空气采样极早期报警系统

空气采样极早期报警系统
空气采样极早期报警系统

吸气式感烟火灾探测器

安装注意事项

一、设备安装注意事项

1、吸气式感烟探测设备的防护

吸气式感烟火灾探测器为高灵敏度烟雾探测产品,因此,施工前与施工过程中,应妥善保管,保持清洁,严禁与水、灰尘等接触,在验收合格前做好防护措施。

1.空气采样管在没有安装进主机进气口之前,末端应封上,避免灰尘和其他碎屑进入。

2.主机安装时,未安装采样管前不得打开探测器进气口上的塞子。

3.主机在调试运行期间,如采用临时电源供电,不能将蓄电池连接至设备,以防止主电源

掉电导致蓄电池过度放电而损毁。

二.采样管网敷设注意事项

1.为了确保抽气系统正常工作,探测器排气口的气压应与被探测区的气压相等或略低。2.接到一个FMST-FXV-22A探测主机上的管道总长不能超过110m。单管最长不超过55m。

接到一个FMST-FXV-22B探测主机上的管道总长不能超过224m。单管最长不超过112m。

FMST-FXV-44C探测主机是22A与22B两个单元的组合,左侧为22A右侧为22B,管道总长不能超过334米。

FMST-FXV-44D探测主机是22B与22B两个单元的组合,两侧均为22B,管道总长不能超过448米。

3.管道与探测器入口连接处应插紧,但千万不要将管道与探测器管道入口处用胶粘连,因为这会使维修困难。

4.采样管之间的接口处应密封,用PVC可溶胶或其他方法永久性固定。

5.为避免管道弯折,下垂(导致可能的系统破坏),每隔1.5m或更短距离应安装专用管卡。

本项目中采样管的具体固定方式请施工单位与甲方及监理协商确定,保证采样管固定牢靠,无弯折、下垂。

6.应注意仔细清除采样管与设备接入处的毛刺,碎屑,避免掉入设备内部,损坏设备。7.采样管必须先清理干净打孔后安装,打孔后必须对孔边的毛刺进行处理。

8.必须确保采样孔不出现堵塞或外部被喷涂覆盖。

9.最长为55米的单根采样管弯头数量不能超出10个;最长为112米的单根采样管弯头数量不能超过20个。

10.距离探测器进气口500mm长度范围内,应保持采样管是直的,没有弯曲。

11.采样管应有FMST采样管道标记,采样孔应有明显标记。

12.采样点间距(无论何种采样法)应按照本文第三条采样管开孔方法进行开孔。13.采样管及采样点间距一般按照图纸安装。

14.可选用毛细管采样、手杖式采样或直接开孔采样方式对现场环境进行保护,当保护区内有吊顶或需要隐蔽安装时选用毛细管采样,当保护区内无吊顶但梁高大于600mm时选用手杖采样方式,其余情况可选用直接开孔采样方式。

15.依据项目情况采样孔大小应按照本文第三条采样管开孔方法进行开孔。

16.每根采样管末端必须安装专用末端帽,且末端帽上必须设置相应尺寸的末端孔,末端孔大小应按照本文第三条采样管开孔方法进行开孔。

17.采样管应为阻燃材料;内径应在19-21mm之间(管壁应保证在2mm左右),21mm为建议值;外径为25mm。金属管用于以下一些偶然情况:需特殊加长、规章特定要求、长时间暴露于强光、极热、极冷的环境,或是遇到PVC可溶解气体时。严禁使用PVC线管作为采样管。

18.为了保持采样管道在安装与测试阶段易于变化调整,建议在系统检测结束并最后确定成型后,再密封或永久性粘接管道接口。

19.改变管道系统方向时用圆弧型弯头,不要用直角弯头。

图1:改变采样管道方向的正确方法

20.由于FMST系统一般采用难燃的PVC管,或者ABS塑料管,他的耐受性及抗机械损伤能力比较差,所以必须在土建进行到一定时才可以安装。

21.为了保证采样管路平直、牢固,尤其在不方便固定采样管的位置,强烈推荐先做一层铝型材支架,在将采样管固定在支架上。

三.采样管开孔

推荐使用以下列表中的孔径要求,对采样管开孔:

本表格提供了简单矩阵式管网设计建议方案。这些都是典型的管网设计建议方案。如果实际的设计方案与建议的不同,探测器有可能会在气流初始化完成后报气流故障。对于高气流故障报警,应减小采样孔的尺寸。对于低气流故障报警,应相应增大采样孔的尺寸。减小或增大采样孔的尺寸直至气流故障消失。设计时建议每隔5米左右开设一个采样点。

最长为55米的单根采样管采样孔数量不能超出11个;最长为112米的单根采样管采样孔数量不能超过21个,此数量不包含末端帽开孔。

1.下表列出了单风扇FMST-FXV-22A采样管网16种设计组合:

2.下表列出了双风扇FMST-FXV-22B采样管网16种设计组合:

注:如果现场开不同大小孔有困难,可直接在管道上开8mm孔,然后使用采样孔自震膜贴在8mm孔上,自震膜是开好孔的,以上孔径都有,如现场开孔麻烦,建议采购。

四、主机安装

1.探测器安装在保护区的承重墙体上,底部距地1.5米壁挂安装,主机下部有排气孔,安装时注意不要遮挡,应留有至少25CM的空间,以防止气流故障。

2.安装主机时的注意事项:

a、检查FMST探测器的型号是否正确。设备型号位于探测器外壳侧面。

b、确定FMST探测器最适合的固定位置。确保在进气管和进线点周围有150mm的净空

间,便于管道和电缆进入。根据甲方要求设备安装位置隐蔽、易维护。

c、确保线缆进入点和空气采样管在正确的位置。

d、对于进线孔为敲落孔的设备应注意,由于其内部结构的原因,必须小心操作,否则

极易损坏设备内部的电子器件。

3.供电线路线缆要求:

FMST探测器上的接线端最大横截面积应为1.5 mm2。如果设备之间离的较远,考虑到压降推荐使用2.5 mm2电源线。电源接线如图3:

在安装线路之前需要打开设备上盖,这里特别需要注意的是怎么打开设备,需要用设备包装内所配的专用钥匙插在设备两侧如图2,同时用力向下按设备会自动打开,严禁用小一字螺丝刀或是其他坚硬物品撬开设备,否则会导致设备不同程度的损伤。

图2:设备开盖(22A/22B)

图2:设备开盖(44C/44D)

图3:电源线连接图(22A/22B)

图3:电源线连接图(44C/44D)

4.系统供电:

选用FMST专用电源对探测器进行供电,该电源箱需提供220V交流输入。施工时必须考虑线路压降,保证探测器正常工作。建议将电源箱安装在探测器附近,24V供电线路长度可进行必要的计算,最远不超过50米。

5.22A/22B型FMST主机可提供8路开关量信号,分别为一般故障、重要故障、P1预警、P1火警1、P1火警2、P2预警、P2火警1、P2火警2,需要通过无源输入模块接入传统消防。建议接6路信号:一般故障、重要故障、P1预警、P1火警2、P2预警、P2火警 2。

