冷冻水压差旁通系统的选择计算

冷冻水压差旁通系统的选择计算
冷冻水压差旁通系统的选择计算

冷冻水压差旁通系统的选择计算

在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。因为冷水机组

,当负荷减小

50%时,水流量仅需13%

87%。

风机盘管一般均采用二位控

风量减小,水温差减小,

在一般系统中,这两种情况均会出现,此时就需综合考虑空调器与风机盘管水量的比例,部分负荷时间,来选择旁通阀旁通水量。在一些典型的场合如商场,旁通水量甚至会超过一台冷水机组(共三台机组时)额定水量的两倍。

旁通阀口径的选择计算,在许多文章均有论及,此处简述如下:

?

G?

=

P

Kv

G——流量。m3/h

Kv——流通能力,与所选择的阀门有关。

△P——阻力损失。Bar

例:一台制冷量500RT的冷水机组,额定冷冻水量302m3/h,接管口径250mm。旁通水量取350m3/h,供回水计算压差为2bar(约2x105Pa)。DN125旁通阀流通能力250,计算如下:

=

G(m3/h)>350

?

2

250=

353

所以采用DN125旁通阀即可满足要求。旁通阀都具有高流通能力,所以一般其口径可比冷水机组接管口径小二个规格。

压差控制系统的控制方式有比例控制(Honeywell),输出比例变化的电阻信号,有三位控制(Johnson,Erie),输出进、停、退信号。比例控制的精度较高,价格也高,需根据不同的精度要求选配。两种方式所配套的执行器也不同。

旁通阀执行器与阀门需根据不同的系统压差,配套不同系列的阀门,例如某品牌VBG阀门+V A T执行器适用的最大工作压差为2bar,而DSGA阀门+MVL执行器的最大工作压差则为8bar。若定货时未指明,厂商一般均会按较高压差配套。

总之,在压差旁通系统的选型中,要认真考虑各种因素,阀门特性,压差,流通能力,执行器都需考量。在有的工程中,只是简单地按冷水机组口径选择旁通阀径,往往会造成浪费。

旁通阀对应的流通能力Kv

压差旁通阀工作原理

问题1 ,这个要看你的自控方案,如果自控保证大机比小机先卸载,那么就可以以小机的流量为基准。如果不考虑自控,那么保险起见还是以大机作为基准,因为大机的需用流量大,大机满足了,小机的流量就没问题。 问题2,多台主机并联,在设计时压差旁通的计算只要满足一台主机的流量即可。压差平衡阀只有在末端具有变流量功能的系统,才有存在必要。当热负荷变小,末端关闭,系统总流量减小,水温降低。主机逐一关闭,直至省下最后一台主机运行。当末端继续关闭,流量就可能低于单台主机的必须流量。此时压差旁通阀打开,水流从分集水器之间短路,保证通过主机蒸发器热交换器的水量满足要求。 问题3,主机热交换器进出压降降与系统供回水管压降不是一回事。主机热交换器的水阻(阻力特性曲线)是固定不变的(不考虑脏堵或结垢),那么压降和流量是对应的(可以从主机技术资料中查找流量和压降的对应图表),理论上,一个压降就代表一个流量,流量越大压降越大。而系统的阻力特性是变化的:随着各末端设备的调节阀减小开度,系统阻力越大,流量越小,供回水压差越大。 但是,在一个已经安装调试完的系统,分集水器的压差和主机流量之间是有一定关系的。水泵运行起来后,如果末端关小,管网阻力增加,流量减少,供回水压差增加,那么主机流量也势必减少。这时候打开分集水器之间旁通,把一部分水流短路,相当于从旁通管补偿前面被限制下来的流量,此时供回水压差又下降了。 从另一个角度分析,系统流量以及压力是水泵工作特性曲线和系统管网阻力特性曲线的交点决定的。当末端设备关小开度,相当于系统阻力增加,系统管网阻力特性曲线变陡,和水泵特性曲线的交点左移上升,水压提高流量下降。此时通过分集水器之间打开旁通,重新减小管网阻力,是阻力曲线变缓,和水泵特性曲线的交点右移下降,回到原来的那个状态,流量恢复压力下降。 压差旁通的工作原理就是这样

