电路系统、配电系统以及控制系统构成。包括定子并网开关、整流模块、逆变模块、输入/输出滤波器、有源Crowbar电路、功率柜主要由功率模块、有源Crowbar等构成。 功率柜:主要负责转子滑差能量的传递。 并网柜:主要用于变流器与发电机系统和电网连接控制、一些控制信控制柜主要由主控箱、PLC、滤波器、电源模块等组成。 并网柜主要由断路器、接触器、信号采集元件、UPS、加热器、信号变流器控制结构框图如下: 接口部分等构成。 号的采集以及二次回路的配置。 上述各功能分配到控制柜、功率柜、并网柜中: 约了机舱空间,柜中还可提供现场调试的220V电源。 成有并网控制系统,用户无须再配置并网柜,提高了系统集成度,节制指令,控制变流器的运行状态 控制系统由高速数字信号处理器(DSP)、人机操作界面和可编程逻配电系统由并网接触器、主断路器、继电器、变压器等组成,自身集辑控制器(PLC)共同构成。整个控制系统配备不间断电源(UPS),控制柜:控制柜主要对采集回的各种模拟数字信号进行分析,发出控便于电压跌落时系统具有不间断运行能力。 成功满发,截止目前运行状态稳定。 附:北京清能华福风电技术有限公司简介 目前在赤峰、大安等风场正陆续进行变流器吊装施工。 限公司自主研发的1.5MW风电变流器在国电联合动力技术有限公司北京清能华福风电技术有限公司成立于2006年7月,由“国内高压变求。 2009年12月28日经过2天的现场调试,北京清能华福风电技术有及其现场调试所相关技术人员的支持下,已于哲里根图风场全部并网公司坐落于中关村科技园,依托清华大学电力系统国家重点实验室的厚的资金、科研、市场、服务实力,为国家大力鼓励、扶持的风力发电事业,提供其拥有自主知识产权的核心装备——兆瓦级风力发电机变流器及其电控系统。一流技术以及利德华福专业化、规模化、现代化的生产厂房,凭借雄以达到满功率发电和连续运行的要求,系统品质达到了风场应用的要资控股,是专门从事开发、制造风电变流器与控制系统产品的高新技术企业。 频器领域最具影响力的企业”——北京利德华福电气技术有限公司投3月至今,在河北建设投资公司和东方汽轮机有限公司的支QHVERT-DFIG型风电变流器具有以下一些特点: 优异的控制性能 完备的保护功能 少发电机损耗,提高运行效率,提升风能利用率。 风速范围内的变速恒频发电,改善风机效率和传输链的工作状况,减 型风电变流器技术特征 型风电变流器可以优化风力发电系统的运行,实现宽良好的电网适应能力 具备高可靠性,适应高低温、高海拔等恶劣地区运行 变流器在河北海兴风电场成功并网发电,通过240小时验收,目前已无故障连续运行8000多小时。成功经历了夏季高温、冬季降雪后的持下,北京清能华福风电技术有限公司自主研发生产的1.5MW风电QHVERT-DFIG型风电变流器最新动态 模块化设计,组合式结构,安装维护便捷 2丰富的备品备件;专业、快速的技术服务 低温、海边盐雾等运行环境的考验,事实证明了:清能华福变流器可

风电并网稳定性开题报告

南京工程学院 毕业设计开题报告 课题名称:风力发电场并网运行稳定性研究 学生姓名:李金鹏 指导教师:陈刚 所在院部:电力工程学院 专业名称:电气工程及其自动化 南京工程学院 2012年3月5日

说明 1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。

毕业设计(论文)开题报告 学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究 毕业设计的内容和意义 内容: 早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。 因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。 意义: 据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。 随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。

