铸造合金原理及熔炼

铸造合金原理及熔炼
铸造合金原理及熔炼

铸造合金原理及熔炼

一、名词解释

l.铸铁:的铁碳合金。

2.白口铸铁:少数C固溶于铁素体,其他以碳化物存在。

3.灰口铸铁:c主要结晶成石墨,并呈片状形式存在于铸铁中,断口为暗灰色。

4.球墨铸铁:铁水在浇注前经球化和孕育处理,C主要以球状形式存在于铸铁中。

5.球化处理:向铁水中加入稀土镁合金(球化剂)。(其中镁是具有很强球化能力的元素)。球化剂的作用是使石墨呈球状析出。我国应用最广的球化剂是稀土镁合金。

6.孕育处理:向铁水中加入硅铁合金(孕育剂)颗粒。孕育剂的作用是促进铸铁石墨化,防止产生白口,细化石墨。常用的孕育剂为硅的质量分数75%硅铁。

7.蠕墨铸铁;是液态铁水经蠕化处理和孕育处理得到的.由金属基体和蠕虫状石墨构成。

8.可锻铸铁:是由白口铁经过退火而制得的一种高强度铸铁,白口铸铁中的渗碳体分解成团絮状石墨的灰口铸铁,性能优于灰铸铁,耐磨性和减震性优于普通碳索钢,可部分代替碳钢,合金钢和有色金属。

9.奥氏体(A或γ):碳溶于γ-Fe中所形成的间隙固溶体。晶格结构:面心立方晶格fcc。

10.铁素体(F或α):碳溶于α-Fe中所形成的间隙固溶体,晶格结构:体心立方晶格bcc。

11.δ-铁素体:碳溶于δ-Fe中所形成的间隙固溶体。

12.碳当量定义:将合金元素对共晶点碳量的影响折算成铸铁碳量的增减,折算后的值称之为碳当量,以CE表示。碳当量:CE=C+1/3(Si+p) 13.共晶度:铁液实际含碳量和共晶点的实际碳量的比值为共晶度,以sc表示。共晶度:Sc=C/[%-(Si+p)l/3l 14.钢的腐蚀金属表面在周围介质的作用下逐渐被破坏的现象称为金属的腐蚀。

15.化学腐蚀是指金属表面与周围介质发生化学反应而引起的破坏,如高温下金属的氧化等。

16.电化学腐蚀是指金属与电解质溶液发生电化学作用而使金属破坏的现象。

17.耐热钢是指在高温下对氧化性气体具有抗氧化性的钢种。

18.黑色金属:在工业生产中,通常把铁及其合金称为黑色金属。

19.有色金属:把其他非铁金属及其合金称为有色金属。

20.固溶强化:通过合金元素固溶于金属基体中,使晶格发生畸变,从而使塑性变形的抗力增加,合金强度和硬度提高的过程叫做固溶强化。

21.时效强化(沉淀强化):时效处理,又称低温回火。时效强化是指在网溶度随温庋降低而减少的合金系中,当合金元素含量超过一定限量后,淬火可获得过饱和固溶体。在较低的温度加热(时效),过饱和固溶体将发生分解并析出弥散相,引起合金强度、硬度升高而塑性下降的过程。它也被称为沉淀强化。

22.自然时效是指时效强化在室温下进行的时效,通常需要较长的时间。

23.人工时效又分为不完全人工时效、完全人工时效和过时效3种。

24.过剩相强化:当过量的合金元素加人到基体中时,一部分溶人固溶体,而超过极限溶解度的部分则不能溶入,形成过剩的第二相,如铝硅合金中的硅相。过剩相强化主要利用较硬的过剩相来阻碍基体的变形,从而使合金强化,与时效强化有相似之处。

25.变质处理:铸造合金的组织细化亦常称为变质处理

26.淬火:工艺是将工件加热到足够高的温度,并保温足够长的时间,使强化相充分溶人固溶体,随后快速冷却(淬人水中或油中)的过程。 27.时效:当铝合金通过高温下淬火形成过饱和固溶体后,再在一定温度下保温(或室温长时间放置)而使其强度、硬