图4:设备端子图(22A/22B)

44C/44D型FMST主机可提供16路开关量信号,分别为左单元一般故障、左单元重要故障、P3预警、P3火警1、P3火警2、P4预警、P4火警1、P4火警2,右单元一般故障、右单元重要故障、P1预警、P1火警1、P1火警2、P2预警、P2火警1、P2火警2,需要通过无源输入模块接入传统消防。建议每个单元接6路信号:一般故障、重要故障、P1(P3)预警、P1(P3)火警2、P2(P4)预警、P2(P4)火警 2。

注:每个单元设有1个通用GPI端子,该端子可以实现设备远程复位, GPI端子出厂所配电阻不许摘掉,只需将该端子短路即可实现设备复位。

图4:设备端子图(44C/44D)

6.主机的固定方法

探测器安装于竖直墙壁上时,采用专用的壁挂支架,首先用设备自带膨胀螺钉或自攻螺钉将支架固定于墙壁上,然后将主机从上侧将设备安装孔对准支架上的挂钩,稍向下侧推动到稳固即可。

图5:设备壁挂支架(22A/22B)

图5:设备壁挂支架(44C/44D)

五.联网

1.通讯线路CAN总线应选用2×1.5mm2屏蔽双绞线。

2.FMST吸气式感烟火灾探测系统中CAN总线(整条回路的CAN联网线)最长不超过1km,

连接方法采用手拉手连接,不支持环形或星形连接。

3.接线方法:探测器内部有1组CAN接线端子(CAN_L,GND,CAN_H),

方法(1)将一进一出两组线并起来一种颜色的线接入CAN_L,另一种颜色的线接入CAN_H,屏蔽层绞在一起用绝缘胶布包裹好(如图6)同时记录接线顺序以及线的走向,方便日后维护查线。在最后一台探测器的CAN接线端子上接入进线的同时还要并接一个120欧姆终端电阻。

方法(2)在总线上做一组分支线(该支线最长不超过2米,支线的长度计入CAN总线的总长内)将这组线的一种颜色接入CAN_L,另一种颜色的线接入CAN_H,屏蔽层绞在一起并用绝缘胶布包裹好(如图7)同时记录接线顺序以及线的走向,方便日后维护查线。在最后一

台探测器的CAN接线端子上接入进线的同时还要并接一个120欧姆终端电阻。

图6:方法1 (22A/22B)

图6:方法1 (44C/44D)

图7:方法2 (22A/22B)

图7:方法2(44C/44D)

六、开机步骤

1、必须在我方认证的专业人员配合下方可进行开机工作。

2、测量供电线路电压(保证24V电压及极性正确)。

3、检测通讯线路。必须在探测器单机正常运行后,全部断电,再联入网络,测量CAN线路

正常的情况下,再开机。

注:不同供电或电源接地方式可能导致FMSTlink的CAN端口的损坏,因此不允许使用报警消防主机的24V电源接入FMSTlink。

4.分批施工时,在接入新的设备前,应将先前设备断电,从而避免影响设备。

设备顶部进气孔、进线孔(22A/22B)

设备顶部进气孔、进线孔(44C/44D)

注意事项:

a、开机时将管路插在设备进气孔里

b、将电源线插入进线孔,进线孔周围不能有空隙,防止灰尘等进入设备内部。

c、设备上电前将设备底部排气孔塞拿掉,USB孔是用来调试设备,设置地址的。

设备底部排气孔+USB孔(22A/22B)

设备底部排气孔+USB孔(44C/44D)

d、开机10分钟初始化后,查看气流数值,气流值范围应该如下:

FMST-FXV-44C探测主机是22A与22B两个单元的组合,左侧为22A右侧为22B,气流值参照上表。

FMST-FXV-44D探测主机是22B与22B两个单元的组合,两侧均为22B,气流值同样参照上表。注:施工调试时应严格将气流调整在此规定范围内,以免将来气流出现故障或者气流监测功能出现故障。

空气采样极早期报警系统施工方法

(二)空气采样极早期报警系统施工方法 1、取样管选材 A、选取材料必须配有国家建材质量检测中心的检测报告,其检测报告中注明阻燃指标,以便证明其是难燃自熄材质。 B、在有腐蚀性气体及温热交替较大场合宜选用ABS;在管路(四根)较短,弯头总和小于4个场合可以考虑采用UPVC材质;如果管路较长(>4个),可以采 2、辅料选材 3、取样管安装 (1)一般要求 A、标准采样管是在被保护区内安装外径为25mm的阻燃PVC管。 B、为确保通过空气采样系统气流状况通畅,吸气泵排出的气体的气压应与被探测区域的气压相等或略低。 C、取样管上取样孔采用Φ2.5-Φ4.0mm,取样孔之间距1-4m。一般将每根取样管分成三段。如单管长70米,前20m中取样孔为Φ2.5mm。中间30m取样孔为Φ3.00mm,后20米取样孔为Φ3.5mm。依次将取样孔变大,最末端塞为4个Φ4孔,每个取样孔上贴上指示标签。 D、取样管上直角弯应尽量避免小弧度,可采用半径大于或等于20cm手工弯制,故选用取样管为阻燃冷弯管。 E、取样管路总长度最好小于200米,极限250米(4根×50米、3根×70米、2根×100米),而每路取样管上取样孔的数量最好不超过25个,当只用一根管路时,长度不要超过100米。 F、每根管直角弯小于10个。

G、实际应用中,每根管路的长度应尽量接近,这样可使空气取样系统内部气流容易平衡。 H、若环境要求取样管承受很大的承载力或长时间暴露于强光、极热、极冷的环境中,或是遇到可溶解PVC管气体时,也可以使用ABS管或其他金属管材。 I、每个取样孔的间距(即保护半径)最大不应超过8米,管和管之间不大于8米,最小不应少于1米。 (2)取样管安装前加工及丈量 丈量现场确定取样管弯头数量,所用根数,配接直通数。每根管长3米,配一个直通,每1.0-1.2米配一个托卡。低层辅管可以先辅设后打取样孔,高空辅设必须先打取样孔,取样孔径Φ2.5mm,末端塞用Φ4mm钻头均匀打4个孔,然后粘好取样孔标签。 取样管长度依据设计手册和图纸中注明的长度。 管路处理一般有下列几种: A、切 用手锯切断,须将锯沫去净。用切刀时注意防止切手。 B、弯 一般取40cm长管将弯管器插入其中(弯管器一端用结实绳子连出,以便弯曲成形后可用力拉出弯管器),将热吹风机对其应弯部位吹加热,加热时要移动,使加热部分大于25cm,加热5-8分钟后可以手工弯曲成半径为20cm圆弧,注意弯曲一定均匀,防止死弯,同时必须保证弯曲后两头成90度角,并防止扭曲不在同一平面。 弯曲半径变化不是全部为半径20cm,两根管平行时,第一根为R20cm,那么第二根半径就必须是:200-间隙A-25mm,这样才能保证弯曲平行放置时,外观顺畅美观,但是最小半径不能小于R10cm,弯管后不要急于抽出弯管器,应稍等温度变低后,再用力抽出弯管器(通过绳索),如效果不好,可多次反复,成型后备用。 C、粘 粘接管路时应将管路端部外侧清洁干净,均匀涂胶长度为2cm,再将直通内壁(或三通内壁)均匀涂胶,然后再将两者插入,放置在平面上静止5分钟以上,以保证粘接后平行不弯曲。 D、伸缩缝 如果在冬天安装管路则夏季来临时管路涨长,容易上或下弯曲变形,夏天安装易出现在冬季收缩断裂,所以管路必须留有伸缩缝。一般每2根管长(含6米)留有一个直通不能粘胶。 E、毛细管 在天花板下方和机柜内部取样时,需用配接毛细管,毛细管总长小于0.6米。