[整理]东汽FD70FD77风电机组变流器系统原理及应用

东汽FD70/FD77风电机组变流器系统原理及应用1 变速恒频发电系统的工作原理 1.1 交流电机的旋转磁场 以单相交流电机为例,单相交流电机有2 个绕组,它们在空间上相差90?正交分布,分别给2 个绕组加入时间上相差90?的交流电。如图1(a)所示,发电机定子上正交分布有2 个绕组,一个是AX,另一个是BY。2 个绕组加上的电流波形如图1(b)所示。我们规定从A 流进X 流出或从B 流进Y 流出为正方向;从X 流进A 流出或从Y 流进B 流出为负方向。 图1 单项交流电机绕组 在t0 时刻,A 绕组上通过的电流为零;B 绕组上通过的电流为负的最大值。根据电磁定律,t0 时刻,两个绕组合成的磁场方向为从左至右方向→。 在t1 时刻,A 绕组上通过的电流为正的最大值,B 绕组上通过的电流为零,根据电磁定律,t0 时刻,两个绕组合成的磁场方向为从上至下方向↓。 在t2 时刻,A 绕组上通过的电流为零,B 绕组上通过的电流为正的最大值,根据电磁定律,t2 时刻,两个绕组合成的磁场方向为从右至左方向←。 在t3 时刻,A 绕组上通过的电流为负的最大值,B 绕组上通过的电流为零,根据电磁定律,t3 时刻,两个绕组合成的磁场方向为从下至上方向↑。 在t4 时刻,正好回到t0 时刻的状态,两个绕组合成的磁场方向为从左至

右方向→。电流变化一个周期,两个绕组合成的磁场旋转一周。 旋转磁场的转速为n=60f/p。 同理,如果三相绕组在空间上按120?对称分布,三相绕组在时间上分别加上相位相差120?的三相交流电。同样要在转子铁芯周围形成一个旋转磁场。 旋转磁场的转速n=60f/p。 其中,f 为三相交流电频率。P 为磁极对数。 1 变速恒频发电系统的工作原理 1.1 交流电机的旋转磁场 以单相交流电机为例,单相交流电机有2 个绕组,它们在空间上相差90?正交分布,分别给2 个绕组加入时间上相差90?的交流电。如图1(a)所示,发电机定子上正交分布有2 个绕组,一个是AX,另一个是BY。2 个绕组加上的电流波形如图1(b)所示。我们规定从A 流进X 流出或从B 流进Y 流出为正方向;从X 流进A 流出或从Y 流进B 流出为负方向。 图1 单项交流电机绕组

风电变流器项目申报材料

风电变流器项目 申报材料 规划设计/投资方案/产业运营

摘要说明— 目前,风电作为应用最广泛和发展最快的新能源发电技术,已在全球 范围内实现规模化应用。在风力发电设备中,风电变流器是风力发电机组 不可缺少的能量变换单元,是风电机组的关键部件之一。风电变流器的行 业规模一般以风电机组装机容量衡量。 该风电变流器项目计划总投资14381.39万元,其中:固定资产投资11092.81万元,占项目总投资的77.13%;流动资金3288.58万元,占项目 总投资的22.87%。 达产年营业收入26846.00万元,总成本费用21187.27万元,税金及 附加244.59万元,利润总额5658.73万元,利税总额6683.83万元,税后 净利润4244.05万元,达产年纳税总额2439.78万元;达产年投资利润率39.35%,投资利税率46.48%,投资回报率29.51%,全部投资回收期4.89年,提供就业职位419个。 报告内容:项目总论、投资背景及必要性分析、市场调研预测、产品 规划、项目建设地研究、项目土建工程、工艺先进性分析、项目环保研究、职业保护、风险评价分析、项目节能分析、项目实施计划、项目投资计划 方案、经济效益评估、综合评价结论等。 规划设计/投资分析/产业运营

风电变流器项目申报材料目录 第一章项目总论 第二章投资背景及必要性分析第三章产品规划 第四章项目建设地研究 第五章项目土建工程 第六章工艺先进性分析 第七章项目环保研究 第八章职业保护 第九章风险评价分析 第十章项目节能分析 第十一章项目实施计划 第十二章项目投资计划方案 第十三章经济效益评估 第十四章招标方案 第十五章综合评价结论