度升高的过程称为时效。

28.紫铜:纯铜呈紫红色,故又称紫铜,具有面心立方晶格,无同素异构转变,无磁性。

29.青铜主要是CuSn台金,后来发展出一些代锡的铜合金,其组织和性能仍与锡青铜类似,称为无锡青铜,如铝青铜、铅青铜等。

30.黄铜:以锌为主加元素的铜合金称为黄铜

31.特殊黄铜:通常,Cu-Zn二元合金称为普通黄铜。以铜、锌为主要组元,再加人其他元素构成的合金,称为特殊黄铜

32.锡汗:锡青铜有很强的枝晶偏析和反偏析现象,常在铸件表面渗出许多灰白色颗粒(富锡分泌物人在加工表面也常见到一些灰白色小点,俗称“锡汗”。

33.焦炭:是将配制的煤在隔绝空气条件下,长时间(20h左右)高温(最高达1300℃左右)加热炼制而成的人工燃料。

34.冲天炉熔化区:是指金属料块从开始熔化到熔化完毕这一段炉身高度范围。

35.双联熔炼,即将冲天炉与电炉等其他熔化炉组合,冲天炉铁水经过其他熔炼炉升温及成分调接后才浇注。三、填空题

1.蠕墨铸铁的蠕化剂为镁钛合金、稀土镁钛合金或稀土镁钙合金等。

2.灰铸铁的金相组织由金属基体和片状石墨组成。主要的金属基体形式有珠光体、铁索体及珠光体加铁素体三种。3.可锻铸铁种类;1)黑心可锻铸铁:KTH300 - 06:2)珠光体可锻铸铁KTZ450-06: 3)白心可锻铸铁KTB380-12 4.获得合乎要求的白口铸铁是生产可锻铸铁的前提,所以选择好化学成分,保证铸铁浇铸后获得白口铁组织非常重要。

5.石墨形态因结晶条件不同而有七种基本类型,即球状、团状、团絮状、蠕虫状、水草状、开花状和片状。在片状石墨中又可分为A、B、C、D、E、F六种形状。

6.珠光体:奥氏体冷却到共析点以下即发生共析发应,一方面析出共析渗碳体,一方面转变为α-Fe,二者共同组成的共析体就是珠光体。

7.渗碳体:由一个C原子和三个Fe原子组成的化合物Fe3C称为渗碳体。晶格结构:复杂正交。

8.莱氏体:共晶反应时与奥氏体同时生长的渗碳体称为共晶渗碳体,它和共晶奥氏体形成的机械混合物称为莱氏体

8.高温莱氏体:727℃以上,奥氏体与渗碳体,以Le表示。

低温莱氏体:727℃以下,珠光体与渗碳体,以L'e表示。

9.二元磷共晶:Fe3P+α-Fe:三元磷共晶:Fe3P+Fe3C +α-Fe。

10.强化孕育条件,细化共晶团,控制磷共晶数量有可能得到断续网状磷共晶结构,既保持较高的强度又有

较好的耐磨性。

11.奥氏体中碳的脱溶:普通成分的铸铁,共晶转变后组织为含碳约%的奥氏体加石墨。如继续冷却,奥氏体中的含碳量将减小,卧二次石墨的形式析出。

12.目前各国使用的商业孕育剂和专利孕育剂的品种繁多,归纳起来可分两大类:石墨化孕育剂和稳定化孕育剂。13.现在我国生产的球墨铸铁普通用稀土硅铁镁合金作为球化剂,所以也称稀土镁球墨铸铁

14.磷在球墨铸铁中有严重的偏析倾向,易在晶界处形成磷共晶,严重降低球墨铸铁的韧性。磷还增大球墨铸铁的缩松倾向。

15.适用于球墨铸铁生产的优质铁液应该是高温,低硫、磷含量和低的杂质含量(如氧及反球化元素含量等)。16.在球墨铸铁生产中,除会产生一般的铸造缺陷外,还经常会产生一些特有的缺陷。主要有:缩孔及缩松、夹渣、皮下气孔、石墨漂浮及球化衰退等。

17.根据铸态组织中有无自由渗碳体,而可分别采取高温石墨化退火和低温石墨化退火的两种方式。

18.根据正火温度的不同,可分为高温完全奥氏体化正火以及部分奥氏体化正火。

19.蠕虫状石墨是介于片状石墨及球状石墨之间的中问状态类型石墨,它既有在共晶团内部石墨互相连续的片状

石墨的组织特征,又有石墨头部较圆、其位向特点和球状石墨相似的特征。

20. 蠕墨铸铁的化学成分与球墨铸铁的成分要求基本相似,即高碳、低磷。低硫,一定的硅、锰含量

21.铸铁中石墨的润滑能力,与金属基体有关,与石墨的形状、尺寸和分布有关,还与摩擦面承载大小有关。22.一种优质抗磨材料应该在保证不破裂的前提下尽量提高耐磨性,因此要求材料有强韧性好的基体和足够数量的硬化相。