空气焓差法计算制冷量

组合式空调箱空气焓差法计算制冷能力 主题:空调箱制冷效能验证 主旨:于现场快速计算空调箱于当前工况下制冷(热)能力 关键字:表冷器、进风干球温度、进风湿球温度、出风干球温度、 出风湿球温度、空气焓值、空气绝对湿度、制冷能力 测试方法: 根据焓差法测量制冷能力原理,用焓差法测定时,就是在被测空调器的进、出口气流中设置干、湿球温度计,并在空调器出风口装设风量测量装置。待工况稳定后,即可对空调器的进、出口空气参数及通过空调器的风量进行测定。国家标准GB/T7725-1996给出的制冷量的计算公式为: 12()(1) L I I Q X υ?-=?+ (1) 式中:Q ——空调器制冷量,kW ; I 1——空调器室内侧回风空气焓值,kJ/kg (干空气); I 2——空调器室内侧送风空气焓值,kJ/kg (干空气); L ——空调器室内侧测点的风量,m 3/s ; υ——测点处湿空气比容,m 3/kg ; X ——测点处空气绝对湿度,kg/kg (干空气)。 江苏嘉禄嘉鋒制冷設備有限公司 附件一

上述5个参数均不是直接测量量,它们需要通过直接测量量:表冷器进风干球温度、表冷器进风相对湿度、表冷器出风干球温度、表冷器出风相对湿度、冷凝器进风干球温度以及大气压力计算得出(或者查空气参数表)。 ①水蒸气的饱和压力Ps (Pa ) 由经验公式可得温度t (℃)对应的水蒸气饱和压力Ps 为: 3816.44133.332exp 18.3036227.02S P t ??=?-??+? ? (2) 由式(2)可求出表冷器器进风温度TE1、表冷器出风温度TE2分别对应的水蒸气饱和压力P S 1、P S 2,单位为Pa 。 ②水蒸气的分压力P V (Pa ) 若已知相对湿度?,则水蒸气的分压力P V 为: V S P P ?=? (3) 由式(3)可求出表冷器进风相对湿度FE1、表冷器出风相对湿度FE2分别对应的水蒸气分压力P V 1、P V 2,单位为Pa 。 ③含湿量X (kg/kg (干空气)) 未饱和空气和饱和空气的含湿量均可由下式计算: 0.622V V P X P P =- (4) 由式(4)可求出表冷器进风含湿量X1、表冷器出风含湿量X2,单位为kg/kg (干空气)。 ④比焓I (kJ/kg (干空气)) 湿空气的比焓是相对于单位质量干空气而言的,是1kg 干空气的

管道流量计算汇总

请教:已知管道直径D,管道压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管有压力P,可管流量为零。管流量不是由管压力决定,而是由管沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q――流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的径和压力流量的关系 似呼题目表达的意思是:压力损失与管道径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管壁粗糙度;L――管长;Q――流量;d――管径 在已知水管:管道压力0.3Mp、管道长度330、管道口径200、怎么算出流速与每小时流量? 管道压力0.3Mp、如把阀门关了,水流速与流量均为零。(应提允许压力降) 管道长度330、管道口径200、缺小单位,管道长度330米?管道径200为毫米?其中有无阀门与弯头,包括其形状与形式。 水管道是钢是铸铁等其他材料,其壁光滑程度不一样。 所以无法计算。 如果是工程上大概数,则工程中水平均流速大约在0.5--1米/秒左右,则每小时的流量为:0.2×0.2×0.785×1(米/秒,设定值)×3600=113(立方/小时) 管道每米的压力降可按下式计算:

空调能力测试焓差法制冷量和制热量的手工测量计算

空调能力测试焓差法制冷量和制热量的手工测 量计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

七、焓差法制冷量和制热量的手工测 量与计算 说明 用本节所介绍的方法进行测量记录与计算是一种简化的方法,在实际操作中非常实用。它可以用来对制冷量和制热量进行初步计算,也可对电脑输出的结果进行大致上的校核。 制冷量、制热量试验数据记录表 试验系统在额定制冷工况条件下或额定制热工况条件下运行稳定后,应每隔5分钟记录一次数据,整个试验过程应记录七次。原始数据记录表格推荐如附表1。 循环风量测量与计算 试验系统运行稳定后开始进行循环风量测量,首先校正测量装置静压。调节测量装置辅助风机转速(通过给定变频器频率调节),使静压箱与环境大气压压差为0。然后测量喷嘴前后静压差,(每5分钟测量一次,如果某次测量结果与上一次有较大差别,应重新校正静压),并做好记录。 风量计算如下: 采用1个Φ100喷嘴*:qA=×10-3√hp (M3/s)(1) 采用1个Φ150喷嘴*:qA=×10-3 √hp (M3/S)(2) 式中:hp—喷嘴前后静压差Pa. 多个喷嘴测量,风量为每个喷嘴计算风量之和。 制冷量的计算 1.4.1 焓差计算 △h=hi-ho (KJ/Kg) (3) 式中:△h—被试空调器(机)室内侧进出风焓差 hi—被试空调器(机)室内侧进风焓值(KJ/Kg),由测试所得七次进风的平均湿球温度查下图得。