最新空气培养的采样方法合集

医院常规空气细菌培养(自然沉降法)采样方法 一、采样时间 选择消毒处理后与进行医疗活动之前采样。 二、采样高度 与地面垂直高度80-150厘米。 三、布点方法 1.面积≤30 m2,设一条对角线取三点,即中间一点,两端各距墙1米处各取一点(图1) 2.室内面积>30m2,设两条对角线,东,西,南,北,中取五点,其中东,西,南,北距墙均1米(图2) 四、采样方法 用9厘米直径普通琼脂平皿,打开盖后面朝下斜扣到底盘,在采样点准确暴露5分钟后,送检培养。 五、结果分析 I类区域:<10 cfu/m3 II类区域:<200 cfu/m3 III类区域:<500 cfu/m3 六、附录 Ⅰ类区域:层流洁净手术室、层流洁净病房(参照洁净室空气培养方法与标准)。Ⅱ类区域:普通手术室、产房、婴儿室、早产儿室、普通保护性隔离室、供应室无菌区、烧伤病房、重症监护病房。 Ⅲ类区域:儿科病房、妇产科检查室、注射室、换药室、治疗室供应室清洁区、急诊室、化验室、各类普通病房和房间。 Ⅳ类区域:传染病科及病房。

洁净室空气细菌培养监测布点与标准 一、局部百级,周围千级: 共放13个培养皿,其中手术区域5点,周边区8点。采样布置点示意图: 二、局部千级,周围万级: 共放9个培养皿,其中手术区域3点,周边区6点。采样布置点示意图: 三、局部万级,周围十万级: 共放7个培养皿,其中手术区域3点,周边区域4点。采样布置点示意图:

四、三十万级:面积>30m2布放4点,面积≤30 m2布放2点。 五、要求: 1.送风口集中布置时,应对手术区和周边区分别检测;如送风口分散布置时,全室统一检测,测点可均布,不应布置在送风门正下方; 2.采样点可布置在地面上或不高于地面0.8m的任意高度上,手术区域放置在四角的平皿应离手术区边缘0.12m,培养皿放置30分钟; 3.采样后的培养皿,应立即置于37度条件下培养48小时; 4.然后计数生长的菌落数,菌落数的平均值均四舍五入进位到小数点后1位。 5.放置培养皿示意图: 盖面朝下斜扣到底盘A边 上 六、洁净室空气细菌菌落总数标准

VESDA极早期空气采样探测器介绍

金关安保VESDA系统极早期烟雾探测报警系统采用主动采样的探测方式先进的激光探测技术以及功能强大的系统应用软件相对于传统火灾探测报警技术 产生了质的飞跃,被誉为第5代消防电子产品。 金关安保VESDA系统是由澳大利亚XTRALIS公司出品,自问世以来,以其卓越的探测性能,完备的使用功能和可靠的质量保证迅速得到广大用户的认可,已通过中国,美国,英国,德国,韩国,泰国,马来西亚,中国台湾,香港等国家和地区的市场准入许可,并已成为澳大利亚电信标准,韩国核电标准,美国超净室标准,台湾超净室标准。金关安保VESDA系统已经在许多领域取得了广泛的应用。 ★VLP-012标准型金关安保VESDA探测器 可接4根采样管,报警不区分烟雾来自哪根采样管。适用于大开间机房的保护,保护面积2000m2 。具备编程和显示模块,可以作为独立系统使用,并具备联动功能。具备RS-485联网接口(三线端子)及计算机接口(15针插座)(需通过PC-LINK与计算机连接)。 ★VLP-002包含显示模块的标准型金关安保VESDA探测器 不具备编程模块,需要利用手持编程器或PC对其进行编程,也可以通过VESDAnet上的编程模块对其编程。编程完成后,可做为一个独立系统使用,具备联动功能。具备VESDA联网接口及计算机接口。使用场所同VLP-012。★VLP-400-CH标准型金关安保VESDA探测器 不带显示和编程模块,需要利用手持编程器或PC对其编程,也可以通过VESDAnet上的其它编程模块对其编程。除此以外,还需要配合独立显示模块使用,以提供报警显示。具备联动功能,具有VESDA联网接口及计算机接口。 使用场所同VLP-012。此型号多用来作为VESDA中的探测设备,安装于现场,由位于监控中心的显示模块集中显示报警及故障,并采用远端编程模块对其编程。了解VESDA探测器,请关注“金关安保”

环境空气采样规范

环境空气采样作业指导书 1.采样工作流程 1.1监测项目调查 现场监测人员认真了解监测对象的生产设备、工艺流程,清楚主要污染源、主要污染物及其排放规律,查看环保措施落实和环保设施运行情况。监控生产负荷,调查现场环境(气象、水温、污染源)有关参数和周边环境敏感点,检查监测点位符合性及安全性,搜集与编制监测报告有关的各种技术资料并做好相关记录。 1.2实验室采样前准备 现场监测人员领取采样容器、滤膜,准备现场监测和采样所用的仪器设备、器具、样品标签、现场固定剂等,并完成设备的运行检查。 1.2.1采样前准备的仪器设备和辅助材料 包括:采样器、风速风向仪、气温气压计、GPS;吸收瓶(内装配制好的吸收液,装箱,含空白、平行)、滤膜(含空白和备用膜)、镊子、凡士林、剪刀、手套、封口膜、电池、原始记录单、交接单、样品标签和笔等相关仪器物品。 1.2.2仪器设备的运行检查 在领用时,要检查并填写仪器的使用记录,尤其检查采样流量是否需要校准,并对采样器进行气密性检查。 1.3现场采样前准备 1.3.1复核现场工况,是否适宜进行采样。 1.3.2观测现场风速风向,局地流场、大气稳定度等气候条件,确定监测点位。 1.3.3按要求连接采样系统 1.4.气态污染物 1.4.1.将气样捕集装置串联到采样系统中,核对样品编号,并将采样流量调至所需的采样流量,开始采样。记录采样流量、开始采样时间、气样温度、压力等参数。气样温度和压力可分别用温度计和气压表进行同步现场测量。 1.5颗粒物采样 1.5.1打开采样头顶盖,取出滤膜夹,用清洁干布擦掉采样头内滤膜夹及滤膜支持网表面上的灰尘,将采样滤膜毛面向上,平放在滤膜支持网上。同时核查滤膜编号,放上滤膜夹,安好采样头顶盖。启动采样器进行采样。记录采样流量、开始采样时间、温度和压力等参数。 1.5.2采样结束后,取下滤膜夹,用镊子轻轻夹住滤膜边缘,取下样品滤膜,并检查在采样过程中滤膜是否由破损现象,或滤膜上尘的边缘轮廓不清晰的现象。若有,则该样品膜作废,需重新采样。确认无破裂后,将滤膜的采样面向里对折两次放入与样品膜编号相同的滤膜袋(盒)中。记录采样结束时间、采样流量、温度和压力参数。 1.6采样记录相关事项 环境空气采样记录包括:监测项目、样品批号、采样点位、采样日期、采样时间(开始、结束)、样品编号、气温、大气压、采样流量、采样体积、天气状况、风速、风向、采样人、审核人。 填写采样记录注意事项:样品批号和样品种类一定要填写;标况体积一定要计算正确;发生异常情况,备注栏和副架说明处一定要填写清楚;记录单上不能有涂改的痕迹,修改要