风电变流器简介

风电变流器简介 风能作为一种清洁得可再生能源,越来越受到世界各国得重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化得生产。 本文将针对市场上主流得双馈型风电变流器进行简介。 QHVERT-DFIG型风电变流器系统功能 变流器通过对双馈异步风力发电机得转子进行励磁,使得双馈发电机得定子侧输出电压得幅值、频率与相位与电网相同,并且可根据需要进行有功与无功得独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机与电网造成得不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便得实现变流器与系统控制器及风场远程监控系统得集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 QHVERT-DFIG型风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力得“双DSP得全数字化控制器”;在发电机得转子侧

变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率得IGBT功率器件,保证良好得输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机得运行状态与输出电能质量。这种电压型交-直-交变流器得双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪得发电机有功与无功得解耦控制,就是目前双馈异步风力发电机组得一个代表方向。 变流器工作原理框图如下所示: QHVERT-DFIG型风电变流器系统构成

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

风电变流器简介

风电变流器简介 风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化的生产。 本文将针对市场上主流的双馈型风电变流器进行简介。 QHVERT-DFIG型风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 QHVERT-DFIG型风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮

点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如下所示: QHVERT-DFIG型风电变流器系统构成 变流器由主电路系统、配电系统以及控制系统构成。包括定子并网开关、整

风电并网对电力系统的影响

风电并网对电力系统的影响 发表时间:2017-12-11T17:26:36.300Z 来源:《电力设备》2017年第23期作者:崔强谷岩刘志明[导读] 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。 (新疆新能源(集团)有限公司 830011) 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。关键词:风电并网;电力系统;影响;措施 随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。 1 风电并网对电力系统的影响 1.1 风电并网对系统稳定性的影响 一方面,风电并网引起的稳定问题主要是电压稳定问题。风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。 另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。 1.2 风电并网对系统运行成本的影响 风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。但是风力发电的波动性和间歇性使风电场的功率输出具有很强的随机性,目前的预报水平难以满足电力系统实际的运行需要。为了保证风电并网后系统运行的可靠性,需要在原有运行方式基础上,额外安排一定容量的旋转备用,以维持电力系统的功率平衡与稳定。可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本,另一方面又增加了电力系统的可靠性成本。 1.3 风电并网对电网频率的影响 当风速大于切入风速时,风电机组启动挂网运行;当风速低于切入风速时,风电机组停机并与电网解列。当风速大于切出风速时,为保证安全,风电机组必须停机。因此,受风速变化的影响,风电机组的出力也随时变化,一天内可能有多次启动并网和停机解列。风电场不稳定的功率输出会给电网的运行带来许多问题。如果风电容量在电网总装机容量中所占比例很小,风电功率的注入对电网频率影响甚微。但是,当风电场与其他发电方式的电源组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。随着电网中风力发电装机容量所占的比例逐步提高,大量风电功率的波动增大了系统调频的难度,而系统频率的变化又会对风电机组的运行状态产生影响。 1.4 风电并网对电能质量的影响 风能资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压波动和闪变、电压偏差以及谐波等。 电压波动及闪变,源于波动的功率输出。由风速动力特性诱发的有功功率波动取决于当地的风况和湍流强度,频率不定;风电机组输出功率的波动主要由风速快变、塔影效应、风剪切、偏航误差等因素引起,其波动频率与风力机的转速有关。固定转速风电机组引起的闪变问题相对较为严重,某些情况下已经成为制约风电场装机容量的关键因素。风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置可能带来谐波问题;另外一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振。电压偏差问题属于电网的稳态问题。大幅度波动的风速引起风电机组出力波动较大,所以风电功率的波动导致电网内某些节点电压偏差超出国家标准规定的限值。 发电机本身产生的谐波是可以忽略的,谐波电流的真正来源是风电机组中的电力电子元件,谐波干扰的程度取决于变流装置以及滤波系统的结构状况,而且与风速大小相关。对于固定转速风电机组,在持续运行过程中没有电力电子元件的参与,几乎不会产生谐波电流。实际需要考虑谐波十扰的是变速恒频风电机组,就是因为运行过程中变速恒频风电机组的变流器始终处于工作状态。 2 改善风电并网影响的措施 2.1 利用静止无功补偿器和超导储能装置改善系统稳定性 静止无功补偿器可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将静止无功补偿器安装在风电场的出口,根据风电场接入点的电压偏差量来控制静止无功补偿器补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。 具有有功和无功功率综合调节能力的超导储能装置,代表了柔性交流输电系统的新技术方向,将超导储能装置用于风力发电可实现对电压和频率的同时控制。超导储能装置能灵活地调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装超导储能装置装置可充分利用其综合调节能力,降低风电场输出功率的波动,稳定风电场电压。超导储能装置是一种有源的补偿装置,与静止无功补偿器相比,其无功功率补偿量对接入点电压的依赖程度小,在低电压时补偿效果更好。 2.2 利用源滤波器、动态电压恢复器改善电能质量 源滤波器、动态电压恢复器装置的主要功能是抑制电压波动和闪变。