ho—被试空间调器(机)室内侧出风焓值(KJ/kg),由测试所得七次出风的平均湿球温度查下图得。 1.4.2 制冷量计算 制冷量按公式(4)计算: Qr= QA.△h+QL (W) (4) 式中:Qr—实测额定制冷量(W) QA—实测循环风量值(M3/S),由式⑴~(2)得。 △h—实测进出风焓差值(KJ/Kg),由式(3)得。 QL—风量测量装置的漏热量(W),由式⑿得。 1.4.3 性能系数(COP值) 性能系数按公式(3)计算: P=Qr/Pi (5) 式中:P—性能系数 Qr—制冷量(W),由公式(4)得 Pi—实测额定制冷量时被试机的总输入功率(W)。 额定制热量的计算 热泵额定制热量按公式(6)计算 Qh=(ta1—ta2)+QL (6)式中:Qh—实测额定制热量(W) QA—实测循环风量值(M3/S),由式⑴~(2)得。

管道过流计算方法

管道过流计算方法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第四章有压管道恒定流 第一节概述 前面我们讨论了水流运动的基本原理,介绍了水流运动的三大方程,水流形态和水头损失,从第五章开始,我们进入实用水利学的学习,本章研究有压管道的恒定流. 一.管流的概念 1.管流是指液体质点完全充满输水管道横断面的流动,没有自由水面存在。 2.管流的特点.①断面周界就是湿周,过水断面面积等于横断面面积;②断面上各点的压强一般不等于大气压强,因此,常称为有压管道。③一般在压力作用而流动. 1.根据出流情况分自由出流和淹没出流 管道出口水流流入大气,水股四周都受大气压强作用,称为自由出流管道。 管道出口淹没在水面以下,则称为淹没出流。 2.根据局部水头损失占沿程水头损失比重的大小,可将管道分为长管和短管。 在管道系统中,如果管道的水头损失以沿程水头损失为主,局部水头损失和流速水头所占比重很小(占沿程水头损失的5%~10%以下),在计算中可以忽略,这样的管道称为长管。否则,称为短管。必须注意,长管和短管不是简单地从管道长度来区分的,而是按局部水头损失和流速水头所占比重大小来划分的。实际计算中,水泵装置、水轮机装置、虹吸管、倒虹吸管、坝内泄水管等均应按短管计算;一般的复杂管道可以按长管计算。 3.根据管道的平面布置情况,可将管道系统分为简单管道和复杂管道两大类。

简单管道是指管径不变且无分支的管道。水泵的吸水管、虹吸管等都是简单管道的例子。由两根以上管道组成的管道系统称为复杂管道。各种不同直径管道组成的串联管道、并联管道、枝状和环状管网等都是复杂管道的例子。 工 程实践中为了输送流体,常常要设置各种有压管道。例如,水电站的压力引水隧洞和压力钢管,水库的有压泄洪洞和泄洪管,供给城镇工业和居民生活用水的各种输水管网系统,灌溉工程中的喷灌、滴灌管道系统,供热、供气及通风工程中输送流体的管道等都是有压管道。研究有压管道的问题具有重要的工程实际意义。 有压管道水力计算的主要内容包括:①确定管道的输水能力;②确定管道直径;③确定管道系统所需的总水头;④计算沿管线各断面的压强。 第二节 简单管路的水力计算 以通过出口断面中心线的水平面为基准面,在离开管道进口一定距离处选定1—1过水断面(该断面符合渐变流条件),管道出口断面为2—2过水断面,1—1与2—2过水断面对基准面建立能量方程,即可解决简单管道的水力计算问题,并可建立一般计算公式。 简单管道自由出流水力计算公式 02gH A Q c μ= 式中,c μ称为管道系统的流量系数,它反映了沿程水头损失和局部水头损失对过流能力的影响。计算公式为 当行近流速水头很小时,可以忽略不计,上述流量公式将简化为 二.二

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

水压试验表格填写说明

给水管道水压试验记录填写说明 1.设计最大工作压力(Mpa):由设计出; 2.试验压力(Mpa):查表7. 3.15; 3.10分降压值(Mpa):实测观察;一般2小时内不大于0.05Mpa; 4.允许渗水量L/(min)·(km):查表7.3.16; 5.注水法 (1)达到试验压力的时间(t 1 ):观察记录; (2)恒压结束时间(t 2 ):观察记录; (3)恒压时间内注入的水量W(L):观测记录; (4)渗水量q(L/min):计算,q=W/(T 1-T 2 ); (5)折合平均渗水量L/(min)·(km):计算渗水量×1000/试验段长度; 实例: 某工程管道长度为155m,管径为Φ100mm,管材为PE,接口种类为热熔连,设计最大工作压力0.4Mpa。 第一次试压:10分钟内降压0.004Mpa,达到试验压力的时间t1为8:30,恒压结束时间t2为10:30,恒压时间内注入水量为0.52L,计算并填表。 (1)根据查表7.3.15得知,试验压力为工作压力的1.5倍,试验压力为0.6 Mpa。 (2)根据实测观察,2小时内降压0.045Mpa,所以,10分钟降压值为0.045/12=0.00375 Mpa。 (3)根据表7.3.16得知,允许渗水量为0.28 L/(min)·(km)。 (4)观察得知:达到试验压力的时间(t 1)为8:30′,恒压结束时间(t 2 )为10:30′, 有效试验时间为2小时,即120分钟。恒压时间内注入的水量W为0.52L,所以,渗水量 q= W/(T 1-T 2 )=0.52/120=0.00433L/min,折合平均渗水量为0.0043×1000/155=0.028 L/(min)·(km) 填表如下:

压差旁通阀的选择计算

压差旁通阀的选择计算

为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的

供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二选择调节阀应考虑的因素 调节阀的口径是选择计算时最重要的因素之一,调节阀选型如果太小,在最大负荷时可能不能提供足够的流量,如果太大又可能经常处于小开度状态,调节阀的开启度过小会导致阀塞的频繁振荡和过渡磨损,并且系统不稳定而且增加 了工程造价。 通过计算得到的调节阀应在10%-90%的开启度区间进行调节,同时还应避免使用低于

探究空调器制冷量测试方法

探究空调器制冷量测试方法 发表时间:2020-04-13T15:10:01.980Z 来源:《基层建设》2019年第31期作者:屠刚强王维烽李建刚 [导读] 摘要:目前测试空调器制冷量的主要方法为热平衡法和空气焓差法。 浙江国祥股份有限公司浙江省绍兴 312300 摘要:目前测试空调器制冷量的主要方法为热平衡法和空气焓差法。热平衡法是通过电热平衡制冷量,这其中利用了冷热平衡的原理。故这个方法的优点为测试结果准确性高而缺点是所需时间长而适用范围小。而空气焓差法是先测量出被试测空调器的风量和进出风的空气焓值,并根据公式计算出空调器的制冷量。虽然这个方法的测试结果不够精确,但是它具有测试速度快和应用范围广的优点所以被广泛使用。 关键词:空调器;热平衡法;焓值法;制冷量; 引言:在对房间的空调器的制冷量进行测量时,通常会使用房间型热计法和空气焓值法这两种方法之一进行测量。在通常情况下,从原理上将两种方法对比,房间型量热计所测量的结果会更为准确。在选择测量方法时,应以国际的标准化组织所推荐的方法和我国国家标准规定采用的方法为参考,根据具体情况并依照两种方法的特点以及使用范围选择出合适的测试方法。并根据具体要求建造适合测量空调器制冷量的实验室。 一、空调器制冷量测试的基本方法 空气焓值法和房间型量热计法是如今最常用的测量空调器制冷量的两种方法。在这两种方法中,空气焓值法的试验装置有房间式、风洞式和环路式三种房间形式,而标定型和平衡环境型二种房间形式为房间型量热计法的试验装置类型。这五种形式中,在试验室和生产企业使用的最为广泛的试验装置是风洞式空气焓值法和平衡环境型房间量热计这两种形式的试验装置。 (一)风洞式空气焓值法试验室基本测试原理 在使用空气焓值法测量空调器制冷量时,需要测量空调器的送风参数、回风参数以及循环风量,并将这些测量值代入相关公式进行计算便可确定空调器的制冷能力。风洞式空气焓值法的试验装置示意图如图1所示: 图1 风洞式空气焓值法的试验装置 空气焓值法进行测试时,需要在两个相邻的房间进行测试,一个房间对室内进行测试,一个房间对室外进行测试。空调器和空气处理器将共同作用于两个试验房间的空气状态,使两者均能符合GB/T7725-2004标准规定的试验条件的正常范围。在安装室内的空气测量装置时,应将其安装在室内侧然后与空调器的送风口相链接,利用空气流量测量装置、温度取样器、压力计等空气测量装置测试计算空调器制冷量所需的各种数值,并通过计算得到空调器制冷量。 这个方法被国际标准化组织规定为常用的测试方法,虽然其精确度不是最高的,但已经满足了生产要求。而且这个方法还具有测试速度快、测试过程简单以及所需成本少的优点。 (二)平衡环境型房间型量热计基本测试原理 平衡环境型房间量热计法的作用原理实际是在一个房间内,用隔热墙将待测房间分成室内测试和室外测试两个空间,即构成两个相邻“房间”的待测环境。利用空气再处理机组模拟一个空调实际制冷的环境,在再处理机组和待测空调器共同作用下,环境将达到稳定状态。然后测定能够确定被试空调器室内侧制冷量所需的数据,即平衡制冷量和除湿量所输入量热计室内侧的水量;而空调器室外侧制冷量是根据平衡空调器冷凝器侧排出的热量和凝结水量来确定的。被试空调器的制冷量以室内侧测得的值为准,以室外测测得的制冷量作为验证参考,二者之间测定值的偏差不大于±4%时,才认为测试所得数据为有效数据。 平衡环境型房间型量热计的试验装置示意图如图2所示: 图2 平衡环境型房间型量热计的试验装置 二、两种试验方法的选择建议 (一)选择空气焓值法测量 虽然空气焓值法存在样机安装过程复杂且需要安装辅助设备以及检测结果精确度不高等问题,但是空气焓值法具有测试成本低,速度