空气采样技术要求规范-施工

3、采样管的安装要求: 1、主采样管采用外径?25毫米,径小于?21毫米,防阻燃U-PVC管,系统将采 用四路使用,每路尽量保持一样的长度。 2、管与管之间连接的直通外套径在?25毫米,并配壁卡塞。 3、采样管固定卡,采用双月牙形固定卡如下图,将螺杆采用焊接的方法固定在 房梁上,螺杆长度不底于20公分,每个固定点之间的间距应在1.5~2米之间保证PVC管不下垂不变形。 4、采样管固定卡,也可采用厂家配套的管卡,采用较紧的管卡防止时间过长管路固定不紧造成脱落现象。不出现变形如下图: 5、严格按图这上的孔径和位置打孔

采样孔在地面上打好注意打孔时需要锥形倒角,并在采样孔处粘贴红色采样孔标签,如下图 此标签为无偿提供 6、采样管拐弯处采用半径不底于20公分的弯管器弯成半圆如下图所示,减少气流阻力

7、空气采样管连接处直接套管使用方法如下:此处连接采用直接套管螺纹和镀锌铁管外螺纹绞和,绞和处采用生料带和乳胶组合密封保证绝对不能漏气(此时注意采样孔向下,由于采样管已打好采样孔无法进行打压测漏,故此处密封应特别注意。)

8、采样管的末端为采样末端堵头,此末端堵上开孔除采样功能外还兼有气流平 衡的功能,末端盖帽采用PVC材质。 9、整个采样管路安装前应首先做好一台主机所用的管路进行主机试抽气以保证 未瑞放烟,机器报警的时间不超过120秒。 10、主机所处位置便于人工操作,便于将来换过滤器盒按照JB 50166-2007火灾 自动报警系统施工及验收规,此设备需要对采样管道进行定期吹洗,最长的时间间隔不应超过1年,吹洗时从机器跟前对采样管加入高压气流反吹即可, 同时更换过滤器。 十一、施工要求 1.系统的布线,应符合现行国家标准《火灾自动报警系统施工及验收规》 GB50166的相关规定。在施工安装时,应根据现行国家标准,对导线的种 类、电压等级进行检验。参考现行国家标准《火灾自动报警系统施工及 验收规》GB50166的相关规定,吸气式烟雾探测器火灾报警系统所采用的 信号线,电源线应采用铜芯绝缘导线或铜芯电缆。当额定工作电压不超 过50V时,选用导线的电压等级不应低于交流450V。 2.电源:由消防报警系统提供DC24V电源,每台电流小于500MA;共需提供 24V,20A电源。 3.模块:通过模块接入消防报警系统。消防报警系统提供每台吸气式烟雾 探测器1个输出3个输入点。

手术室空气采样方法

手术室空气采样方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

1、采样时间:消毒后、操作前进行采样。 2、采样方法:(1)布点:室内面积≤30 m2,设内、中、外对角线3点,内外点距墙1m;室内面积 >30 m2,设四角及中央5点,四角点距墙1m。(2)平板暴露法平板直径9c m、采样高度,暴露5m i n。 3、检验方法平板37℃培养48h。计数菌落数并分离致病菌。 4、平板暴露法结果计算50000N 细菌总数(c f u/m3)=A×T A为平板面积(c m2);T为暴露时间(m i n);N为平均菌落数(c f u) 5、结果判定(1)I、II类区域,细菌总数≤10cfu/cm3,并未检出致病菌为消毒合格。(2)I II类区域,细菌总数≤200c f u/c m3,并未检出致病菌为消毒合格。(3)I V类区域,细菌总数≤500c f u/c m2,并未检出致病菌为消毒合格。 6、注意事项:采样前关好门窗,在无人走动的情况下,静止10min 进行采样 层流手术室空气日常监测方法: 要求日常实行动态监测,必测项目为平板采样法(沉降法)或采样器法(浮游菌法)检测细菌菌落总数。 (1)回风口动态平板采样法:应在手术开始、手术2小时、手术结束前抽检3-4次。每个回风口中部摆放3个倾斜30℃,Φ90 培养皿,暴露30分钟后,37°C培养24小时。 标准:每皿菌落计数平均值应符合表4标准要求。单皿最大值不应超过平均值3 倍。 (2)动态采样器法:浮游菌菌落检测应在手术进行如切皮、缝合、连台手术之 间、手术进行4小时等,选择不少于3个程序,测定细菌菌落总数。

应用空气采样式火灾探测系统的分析与思考参考文本

应用空气采样式火灾探测系统的分析与思考参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

应用空气采样式火灾探测系统的分析与 思考参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1999年以来,笔者对某市电信局机房安装使用的空气 采样式火灾探测系统进行了质量跟踪。从两年多来的运行 情况看,该系统在火灾探测方面有着突出的特点,对早期 火灾报警能够起到积极的作用。该系统由抽取空气样本管 道网络、高效长寿气泵、空气流速控制器、烟粒子激光探 测器、信号微处理器、人工神经网络和火灾探测器等组 成,是1978年由澳大利亚VISION SYSTEM集团公司研 制开发,并在此基础上经过不断改进和完善所形成的火灾 报警产品,质量较为稳定。目前,已在美国、日本、加拿 大、马来西亚等国家应用,并取得了英国LPCB、美国FM 和德国VDS等国家认证机构的质量体系认证证书。从

VESDA主动式空气采样早期报警系统方案介绍精选文档

V E S D A主动式空气采样早期报警系统方案介 绍精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

VESDA主动式空气采样早期报警系统方案介绍 一、系统设计方案符合中华人民共和国之条例及规范包括: 《建筑设计防火规范》GBJ16-98 《火灾自动报警系统设计规范》GB50116-98 《火灾自动报警系统施工及验收规范》GB50117-98 《VESDA空气采样烟雾探测系统设计、施工验收技术条件》Q/HYC001-1999 建筑平面图 二、VESDA通过的论证 VESDA产品已通过ISO9002质量体系标准认证,产品的设计均满足国际消防和安全标准,该公司与国际认可组织合作,正根据下列标准进行生产。 NTC:中国 SSL:澳大利亚和新西兰(AS1603.8-1996) UL:美国(UL268-1996.12) ULC:加拿大(UL268-1996.12) FM:美国(FM3230-3250,FM3280) LPC:英国(CEA GEI 1-048) AFNOR:法国(NFS61-950) 由于VESDA早期烟雾探测系统已得到上述机构的认可,因此我们可在世界各地安装和使用该系统。 三、VESDA设备技术指标: 1.系统规格供电电压:18-30V DC 电源功耗:5.7-11W(静态,报警状态时加1.3W)电流消耗:

240VmA(报警状态时加50Ma) 环境温度:00C-390 C(探测器环境温度) -200C -600C(采样区温度) 相对湿度:10-95%(无露点) 探测器灵敏度:(0.005-20%obs/m) 探测器保护面积:200m2 (最大) 采样管网:200M (四报管组合长度,若使用单管时,其长度可达100M) 信号输出:30VDC,2A(C型,7个继电器输出) 体积:350mmX225mmX125mm(探测器主机) 140mmX150mmX90mm(远程显示部件) 19“ X3UX4”( 19”集中显示机架) 重量:4kg(带显示和编程模块的主机) 1kg(带显示模块的远程显示部件) 4kg(不带电池的智能电源) 一个VESDA网容纳的最大部件数:250 2.VESDA设备主要特点: (1)灵敏度高,探测范围宽 VESDA 系列产品,按灵敏度分为三个等级,即:0.01%obs/m/、 0.02%obs/m、 0.005%obs/m 传统的烟感报警器灵敏度为: 20%obs/m 因此,该系列产品比目前国内外普通使用的传统烟感报警器的灵敏度高几百倍到千倍。该系统探测范围宽,可达0.005%obs/m~20%obs/m;分为四级报警,且各报警的阈值可根据应用环境进行调节。

吸气式空气采样品牌型号大全

吸气式空气采样品牌型号大全 类别品牌型号 一、吸气式空气 采样烟雾探测器 盛赛尔XSS-1000 海湾(1)GST-MICRA空气采样式感烟火灾探测报警器 (2)GST-HSSD空气采样式感烟火灾探测报警器 凯德Kidde (1)53836-K183HART XL探测单元(标准灵敏度) (2)53836-K186HART XL探测单元(高灵敏度) (3) 53836-K182 HART XL显示模块 (4) 53836-K191 HART XL智能界面模块含调制解 调器 (5)53836-K-190 HART XL智能界面模块不含调 制解调器 (6) 53836-K205K-00 HART Mini底部接入型探测 器 (7) 53836-K205KN-00 HART Mini 底部接入型探 测器(网络版) (8) 53836-K205KN-01 HART Mini 顶部接入型探 测器(网络版) 科达士GO-DEX (1) ForeSEE 2000空气采样式双波光烟雾探测器 (2) ForeSEE 500空气采样式双波光烟雾探测器 (3) ForeSEE 501风管采样式双波光烟雾探测器 (4) Fore SEE 500空气采样探测主机 (5) Fore SEE 501空气采样探测主机 (6)Fore SEE 2000空气采样探测主机 福莫斯特FMST (1) FMST-IF4吸气式空气采样烟雾探测器 (2)FMST-SM111 吸气式感烟火灾探测报警器(分区型) (3)FMST-BM101 吸气式感烟火灾探测报警器(标准型) (4)FMST-BM111 吸气式感烟火灾探测报警器(标准型) (5) FMST-SM101 吸气式感烟火灾探测报警器(分区型) (6) FMST-MIN 吸气式感烟火灾探测报警器 (7) FMST-MIN 吸气式感烟火灾探测报警器 (8) FMST-Q280 吸气式感烟火灾探测报警器 (9) FMST-MIC 吸气式感烟火灾探测报警器(简约

空气采样极早期报警系统施工方法

(一)空气采样极早期报警系统施工方法 1、取样管选材 A、选取材料必须配有国家建材质量检测中心的检测报告,其检测报告中注明阻燃指标,以便证明其是难燃自熄材质。 B、在有腐蚀性气体及温热交替较大场合宜选用ABS;在管路(四根)较短,弯头总和小于4个场合可以考虑采用UPVC材质;如果管路较长(>4个),可以采用阻燃弯UPVC管,主要是其可以手工弯制弯头减少空气阻力。如下表: 2、辅料选材 如选定阻燃冷弯PVC弯,其配套辅材一般如下表: 3、取样管安装 (1)一般要求 A、标准采样管是在被保护区安装外径为25mm的阻燃PVC管。 B、为确保通过空气采样系统气流状况通畅,吸气泵排出的气体的气压应与被探测区域的气压相等或略低。

C、取样管上取样孔采用Φ2.5-Φ4.0mm,取样孔之间距1-4m。一般将每根取样管分成三段。如单管长70米,前20m中取样孔为Φ2.5mm。中间30m取样孔为Φ3.00mm,后20米取样孔为Φ3.5mm。依次将取样孔变大,最末端塞为4个Φ4孔,每个取样孔上贴上指示标签。 D、取样管上直角弯应尽量避免小弧度,可采用半径大于或等于20cm手工弯制,故选用取样管为阻燃冷弯管。 E、取样管路总长度最好小于200米,极限250米(4根×50米、3根×70米、2根×100米),而每路取样管上取样孔的数量最好不超过25个,当只用一根管路时,长度不要超过100米。 F、每根管直角弯小于10个。 G、实际应用中,每根管路的长度应尽量接近,这样可使空气取样系统部气流容易平衡。 H、若环境要求取样管承受很大的承载力或长时间暴露于强光、极热、极冷的环境中,或是遇到可溶解PVC管气体时,也可以使用ABS 管或其他金属管材。 I、每个取样孔的间距(即保护半径)最大不应超过8米,管和管之间不大于8米,最小不应少于1米。 (2)取样管安装前加工及丈量 丈量现场确定取样管弯头数量,所用根数,配接直通数。每根管长3米,配一个直通,每1.0-1.2米配一个托卡。低层辅管可以先辅设后打取样孔,高空辅设必须先打取样孔,取样孔径Φ2.5mm,末端塞用Φ4mm钻头均匀打4个孔,然后粘好取样孔标签。 取样管长度依据设计手册和图纸中注明的长度。

空气培养采样方法

空气培养采样方法 Jenny was compiled in January 2021

医院常规空气细菌培养(自然沉降法)采样方法 一、采样时间 选择消毒处理后与进行医疗活动之前采样。 二、采样高度 与地面垂直高度80-150厘米。 三、布点方法 1.面积≤30 m2,设一条对角线取三点,即中间一点,两端各距墙1米处各取一点(图1) 图1 2.室内面积>30m2,设两条对角线,东,西,南,北,中取五点,其中东,西,南,北距墙均1米(图2) 图2 四、采样方法 用9厘米直径普通琼脂平皿,打开后盖面朝下斜扣到底盘,在采样点准确暴露5分钟后,送检培养。 五、结果分析 I类区域:<10 cfu/m3 II类区域:<200 cfu/m3 III类区域:<500 cfu/m3 六、附录 Ⅰ类区域:层流洁净手术室、层流洁净病房(参照洁净室空气培养方法与标准)。 Ⅱ类区域:普通手术室、产房、婴儿室、早产儿室、普通保护性隔离室、供应室无菌区、烧伤病房、重症监护病房。 Ⅲ类区域:儿科病房、妇产科检查室、注射室、换药室、治疗室供应室清洁区、急诊室、化验室、各类普通病房和房间。 Ⅳ类区域:传染病科及病房。