23.材料在巨大的局部载荷作用下不损坏的关键是金属基体,只有强韧性特别好的基体才能够承受恶劣的工作条件,如马氏体、奥氏体,贝氏体都属于抗磨铸铁选择的基体。要避免铁索体、珠光体、石墨等显微组织存在。其次,要有足够数量的硬化相。

24.铸钢材料的品种从普通碳钢、低合金钢至高合金钢。

25.碳钢铸件热处理的目的是细化晶粒,消除魏氏体(或网状组织)和消除铸造应力。热处理方法有退火、正火或正火加回火。

26.纯铝具有银白色金属光泽,密度小,熔点低℃),导电、导热性能优良。

27. Al-Si系铸造铝合金,称硅铝明。其中ZL102(ZAlSi12)是含12%Si的铝硅二元合金,称为简单硅铝明.加入其他合金元素的铝硅铸造合金称复杂(或特殊)硅铝明。

28.时效处理又分为自然时效及人工时效两大类。

29.金属镁的密度(约 g/cm3小于铝,镁合金也比铝合金轻,密度约为锅台金的 2/3。镁合金具有很高的比强度、比剐度和比弹性模量,且切削加工性能极好。

30.影响冲天炉内焦炭燃烧过程的因素,主要是送人炉内空气的数量和质量用温度、含氧量等人焦炭的质量(灰分、块度)等。

31. 焦炭灰分含量不仅影响焦炭中固定碳含量及发热值大小,而且影响焦炭的燃烧速度。

32.一般随焦炭块度增大,氧化带扩大,燃烧温度增高。

33.空气温度对燃烧过程的影响一方面是空气带人的物理热,使反应的热量增大,从而提高燃烧温度。

34。若风量不变、层焦用量增加时(焦耗增大)原来熔化一批金属炉料消耗的底焦少于补充的层焦,使底焦高度上升,但这样并不会造成底焦高度无限升高,经过3~5批料后,底焦高度会在一个新的高度上稳定下来,原因是层焦增多会使还原带增高,并使还原反应更充分,造成C2。含量降低,CO含量升高,燃烧系数ηv下降。

35.当送风量增加时,燃烧速度加快,熔化一批料所消耗的底焦量增多,若层焦量不变时,必然造成底焦高度逐渐下降

36.当送风量减少时,由于消耗的底焦量少于层焦补充量,底焦高度就会逐渐升高

37. 当底焦高度过低,使还原带高度减少到零时,这种平衡过程就无法再进行,冲天炉的熔炼过程就无法继续进行下去,生产中若出现这种情况时,必须立即打炉,否则会出现冻炉或结渣等严重事故。

38.当焦耗过高而风量又不足时,可能出现底焦高度太高,使得还原带上部的温度低于还原反应的温度(1200℃)这时底焦顶面以上的金属炉料无法熔化,冲天炉的熔炼过程便出现暂时中断现象。

39.预热区是指从加料口到金属炉料加热到平均熔点(一般取1200℃)为止的区间。

40.过热区是冲天炉热交换最薄弱的环节。冲天炉的总热效率为35%左右,其中预热带热效率为50%—60%,熔化带为50%左右,但过热带的热效率仅为6%~8%。

41.酸性冲天炉熔炼可能出现增硅现象,不可能出现增锰现象。

42.碳作为铸铁的重要元素,在冲大炉熔炼过程中,既被O2,CO2和FeO氧化损失,又因焦炭中的碳向铁水溶解而增加。

43.水冷冲大炉的关键结构是在冲天炉底焦区的钢板炉壳加冷却水套,形成水冷炉壁,其结构有内冷式和外冷式两种

44.常用的双联熔炼有冲天炉一电炉(包括电弧炉、有芯工频妒、无芯工频炉)熔炼。

45.冲天炉的预热及熔化的热效率高(约60%)但过热效率低(约7%)而电炉的过热效率高(>60%)故冲天炉一电炉双联熔炼可晟大限度地降低能耗和成本,并获得高质量的铁水。

46.常用的三相电弧炉结构主要由炉体、炉盖、装料机构、电极升降与夹持机构、倾炉机构、炉体开出机构、炉

盖旋转机构、电气装置和水冷装置等部分构成。

五、问答题

1.可锻铸铁生产分两个步骤:

第一步,先铸造纯白口铸铁,不允许有石墨出现,否则在随后的退火中,碳在已有的石墨上沉淀,得不到团絮状石墨:

第二步,进行长时间的石墨化退火处理。

将白口铸铁加热到900℃—960℃,长时间保温,使共晶渗碳体分解为团絮状石墨,完成第一阶段的石墨化过程。随后以较快的速度(100℃,h)冷却通过共析转变温度区,得到珠光体基体的可锻铸铁。

若第一阶段石墨化保温后慢冷,使奥氏体中的碳充分析出,完成第二阶段石墨化,并在冷至720℃~760℃后继续保温,使共析渗碳体充分分解,完成第三阶段石墨化,在650℃—700℃出炉冷却至室温,可以得到铁素体基体的可锻铸铁。

为了缩短时间,并细化组织,提高机械性能,可在铸造时采取孕育处理。孕育剂能强烈阻碍凝固时形成石墨和退火时促进石墨化。采用%硼、%铋和%铝的孕育剂,可将退火时间由70多小时缩短至30小时。

2.石墨的结晶特点:在简单六方晶体中,碳原子是分层排列,同一层上的原子间距小,结合力强层间原子间距大,结合力弱。容易形成片状石墨。

3.Fe -C合金结晶过程中为什么一般形戍Fe -Fe3C,而不是Fe—G

答:从热力学上,G比Fe3C要稳定:从动力学上,渗碳体的成分与铁液更接近,

Fe的排列与A也有相似之处。因而,A中析出渗碳体较易形核,而G的晶体结构与A相差较大,不易从A中形核和长大。铁碳合金中,C以何种形式存在取决于化学成分和冷却速度。

4.影响铸铁石墨化程度的主要因索

答:(1)、化学成分

1)碳和硅:碳是形成石墨的元素,也是促进石墨化的元素。含碳愈高,析出的石墨愈多、石墨片愈粗大。硅是强烈促进石墨化的元素,随着含硅量的增加,石墨显着增多。

2)硫。硫是强烈阻碍石墨化元素。

3)锰。锰是弱阻碍石墨化元素,具有稳定珠光体,提高铸铁强度和硬度的作用。

4)磷。磷对铸铁的石墨化影响不显着。含磷过高将增加铸铁的冷脆性。

(2).冷却速度

渗碳体的成分(碳含量)更接近于液态铸铁,与G相比,结构亦更近于A,在快冷时易得到渗碳体:而G是一种更稳定的相,在缓冷时易得到G。

5.球墨铸铁的共晶结晶有以下特点①在片状石墨共晶团的结晶过程中,虽然石墨也是先导相,但石墨和奥氏体基本上是同步长大的,如图1-15所示。而球状石墨菇晶团的结晶则先是石墨的形核和长大,然后才是奥氏体壳的成核和长大。②因球墨铸铁需要不断地补充新晶核,共晶结晶才能完成,新晶核的产生就需要继续冷却,需要不断地增加过冷度,因此球墨铸铁的共晶结晶不但时间较长,而且其终了温度也比灰铸铁低得多。

③球墨铸铁的共晶团晶粒比灰铸铁细得多,这也是球墨铸铁结晶的一个特点。

6.蠕虫状G的形成过程

两种方式:

1)、先生成小球-畸变.沿没被A包围的出口与铁液接触长大而成

2)、先生成小片一蠕化元素富集逐渐演变而成

一般:浓度大时按前一种生长(蠕化元素)浓度小时按后一种生长

7.消除炉料遗传性的措施有两种:

①提高铁液的过热温度:

@用两种以上的原生铁进行配料,可减弱炉料的遗传性。

8.提高灰铸铁力学性能的途径

为了提高灰铸铁的性能,常采取下列各种措施:合理选定化学成分、孕育处理、微量或

低合金化,根据要求,各种措施还可同时采用。

(1)合理选定化学成分

提高Si/C比。(0.5提高至0. 75),组织中共析奥氏体量增加,有加固基体的作用:由于总碳量的降低,石墨量相应减少,减少了石墨的缩减及切割作用:溶于铁索体中的硅含量增高,强化了铁索体·提高了共析转变温度,珠光体稍有糨化,对强度性能不利·由于硅的增高,使铁液的白口倾向有所降低。

(2)孕育处理.