800X压差旁通阀

800X压差旁通阀 800X压差旁通阀又叫作电动压差旁通阀,它是一种用于空调系统供/回水之间以平衡压差的阀门。该阀门可提高系统的利用率,保持压差的精确互定直,并可最大限度地降低系统的噪音,以及过大压差对设备造成的损坏。800X压差旁通阀由主阀、压差控制导阀、针阀、球阀、微形过滤器和压力表组成水力控制接管系统。通过专门设计的导阀控制室,对压力变化信号进行比较,输出主阀开度信号,控制主阀开度,从而控制主阀的进出口压差在设定值上。 当主阀进出口间压差变化时,接管A与接管B间压差发生变化,此变导阀的开度。压差大时导阀开度大,控制室通过C管的下泄水量增大,主阀控制室压力下降,主阀开度增大,主阀进出口间压差变小。反之,若主阀进出口间压差变小,则导阀开度变小,主阀控制室压力上升,推动主阀开度减小而使主阀压差增大。这种负反馈作用使主阀进出口间压差稳定在社顶值上。设定针阀开度和导阀弹簧压力可设定主阀进出口间压差 1、装卸:800X压差旁通阀应小心装卸,建议用软的绳索起吊,以免损坏阀及配管,保护涂装层,阀门应小心地放落地下,不能直接落于地面。 800X压差旁通阀 2、安装前的检查:在装卸到目的地后,首先按ACOL提供的说明书上的内容检查确认,配管是否正确,连接是否可靠,运输过程中有无对阀门进行损坏,各种零件是否完整。 3、旁通阀安装前应清理管道中的杂质,检查相应的法兰应与阀门的法兰的压力等级,公称通径相一致,以保持管路的畅通。 4、在压差旁通阀前后,应安装两只闸阀,以检测及维修时使用。 5、压差导向阀之感应压力的管道应直接接在供水及回水管道上,以达到能准确反应供回管之间的压差,为安装使用的方便,可在感应管道上装上小球阀。 6、压差向导阀上两个接压口,上面一个口接到回水管道上,下面一个口接到供水管道上。 800X压差旁通平衡阀性能特点及优点 恒定阀门两端及被控系统压差,支持用户系统变流量运行; 依靠压差自动工作无须外界动力; 可以直接显示控制压差; 可以直接设定控制压差; 控制压差调节灵敏,操作简单; 介质温度:0~150℃; 控制压差可调范围:0.05~0.6Mpa 控制压差误差≤±5%; 800X压差旁通平衡阀主要用途 常闭型旁通压差控制阀用于燃油、燃气热源供、回水管,中央空调的分、集水器之间,作为一次测定流量,二次侧变流量系统的旁通安装,可有效保护燃油、燃气机组不会因流量过小导致的温度过高而损坏,可有效的保护冷水机组因流量过小而造成的局部冻结而损坏。 常开型旁通压差控制阀用于高度差较大且热源在高区的集中供热系统,使用时按高度差设定该阀的压差,并在低区回水管适当位置安装减压泵、止回阀,调节阀组成的回水减压装置,通过调节阀来调节并设定回水管压力,这样既可保证高区用户不会出现倒空现象,又可保护低区设备不会因压力过高而损坏。 800X压差旁通平衡阀主要零部件材质 800X压差旁通平衡阀外形连接尺寸

空气焓差法试验室

空气焓差法试验室简称“焓差室”,焓差室用于空调器的制冷能力、制热能力、功耗、EER、COP、循环风量、季节能效比等各种参数的测量,并可进行各种极端工况试验。可作为房间空调的检测装置和设计开发的重要试验设备。 焓差室符合标准:GB/T 7725、GB/T 17758、ISO 5151、ARI 210/240、 ANSI/ASHRAE 37、JIS B 8615、EN 14511。 焓差室满足GB/T7725-1996标准要求,采用空气焓差法测试空调器的制冷(热)量,可对各种单、三相窗式、分体式及单元式空调器性能进行试验。系统为半自动工况控制、自动判稳及记录。 一、焓差室测试项目 1.稳定状态额定制冷; 2.稳定状态额定热泵制热,低温热泵制热,超低温热泵制热; 3.电热额定制热; 4.并可为以下型式试验提供环境条件: 5.最大运行制冷,最小运行制冷; 6.热泵最大运行制热,最小运行制热; 7.凝露; 8.凝水; 9.冻结; 10. 除霜;