洁净室空气细菌培养监测布点与标准 一、局部百级,周围千级: 共放13个培养皿,其中手术区域5点,周边区8点。 采样布置点示意图: 二、局部千级,周围万级: 共放9个培养皿,其中手术区域3点,周边区6点。 采样布置点示意图: 三、局部万级,周围十万级: 共放7个培养皿,其中手术区域3点,周边区域4点。 2 1. 2.采样点可布置在地面上或不高于地面0.8m的任意高度上,手术区域放置在四角的平皿应离手术区边缘0.12m,培养皿放置30分钟; 3.采样后的培养皿,应立即置于37度条件下培养24小时; 4.然后计数生长的菌落数,菌落数的平均值均四舍五入进位到小数点后1位。 5.放置培养皿示意图: 盖面朝下斜扣到底盘A边上 培养底盘A 六、洁净室空气细菌菌落总数标准

【CN110095322A】一种空气采样系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910320735.5 (22)申请日 2019.04.20 (71)申请人 杭州统标检测科技有限公司 地址 310053 浙江省杭州市滨江区长河街 道滨安路688号2幢C楼5层502室 (72)发明人 俞帅 葛悦 李昕  (51)Int.Cl. G01N 1/22(2006.01) (54)发明名称 一种空气采样系统 (57)摘要 本发明公开了一种空气采样系统,属于空气 检测技术领域,具有提升空气采样精确度的优 点,其技术方案如下,包括采样嘴、采样管、检测 本体,采样管一端与检测本体连接,采样嘴连接 在采样管另一端, 采样管包括玻璃内管、保温外管、红外发热灯管,玻璃内管一端与采样嘴内部 连通,玻璃内管另一端与检测本体内部连通,玻 璃内管呈螺旋状环绕在红外发热灯管外,保温外 管内壁设有反光层,保温外管与玻璃内管之间设 有反射空隙。权利要求书1页 说明书3页 附图1页CN 110095322 A 2019.08.06 C N 110095322 A

权 利 要 求 书1/1页CN 110095322 A 1.一种空气采样系统,包括采样嘴(1)、采样管(2)、检测本体(3),所述采样管(2)一端与检测本体(3)连接,所述采样嘴(1)连接在采样管(2)另一端,其特征是:所述采样管(2)包括玻璃内管(21)、保温外管(22)、红外发热灯管(23),所述玻璃内管(21)一端与采样嘴(1)内部连通,所述玻璃内管(21)另一端与检测本体(3)内部连通,所述玻璃内管(21)呈螺旋状环绕在红外发热灯管(23)外,所述保温外管(22)内壁设有反光层(24),所述保温外管(22)与玻璃内管(21)之间设有反射空隙(25)。 2.根据权利要求1所述的一种空气采样系统,其特征是:所述反光层(24)为铝镁合金反光板。 3.根据权利要求1所述的一种空气采样系统,其特征是:所述保温外管(22)上周向均匀分布有若干个导热导条(26)。 4.根据权利要求3所述的一种空气采样系统,其特征是:所述导热导条(26)为铜丝。 5.根据权利要求3所述的一种空气采样系统,其特征是:所述保温外管(22)为陶瓷保温层。 6.根据权利要求5所述的一种空气采样系统,其特征是:所述导热导条(26)内嵌在陶瓷保温层中部。 7.根据权利要求1所述的一种空气采样系统,其特征是:所述反射空隙(25)充有氮气。 8.根据权利要求1所述的一种空气采样系统,其特征是:所述玻璃内管(21)由棕色玻璃制成。 2

手术室空气采样的方法

五月培训内容:手术室空气采样方法 1、采样时间:消毒后、操作前进行采样。 2、采样方法: (1)布点: 室内面积≤30 m2,设内、中、外对角线3点,内外点距墙1m;室内面积>30 m2,设四角及中央5点,四角点距墙1m。 (2)平板暴露法 平板直径9cm、采样高度1.5m,暴露5min。 3、检验方法 平板37℃培养48h。计数菌落数并分离致病菌。 4、平板暴露法结果计算 50000N 细菌总数(cfu/m3)=A×T A为平板面积(cm2);T 为暴露时间(min);N 为平均菌落数(cfu) 5、结果判定 (1)I、II类区域,细菌总数≤10cfu/cm3,并未检出致病菌为消毒合格。 (2)III类区域,细菌总数≤200cfu/cm3,并未检出致病菌为消毒合格。 (3)IV类区域,细菌总数≤500cfu/cm2,并未检出致病菌为消毒合格。

6、注意事项:采样前关好门窗,在无人走动的情况下,静止10min 进行采样 层流手术室空气日常监测方法: 要求日常实行动态监测,必测项目为平板采样法(沉降法)或采样器法(浮游菌法)检测细菌菌落总数。 (1)回风口动态平板采样法:应在手术开始、手术2小时、手术结束前抽检3-4次。每个回风口中部摆放3个倾斜30℃,Φ90 培养皿,暴露30分钟后,37°C培养24小时。标准:每皿菌落计数平均值应符合表4标准要求。单皿最大值不应超过平均值3倍。 (2)动态采样器法:浮游菌菌落检测应在手术进行如切皮、缝合、连台手术之间、手术进行4小时等,选择不少于3个程序,测定细菌菌落总数。 标准:I级<30cfu/m3 ;II级<150 cfu/m3;III级<450 cfu/m3;IV级<500 cfu/m3。 (3)其他洁净用房在当天上午10时和下午4时各测1次,在每个回风口中部摆放3个Φ90培养皿,沉降0.5h后在37℃下培养24h。 标准:同回风口动态平板采样法标准。 层流手术室静态(空态)时空气采样方法: 1、采样方法: (1)当送风口集中布置时,应对手术区和周边区分别检测;当送风口分散布置时,按全室统一布点方法检测。