风力发电的并网接入及传输方式

风力发电的并网接入及传输方式 摘要:在环境保护之中,风力发电是其中节约资源最为有效地方式,虽然现今一直处在低谷的时期,但是未来的发展前景十分广阔,风力发电技术也在逐渐的趋于成熟,世界装机容量以及发电量也在逐渐的加大,日后在发电市场也逐渐的会占有更大的比例。本文主要就是针对风力发电的并网接入及传输方式来进行分析。 关键词:风力发电;并网接入;传输方式 1、我国风力发电及并网发展情况 相关的数据充分的表明,2010年的中国风电累积装机容量达到了4182.7万KW,在超过了美国之后,已经跃居成为世界第一装机大国。但与此同时,风电的发电量只有500亿千瓦的时候,依据要比美国低,并网容量也只有吊装容量的三成左右,要比国际水平低出很多,这在很大程度之上严重的影响到了效益水平与风电效率的提高。中国的风电行业的风电行业的发展速度也是十分的迅猛,基本上是用到了5年的时间最终才实现了欧美发达国家将近30年的发展进程,在产业逐渐进步市场规模快速发展的同时,其面临的问题与挑战也逐渐的凸显出来。首先是中国风电装备的质量水平,其中包括了发电能力以及设备完好率等等均有待提高,其次就是吊装容量和并网容量之间的差别,和国际先进水平相比之下,还存在着较大差别。怎么从装机大国转变成为风电的利用大国,也就成为了我国目前面临的最大问题。 2、风电机组及其并网接入系统 2.1、同步发电机 在该结构之中,允许同步发电机以可变的速度运行,可以产生频率与可变电压的功率。以此来作为在并网发电的系统之中广泛应用的同步发电机,在运行的时候,不仅仅可以输出有功功率,而且还可以提供无功功率,且频率也是十分的稳定。对于由风力机驱动的同步发电机和电网并联运行的时候,就随机可以采用自动准同步并网以及自同步并网的方式。因为风电的电压、频率的不稳定性,一般就会使得应用前者并网相对比较困难;然而对于后者来说,因为并网的装置比较简单,最为常见的结构就是通过AC—DC—AC的整流逆变方式与系统进行并网,其原理结构如图1所示。 图1同步发电机并网结构 2.2、笼型异步发电机 我们由发电机的特点可以知道,为了电网并联,就务必要在异步发电机与风

风电并网对电力系统的影响及改善措施

风电并网对电力系统的影响及改善措施 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低; (3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电

具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建设规模的严重障碍。因此深入研究风电场与电网的相互作用成为进一步开发风电所迫切要求解决的问题。其局限性主要表现在:(1)风能的能量密度小且不稳定,不能大量储存;(2)风轮机的效率较低;(3)对生态环境有影响,产生机械和电磁噪声;(4)接入电网时,对电网有负面影响。 二、我国风力发电装机容量现状 根据中国风能协会发布《2012年中国风电装机容量统计》报告中数据显示,2012年,中国(不包括台湾地区)新增安装风电机组7872台,装机容量12960MW,同比下降26.5%;累计安装风电机组53764台,装机容量75324.2MW,同比增长20.8%。 2001-2012 年中国新增及累计风电装机容量区域装机情况图(引自《2012年中国风电装机容量统计》) 2006-2012 年中国各区域累计风电装机容量图(引自《2012年中国