二、焓差室规格 1.制冷量测试范围:2500~13000W 2.制热量测试范围:2500~14000W 3.风量测试范围:250~2200m3/h 4. 工况控制精度:标准测试工况±0.2℃以内,其他试验工况±0.3℃以内,自动除霜时按国标。 5. 试验结果精度:与标准窗机(标准机本身优于±1.0%)相比,误差在±3%以内,一次装机连续三次测量复现精度为±2%。 三、焓差室控制参数 1.室内侧的干球温度控制 温度控制范围:10~40℃ 测量不确定度:±0.1℃ 控制精度:±0.2℃ 温度传感器:Pt100 A级 温度变送器:VJU7-016 0℃~50℃/1~5V 数据采集:HP34970A 调节器:数字式PID调节器,通过SCR调节电加热。

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

中央空调压差旁通阀的介绍及作用

压差旁通阀 电动压差旁通阀 压差旁通阀分自力式压差旁通阀和电动压差旁通阀2种。 电动压差旁通阀是通过控制压差旁通阀的开度控制冷冻水的旁通流量,从而使供回水干管两端的压差恒定。广泛应用于中央空调集分水器之间,热力泵供回水之间,可有效保持设备不被损坏。 电动压差旁通阀常用于气体或液体系统,控制气体或液体管路与回路之间的压差。把电动压差旁通阀安装在系统水泵附件的旁通管路中,当系统压差增大而超过控制阀设定值时,阀门则进而开大,使更多的水流经旁通阀,从而使系统压差减小。相反,压差的减小导致阀门开度减小从而使系统压差增加。 自力式压差旁通阀 旁通阀又名自力式旁通压差阀,自力式自身压差控制阀 自力式自身压差控制阀(旁通式-C)在控制范围内自动阀塞为关闭状态,阀门两端压差超过预设值,阀塞即自动打开。并在感压膜的作用下自动调节开度,保持阀门两端压差相对恒定,依靠自身的压差工作,不需任何外来动力,性能可靠。 性能特点: 自力式自身压差控制阀为电动压差控制阀替代产品。 为安全可靠,解决了电动压差控制阀对电的信赖和电路出现问题造成机组损伤的机率,并且自力式自身压差控制阀便于安装,节省费用。 自力式自身压差控制阀的用途: 此经过,以保证机组流量不小于限制值。 自力式自身压差控制阀应用于集中供热系统中以保证某处散热设备不超压或不倒空。比如某系统高低差较大,且不分高低区系统,这时如按高处定压,低处散热设备可能压爆;如按低处定压,高处倒空。

这种情况如热源在低外可在进入高区分支水管加增压泵,回水管加压差阀使高区压力经过提升后,由阀门再降到低区回水压力;如热源在高处可进入低区供水管加装压差阀,回水加增压泵,使通过阀门压力降低的循环水能回到系统中。空调系统中旁通阀的作用和原理: 空调系统的的压差旁通阀是用在冷水机组的集水器与分水器之间的主管道上的,其原理是通过压差控制器感测集水器与分水器两端水压力,然后根据测试到的压力计算出差值,再由压差控制器根据计算出的差值与预先设定值进行比较决定输出方式,以控制阀门是增加开度或减少开度,从而来调节水量,以达到平衡主机系统的水压力的目的。 自力式自身压差控制阀的性能参数: 控制压差在 依靠压差自动工作,无须外接动力,运行安全稳定可靠。 介质温度:0--150℃。 公称压力:1.6Mpa 。 自力式自身压差控制阀的安装调试: 适用于分集水器之间 旁通管安装保护冷热源 适用于高层建筑分区供暖,安装于高区回水管避免高 区倒空和水垂 1、热源 2、循环水泵 3、系统补给水泵 4、自力式 自身压差控制阀 5、加压水泵 6、止回阀 7、后部补水压力调节阀 8、热用户