空气采样使用手册(四管机

FMST 空气采样式感烟探测器 使用手册 北京福莫斯特科技发展有限公司

使用手册 ——FMST空气采样式火灾感烟探测器 简介 FMST空气采样式极早期烟雾探测系统采用了主动采样的探测方式、先进的激光探测技术以及功能强大的系统应用软件,相对于传统火灾探测报警技术产生了质的飞跃。它是极其先进的新一代高灵敏度抽气式感烟侦测机。 侦测机由抽气泵、过滤器、激光腔(如下图所示)、控制电路等组成。抽气泵通过PVC管或钢管所组成的采样管网从被保护区域抽取空气作为样品送入激光腔,在激光腔内利用激光照射空气样品,其中烟雾粒子所造成的散射光被两个接收器接收。接收器将光信号转换成电信号后送到侦测机的控制电路,信号经处理后转换为烟雾浓度值,该数值以数字和可视发光图条的方式显示在面板上,指示被保护区域的烟雾浓度,并根据烟雾浓度及预设的环境参数,产生一个适宜的输出信号,从而发出各级报警。 FMST结合了我公司研发的“人工智能(AI)”它使探测能根据现场环境的变化而随时自我调整,使灵敏度和报警阈值最优化,并在任何环境中都能将误报减少到最低限度。FMST能够独特地在各种不同的环境中不断地对报警阈值进行细微的调节以提供相同等级的保护。 FMST由于能够在“较复杂的”环境中探测到一般难以探测的电气过载火灾萌芽期的缓慢增长,已多次证明了其自身价值。 一.FMST四管机 FMST四管机外观

机身大小为宽400×高250×厚130㎜,采用工业级全钢外壳。右侧配有安全锁,可以锁闭机箱,以防止无关人员误操作机器。 前侧外观如右图: 系统接四根采样管,一般总管长200米,可以保护大约1000~2000㎡的空间范围,系统还可自动记录最长达半个月内烟雾曲线和多达255次所有开关机和报警、故障的事件记录 能24小时不间断分析、判断现场背景烟雾浓度值,根据现场情况持续不断地调整四级报警阈值,使报警阈值随现场环境变化而变化,并保持一个非常高的相对灵敏度,使误报率几乎为零。 系统除在线编程和显示外还可以通过RS232接口直接连接计算机,通过FMST软件显示和修改机器参数(完全取代显示和编程模块功能)。通过RS485口实现最多达99台报警机器的联网(最长达1.2公里),通过和控制模块机相连的电脑,可以对所有设备参数显示和修改。 四级火警和一个故障共5个继电器对外输出无源干接点信号,用以连接到标准消防报警主机的二总线上。 FMST控制软件为中文版显示;它包括实时人工智能(AI)柱形图,背景烟雾曲线、事件记录、日期、时间、故障详情等,可实现的操作包括:在PC机上修改主机中一切参数,含延时、环境参数(误报概率)烟雾曲线等。 打开前面板,盖板内侧部分包含了数字电路部分,它包括编程设置、侦测机地址码设定开关、电源和信号线接口等部分,其实物图如下: 一、面板 机箱正面的监控面板的各区域显示灯及代表意义,面板如下图:

空气采样探测器设计方案

空气采样探测器设计方案 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目~单层高度20米以上~考虑到防火要求~因空间高~不宜采用普通点型火灾探测设备~为达到暗室高大空间的火灾防护能力~最大限度的减少~避免火灾隐患~确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术~卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络~可以通过监控微机对全部前端探测器进行编程~监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 , 《火灾自动报警系统设计规范,GB50116,98,》 , 《火灾自动报警系统施工及验收规范,GB 50166,92,》 , 《火灾报警器通用技术条件,GB4717,1993,》 , 《消防联动控制设备通用技术条件 GB16806,1997》 , 《VESDA System Design Manual Version 2.2》,Vision公司 设计手册, , 《VESDA设计规范2002》,北京华脉金威公司企业标准, , 《VESDA施工及验收规范2002》,北京华脉金威公司企业标准, 三、 VESDA产品功能及介绍 3.1. 综述

VESDA——VERY EARLY SMOKE DETECTION APPARATUS~中文翻译为:极早期的烟雾探测设备~这是根据产品的功能而起的名字。而根据其原理特点~也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球~并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉~成为保障高价值财产和重要设备设施安全的第一选择。 3.2. 燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟,阴燃,阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾~发出警报~此时火情所造成巨大的经济和财产损失已不可避免。请注意:在此之前~不可见烟阶段给我们提供了充裕的时间~VESDA可以及早探测险情~并控制火情的发生和曼延。

空气采样及检验方法

空气采样及检验方法 1培养基:普通营养琼脂平板, 2采样(空气沉降法) 2.1布点:面积小于30平方米的车间,设一对角线,在线上取3点,即中心一点,两端在距墙1米处各取一点;面积大于30平方米的车间,设东、西、南、北、中5个点,其中东、西、南、北点均距墙1米。 2.2采样高度:与地面垂直高度80-150厘米。 2.3采样方法;用直径为9厘米的普通营养琼脂平板在采样点上暴露20分钟盖上送检培养。 3培养:于37℃培养24小时。 4检测频率:每周 1采样方法 1.1涂抹法(适用于表面平坦的设备和空桶内壁接触面) 取经过灭菌的铝片框(框内面积为50平方厘米)放在需检查的部位上,用无菌棉球蘸上无菌生理盐水擦拭铝片中间方框部分,擦完后立即将棉球投入盛有10毫升无菌生理盐水的试管中,此液每毫升代表5平方厘米。 2检验方法 2.1细菌总数的检验 将上述样液充分振摇,根据卫生情况,相应地做10倍递增稀释,选择其中2-3个合适的稀释度作平皿倾注培养,培养基用普通营养琼脂,每个稀释度作2个平皿,每个平皿注入1毫升样液,于37℃培养24小时后计菌落数。

结果计算 表面细菌总数(cfu/cm2)=平皿上菌落的平均数×样液稀释倍数/30×2 三、人员手表面细菌污染情况的检验 1.采样方法:用一支蘸有无菌生理盐水的棉拭子涂擦被检对象手的全部,反复两次,涂擦的时候棉拭子要相应地转动,擦完后,将手接触部分剪去,将棉拭子放入装有10毫升无菌生理盐水的试管内送检培养。 2. 检验方法:同工器具表面细菌总数检验方法。 3. 结果计算:每只手表面的细菌总数(cfu/只手)=平皿上菌落的平均数×样液稀释倍数 四、消毒液药效的微生物学鉴定法 1采样对象:正常使用的消毒液,和已知配制好备用的消毒液 2采样及检验方法 在无菌条件下,用无菌吸管吸取1毫升样液,加入9毫升稀释液中混匀, 将注入了样液的稀释液充分摇匀,取1毫升注入平皿,随之倒入普通营养琼脂,待琼脂凝固后,翻转平皿,将平皿于37℃条件下培养24小时后计平板上生长的菌落数。 3结果分析 平板上有菌生长,表明被检样液中有残存活菌,若每个平板菌落数在10个以下,仍可用于消毒,若每个平板菌落数超过10个,说明每毫升被检样液含菌量已超过100个,即不宜在用于消毒。