风电并网技术标准

风电并网技术标准 (征求意见稿)编制说明 1 第一章“范围”的说明 第1.0.3 条对于目前尚不具备低电压穿越能力等技术要求且已投运的风电场及风电机组,在影响电网安全稳定运行情况时,须参照本标准实施改造。第三章“术语”的说明 1、第3.0.3 条本技术标准提出了风电有效容量的概念。根据统计结果,东北电网已投运风电场出力在40%装机容量以下的概率达到了95%;西北电网中甘肃酒泉地区风电场(总装机为 5160MW)出力在80%装机容量以下的概率达到了95%;内蒙电网的风电出力在60%装机容量以下的概率达到了95%;张家口地区风电场出力在地区风电装机容量75%以下的概率为95%;张家口某一风电场(装机容量为30MW)出力在风电装机容量90%以下的概率为98%。风电有效容量应根据风电的出力概率分布,综合考虑系统调峰和送出工程,使系统达到技术经济最优来确定。风电有效容量的确定考虑因素较多,计算复杂,根据对东北、西北、华北地区的研究,暂提出风电场有效容量和风电基地有效容量的选取建议值:对于单个风电场而言,根据风电场出力特性,在某一出力值以下的累积概率达到95%~100%时,建议选择这一出力值为风电场有效容量。 2 对于风电基地而言,根据风电基地出力特性,在某一出力值以下的累积概率达到90%~95%时,建议选择这一出力值为风电基地有效容量。 2、第3.0.4 条和第3.0.8 条关于“并网点”和“公共连接点”的定义。 图1 中以1 个接入220kV 电网的风电场为例进行“并网点”和“公共连接点”的说明。图1“并网点”和“公共连接点”图例 本定义仅用于本技术标准,与产权划分无关。第四章“风电场技术规定”的说明 1、第4.1 节风电场接入系统 66kV 220kV 并网点公共连接点 3 本技术标准提出用风电有效容量来选择风电场送出线路导线截面和升压变容量,使系统达到技术经济最优。 2、第4.2 节风电场有功功率风电场有功功率控制目的: 在电网特殊情况下限制风电场输出功率控制风电场最大功率变化率 3、第4.2.2 条本技术标准提出了在风电场并网以及风速增长过程中,每分钟有功功率变化率不超过2%~5%的要求。 本条的制定参考了德国、丹麦、英国等国家相关技术规定:德国要求每个风电场必须具备一定的有功调节能力,可运行在最小出力和最大出力之间的任何一点,可按每分钟1%额定功率的变化速率改变出力。 丹麦要求风电场可将出力约束在额定功率的 20%~100%范围内的任意点上,出力调节速度在1%~10%额定功率/分钟。英国要求风电场可将出力维持在任意设定的运行点上。根据对东北、西北、华北地区的研究,目前系统调频问题并不突出,不是制约风电发展的主要因素,但是考虑到风电装机规模的不断增长,借鉴国外风电发展的经验,应对风电场有功功率变化率提出要求。 根据甘肃目前运行情况,在甘肃现有风电装机648.1MW 情况下, 1 分钟最大爬坡速率值为22.5MW,每分钟有功功率变化率为3%,可

用第4代IGBT模块实现风电变流器的高功率密度设计

Using IGBT4 Modules to realize High Power Density Design of Wind Power Converters
Oct. 2010 Power Seminar

Wind Power and Infineon Solution
22.05.2007
For internal use only
Page 2

Double Feed Induction Generator
22.05.2007
For internal use only
Page 3

Direct-Drive Synchronous Generator
22.05.2007
For internal use only
Page 4

Direct-Drive Synchronous Generator
22.05.2007
For internal use only
Page 5

Requirement of IGBT modules for wind converter
20 years design-lifetime for power semiconductors ? calculation based on load cycles given by customers based on their specific power conversion system. Clearance and creepage distances higher than for industry inverters needed in case no splash water protected cabinet is used. ? for high humidity and salt content in the air Low losses Low thermal resistances Availability of DC-link voltage ? Package, internal stray inductance. RBSOA
22.05.2007
For internal use only
Page 6

相关文档
最新文档