管道流量计算公式

已知1小时流量为10吨水,压力为0.4 水流速为1.5 试计算钢管规格 题目分析:流量为1小时10吨,这是质量流量,应先计算出体积流量,再由体积流量计算出管径,再根据管径的大小选用合适的管材,并确定管子规格。(1)计算参数,流量为1小时10吨;压力0.4MPa(楼主没有给出单位,按常规应是MPa),水的流速为1.5米/秒(楼主没有给出单位,我认为只有单位是米/秒,这道题才有意义) (2)计算体积流量:质量流量m=10吨/小时,水按常温状态考虑则水的密度ρ=1吨/立方米=1000千克/立方米;则水的体积流量为Q=10吨/小时=10立方米/小时=2777.778立方米/秒 (3)计算管径:由流量Q=Av=(π/4)*d*dv;v=1.5m/s;得: d=4.856cm=48.56mm (4)选用钢管,以上计算,求出的管径是管子内径,现在应根据其内径,确定钢管规格。由于题目要求钢管,则: 1)选用低压流体输送用镀锌焊接钢管,查GB/T3091-2008,选择公称直径为DN50的钢管比较合适,DN50镀锌钢管,管外径为D=60.3mm,壁厚为 S=3.8mm,管子内径为d=60.3-3.8*2=52.7mm>48.56mm,满足需求。 2)也可选用流体输送用无缝钢管D57*3.0,该管内径为51mm 就这个题目而言,因要求的压力为0.4MPa,选用DN50的镀锌钢管就足够了,我把选择无缝钢管的方法也介绍了,只是提供个思路而已。 具体问题具体分析。 1、若已知有压管流的断面平均流速V和过流断面面积A,则流量Q=VA 2、若已知有压流水力坡度J、断面面积A、水力半径R、谢才系数C,则流量Q=CA(RJ)^(1/2),式中J=(H1-H2)/L,H1、H2分别为管道首端、末端的水头,L 为管道的长度。 3、若已知有压管道的比阻s、长度L、作用水头H,则流量为 Q=[H/(sL)]^(1/2) 4、既有沿程水头损失又有局部水头损失的有压管道流量: Q=VA=A√(2gH)/√(1+ζ+λL/d) 式中:A——管道的断面面积;H——管道的作用水头;ζ——管道的局部阻力系数;λ——管道的沿程阻力系数;L——管道长度;d——管道内径。 5、对于建筑给水管道,流量q不但与管内径d有关,还与单位长度管道的水头损失(水力坡度)i有关.具体关系式可以推导如下: 管道的水力坡度可用舍维列夫公式计算i=0.00107V^2/d^1.3 管道的流量q=(πd^2/4)V 上二式消去流速V得: q = 24d^2.65√i ( i 单位为m/m ), 或q = 7.59d^2.65√i ( i 单位为kPa/m )

蒸汽管道损失理论计算及分析

1.计算基本公式 温损计算公式为: 式中:—管道单位长度传热系数 —管内热媒的平均温度 —环境温度 —热媒质量流量 —热水质量比热容 ——管道长度由于计算结果为每米温降,所以L取1m .管道传热系数为 式中: ,—分别为管道内外表面的换了系数 ,—分别为管道(含保温层)内外径 —管道各层材料的导热系数(金属的导热系数很高,自身热阻很 i 小,可以忽略不计)。 —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算:

Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: —管道埋设处的导热系数。 —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢() B. 查表得:碳钢在75和90摄氏度时的导热系数都趋近于 C.土壤的导热系数= D. 由于本文涉及到的最大管径为,所以取= E.保温材料为:聚氨酯,取= F. 保温层外包皮材料是:PVC,取= G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为:

管径为300mm时,保温层厚度为:50mm,保温外包皮厚度为:7mm; 管径为400mm时,保温层厚度为:51mm,保温外包皮厚度为:; 管径为500mm时,保温层厚度为:52mm,保温外包皮厚度为:9mm; 管径为600mm时,保温层厚度为:54mm,保温外包皮厚度为:12mm; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析

管路阻力计算和水泵选型

2.1水系统管路阻力估算、管路及水泵选择 a)确定管径 一般情况下,按5℃温差来确定水流量(或按主机参数表中的额定水流量),主管道按主机最大能力的总和估算,分支管道按末端名义能力估算。根据能力查下面《能力比摩阻速查估算表》,选定管型。 b)沿程阻力计算 根据公式沿程阻力=比摩阻×管长,即H y=R×L,pa,计算时应选取最不利管路来计算:第一步:采用插值法计算具体的适用比摩阻,比如能力为,范围属于“6<Q≤11”能力段,K r=,进行插值计算。 R=104+()×= pa/m 第二步:根据所需管长计算沿程阻力,假设管长L=28m,则 H y= R×L=×28= pa= kpa c)局部阻力计算 作为估算,一般地,把局部阻力估算为沿程阻力的30-50%,当阀门、弯头、三通等管件较多的时候,取大值。实际计算采用如下公式: Hj=ξ*ρv2/2,ξ---局部阻力系数,ρv2/2---动压 ρv2/2动压查表插值计算,ξ局部阻力系数参考下表取值:

d)水路总阻力计算及水泵选型 水路总阻力包括:所有管道的沿程阻力、阀门、弯头、三通等管件的局部阻力、室外主机的换热器阻力(损失)、室内末端阻力(损失),后面两项与不同的主机型号和末端相关。计算式为: H q=H y+H j+H z+H m+H f H z——室外主机换热器阻力,一般取7m水柱 H m——室内末端阻力 H f——水系统余量,一般取5m水柱; 总阻力计算完成后,就可以根据总阻力选取流量满足要求的情况下能提供不小于总阻力扬程的水泵来匹配水系统。选取水泵时要根据“流量——扬程曲线”来确定,但扬程和流量不能超出所需太大(一般不超过20%),避免导致出现水力失调和运行耗能较高。 水系统的沿程阻力和局部阻力与系统水流量和所采用的管径相关,流量、管径及所使用各种配件的多少决定总阻力,流量取决于主机能力(负荷)及送回水温差,流量确定的情况下,管径越大,总阻力越小,水泵的耗能越小,但管路初投资会增大。 PE-RT地暖管的规格(参考)(红色字的为推荐使用规格、计算基准) ?计算例 现有项目系统图如下:

管道过流计算方法

第四章有压管道恒定流 第一节概述 前面我们讨论了水流运动的基本原理,介绍了水流运动的三大方程,水流形态和水头损失,从第五章开始,我们进入实用水利学的学习,本章研究有压管道的恒定流. 一.管流的概念 1.管流是指液体质点完全充满输水管道横断面的流动,没有自由水面存在。 2.管流的特点.①断面周界就是湿周,过水断面面积等于横断面面积;②断面上各点的压强一般不等于大气压强,因此,常称为有压管道。③一般在压力作用而流动. 1.根据出流情况分自由出流和淹没出流 管道出口水流流入大气,水股四周都受大气压强作用,称为自由出流管道。 管道出口淹没在水面以下,则称为淹没出流。 2.根据局部水头损失占沿程水头损失比重的大小,可将管道分为长管和短管。 在管道系统中,如果管道的水头损失以沿程水头损失为主,局部水头损失和流速水头所占比重很小(占沿程水头损失的5%~10%以下),在计算中可以忽略,这样的管道称为长管。否则,称为短管。必须注意,长管和短管不是简单地从管道长度来区分的,而是按局部水头损失和流速水头所占比重大小来划分的。实际计算中,水泵装置、水轮机装置、虹吸管、倒虹吸管、坝内泄水管等均应按短管计算;一般的复杂管道可以按长管计算。 3. 根据管道的平面布置情况,可将管道系统分为简单管道和复杂管道两大类。 简单管道是指管径不变且无分支的管道。水泵的吸水管、虹吸管等都是简单管道的例子。由两根以上管道组成的管道系统称为复杂管道。各种不同直径管道组成的串联管道、并联管道、枝状和环状管网等都是复杂管道的例子。 工 程实践中为了输送流体,常常要设置各种有压管道。例如,水电站的压力引水隧洞和压力钢管,水库的有压泄洪洞和泄洪管,供给城镇工业和居民生活用水的各种输水管网系统,灌溉工程中的喷灌、滴灌管道系统,供热、供气及通风工程中输送流体的管道等都是有压管道。研究有压管道的问题具有重要的工程实际意义。 有压管道水力计算的主要内容包括:①确定管道的输水能力;②确定管道直径;③确定管道系统所需的总水头;④计算沿管线各断面的压强。

中央空调冷冻水系统压差旁通阀的选型与计算

中央空调冷冻水系统压差旁通阀的选型与计算 为保证中央空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工作中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通阀,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为讲来的运行管理带来了不必要的麻烦,本文就压差旁通调节阀的选型计算方法结合实际工程做一简要分析和说明。 01、压差旁通调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过通过测压管对中央空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加

大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 02、选择旁通调节阀应考虑的因素 调节阀的口径是选择计算时最重要的因素之一,调节阀选型如果太小,在最大负荷时可能不能提供足够的流量,如果太大又可能经常处于小开度状态,调节阀的开启度过小会导致阀塞的频繁振荡和过渡磨损,并且系统不稳定而且增加了工程造价。 通过计算得到的调节阀应在10%-90%的开启度区间进行调节,同时还应避免使用低于10%。 另外,安装调节阀时还要考虑其阀门能力PV(即调节阀全开时阀门上的压差占管段总压差的比例),从调节阀压降情况来分析,选择调节阀时必须结合调节阀的前后配管情况,当PV值小于0.3时,线性流量特性的调节阀的流量特性曲线会严重偏离理想流量特性,近似快开特性,不适宜阀门的调节。 03、调节阀的选择计算 调节阀的尺寸由其流通能力所决定,流通能力是指当调节阀全开时,阀两端压力降为105Pa,流体密度为1g/cm3时,每小时流经调节阀的流体的立方米数。进口调节阀流通能力的表示方式通常有cv和kv两种,其中kv=c,而cv 是指当调节阀全开时,流通60oF的清水,阀两端压力降为1b/in2时每分钟

相关文档
最新文档