空气样品的采集方法和采样仪器

空气样品的采集方法和采样仪器 一、直接采样法当空气中的被测组分浓度较高,或者监测方法灵敏度高时,直接采集少量气样即可满足监测分析要求。(一)注射器采样常用l00mL注射器采集有机蒸气样品。采样时,先用现场气体抽洗23次,再充满样气,夹封进气口,带回尽快分析。 (三)采气管采样采气管是两端具有旋塞的管式玻璃容器,其容积为100∽500mL。采样时,打开两端旋塞,将二联球或抽气泵接在管的一端,迅速抽进比采气管容积大6—10倍的欲采气体,使采气管中原有气体被完全置换出,关上两端旋塞,采气体积即为采气管的容积。 (四)真空瓶采样 二、富集(浓缩)采样法空气中的污染物质浓度一般都比较低(10-6~10-9数量级),直接采样法往往不能满足分析方法检测限的要求,故需要用富集采样法对大气中的污染物进行浓缩。富集采样时间一般比较长,测得结果代表采样时段的平均浓度,更能反映大气污染的真实情况。这类采样方法有:(一)溶液吸收法溶液吸收法的吸收效率主要决定于吸收速度和样气与吸收液的接触面积。 欲提高吸收速度,必须根据被吸收污染物的性质选择效能好的吸收液。吸收液的选择原则是:(1)与被采集的污染物质发生化学反应快或对其溶解度大。(2)污染物质被吸收液吸收后,要有足

够的稳定时间,以满足分析测定所需时间的要求。(3)污染物质被吸收后,应有利于下一步分析测定,最好能直接用于测定。(4)吸收液毒性小、价格低、易于购买,且尽可能回收利用。增大被采气体与吸收液接触面积的有效措施是选用结构适宜的吸收管(瓶)。几种常用吸收管:1、气泡吸收管2、冲击式吸收管3、多孔筛板吸收管(瓶)(二)填充柱阻留法填充柱是用一根长6~l0cm、内径3~5mm的玻璃管或塑料管,内装颗粒状或纤维状填充剂制成。采样时,让气样以一定流速通过填充柱,则欲测组分因吸附、溶解或化学反应等作用被阻留在填充剂上,达到浓缩采样的目的。采样后,通过解吸或溶剂洗脱,使被测组分从填充剂上释放出来进行测定。根护填充剂阻留作用的原理,可分为吸附型、分配型和反应型三种类型。(三)滤料阻留法该方法是将过滤材料(滤纸、滤膜等)放在采样夹上,用抽气装置抽气,则空气中的颗粒物被阻留在过滤材料上,称量过滤材料上富集的颗粒物质量,根据采样体积,即可计算出空气中颗粒物的浓度。(一) 低温冷凝法 (五)静电沉降法 (六)扩散(或渗透)法 (二) (七)自然积集法 (八)综合采样法 三、采样仪器 (一)组成部分空气污染物监测多采用动力采样法,其采样器主要由收集器、流量计和采样动力三部分组成。1、收集器:收

空气采样早期烟雾探测系统简明设计安装手册

空气采样早期烟雾探测系统简明设计安装手册 第一章极早期火灾预警系统简介 (1)简介 (2)系统主要特点 (3)主要性能参数 (4)主要场所应用 第二章极早期火灾预警系统设计总则及取样方式 (1)设计总则 (2)早期火灾预警系统在多种应用场所的取样方式 第三章传统消防联接图 第四章多台总体联网图 第五章取样管及其它材料选择 (1)取样管选材 (2)辅助材料 (3)工具料 第六章取样管安装前加工及丈量 (1)切 (2)弯 (3)粘 (4)伸缩缝 (5)毛细管 第七章取样管的固定方法 (1)平面固定 (2)弯头固定 (3)捆扣固定 (4)金属卡固定 (5)拉钢索固定 (6)保护区上方有纵横主梁固定 (7)空调回风口取样固定 (8)空调回风主管道内取样固定 (9)取样管和主机连接方法 第八章设备安装完结后放烟调试 第九章安装工作量

第一章极早期火灾预警系统简介 ◆简介 ☆概述:FMST极早期烟雾探测系统采用了主动采样的探测方式,先进的激光探测技术以及功能强大的系统应用软件,相对于传统火灾探测报警技术产生了质的飞跃。探测器由抽气泵、过滤器、激光腔(如下图示)、控制电路等组成。抽气泵通过PVC管或钢管所组成的采样管网从被保护区域抽取空气作为样品送入激光腔,在激光腔内利用激光照射空气样品,其中烟雾粒子所造成的散射光被阵列式接收器接收,接收器将光信号转换成电信号后送到探测器的控制电路,信号经处理后转换为烟雾浓度以及设定的报警阈值,产生一个适宜的输出信号。从而发出各级警报,依次为警觉级、行动级、火警1级、火警2级。 ◆系统主要特点 ☆高灵敏度先进的激光探测技术,比传统探测器高1000倍以上,可提早2-4小时报警。 ☆独特的探测方式主动通过PVC管从保护区取样探测,还可直接从设备里取样、安装和调试更简单。 ☆超强的网络功能多台机器既可近距离组网也可远距离组网,实现了集中式网络化管理。 ☆无源的传输方式保护区域无电源线和信号线,因此防爆,抗强电磁干扰。 ☆灵活的兼容能力能与传统的火灾探测报警控制设备兼容。 ☆特设黑匣子功能能记录通电、断电、火灾时间、烟雾曲线和系统故障等历史数据;并能通过微机查看或打印,为分清火灾事故责任提供依据。

VESDA主动式空气采样早期报警系统方案介绍

VESDA主动式空气采样早期报警系统方案介绍 一、系统设计方案符合中华人民共和国之条例及规范包括: 《建筑设计防火规范》GBJ16-98 《火灾自动报警系统设计规范》GB50116-98 《火灾自动报警系统施工及验收规范》GB50117-98 《VESDA空气采样烟雾探测系统设计、施工验收技术条件》Q/HYC001-1999 建筑平面图 二、VESDA通过的论证 VESDA产品已通过ISO9002质量体系标准认证,产品的设计均满足国际消防和安全标准,该公司与国际认可组织合作,正根据下列标准进行生产。 NTC:中国 SSL:澳大利亚和新西兰(AS1603.8-1996) UL:美国(UL268-1996.12) ULC:加拿大(UL268-1996.12) FM:美国(FM3230-3250,FM3280) LPC:英国(CEA GEI 1-048) AFNOR:法国(NFS61-950) 由于VESDA早期烟雾探测系统已得到上述机构的认可,因此我们可在世界各地安装和使用该系统。 三、VESDA设备技术指标: 1.系统规格供电电压:18-30V DC 电源功耗:5.7-11W(静态,报警状态时加1.3W)电流消耗: 240VmA(报警状态时加50Ma) 环境温度:00C-390 C(探测器环境温度) -200C -600C(采样区温度) 相对湿度:10-95%(无露点) 探测器灵敏度:(0.005-20%obs/m) 探测器保护面积:200m2 (最大) 采样管网:200M (四报管组合长度,若使用单管时,其长度可达100M)信号输出:30VDC,2A(C型,7个继电器输出) 体积:350mmX225mmX125mm(探测器主机) 140mmX150mmX90mm(远程显示部件) 19“ X3UX4”( 19”集中显示机架) 重量:4kg(带显示和编程模块的主机) 1kg(带显示模块的远程显示部件) 4kg(不带电池的智能电源) 一个VESDA网容纳的最大部件数:250 2.VESDA设备主要特点: (1)灵敏度高,探测范围宽 VESDA 系列产品,按灵敏度分为三个等级,即:0.01%obs/m/、 0.02%obs/m、0.005%obs/m

相关文档
最新文档