孕育目的在于,促进石墨化,降低白口倾向:降低断面敏感性:控制石墨形态,消除过冷石墨:适当增高共晶团数和促进细片状珠光体的形成,从而改善铸铁的强度性能及其他性能如:致密性、耐磨性及切削性能等,

(3)低台金化

在常规化学成分的基础上添加一种或几种合金元素,使铸铁的显微组织得到改善,力学性能及物理、化学性能得到提高

9.常用灰铸铁的热处理方法

由于一般热处理改变不了石墨的片状特征,因此灰铸铁的热处理就用得不很多,最常用的有:①低温退火,消除内应力的热处理,亦称热时效:②改善加工性能的降低硬度(去除铸件内残留的少量自由碳化物)的热处理,称为高温石墨化退火。

10.球墨铸铁的组织

球墨铸铁显微组织由金属基体和分布其间的球状石墨组成,石墨体积约占总体积10%。金属基体的形式有珠光体、珠光体加铁素体、铁索体三种,经过合金化和热处理,也可获得贝氏体、马氏体、屈氏体、索氏体或奥氏体一贝氏体的基体。

11. 球墨铸铁的根本性特点

1)石墨形状的改变(从片一球状),使石墨对基体的割裂作用减到最小,从而根本上改变了铸铁的性能水平:

2)可以发挥基体的作用来达到性能要求:

(1)通过热处理调节:(2)铸态下获得。

12.球墨铸铁的生产过程

球墨铸铁的生产过程包含以下几个环节:熔炼合格的铁液,球化处理,孕育处理,炉前检验,浇注铸件,清理及热处理,铸件质量检验。在上述各个环节中,熔炼优质铁液和进行有效的球化一孕育处埋是生产的关键。

13.球墨铸铁中锰所起的作用与其在灰铸铁中所起的作用有什么不同

在灰铸铁中,锰除了强化铁索体和稳定珠光体外,还能减小硫的危害作用,而在球墨铸铁中,由于球化元素具有根强的脱硫能力,因而锰已不再能起这种有益的作用。而由于锰有严重的正偏析倾向,往往有可能富集于共晶团晶界处,严重时会促使形成晶间碳化物,因而显着降低球墨铸铁的韧性。

14.球墨铸铁中硫所起的作用

球墨铸铁中的硫与球化元素有很强的化合能力,生成硫化物或硫氧化物,不仅消耗球化剂,造成球化不稳定,而且还使夹杂物数量增多,导致铸件产生缺陷,此外,还会使球化衰退速度加快,故在球化处理前应对原铁液的含硫量加以控制。

15.目前工业生产中采用的球化剂具有以下的共同特点

与疏、氧有很大的亲和力,生成稳定的反应生成物,显着减少溶于铁液中的反球化元素含量:在铁液中的溶解度很低:可能与碳有一定的亲和力,但在石墨品格中有低的溶解度。

16.目前常用的球化处理方法有哪几种

目前常用的球化处理方法有以下几种。

1)冲入法。2)压力加镁法。

31转动包法。4)型内球化法。

17.球墨铸铁孕育处理的目的

孕育处理是球墨铸铁生产中的一个重要环节,至少有以下几个目的。

①消除结晶过冷倾向。②促进石墨球化。③减小晶间偏析。

18.球墨铸铁的凝固特点

1)球墨铸铁有较宽的共晶凝固温度范围

2)球墨铸铁的糊状凝固特性

3)球墨铸铁具有较大的共晶膨胀

19.球化不良的形成原因及防止措施

1)原铁液含硫高、严重氧化的炉料中含有过量反球化元素·处理后铁液残留镁和稀土量过低。铁液中溶解氧量偏高是球化不良的重要原因。

2)选用低硫焦炭、低硫金属炉料,必要时进行脱硫处理,废钢除锈·控制冲天炉鼓风强度和料位·检验控制炉料及球化元素成分,必要时增加球化剂中稀土元素用量.严格控制球化工艺,防止球化处理失败。

20.球化衰退的形成原因及防止措施

1)高硫、低温、氧化严重的铁液经球化处理后形成的硫化物、氧化物夹渣未充分上浮,扒渣不充分,铁液覆盖不好,空气中的氧通过渣层或直接进人铁液使有效的球化元素氧化并使活性氧增加是球化衰退的重要原因。渣中的硫也可重新进人铁液消耗其中的球化元素,铁液在运输、搅拌、倒包过程中,镁聚集上浮逸出被氧化,因此使有效残留球化元素减少造成球化衰退。此外孕育衰退也使石器球数减少而导致石墨形态恶化。造成球化不良的因素也加快球化衰退。

2)应尽量降低原铁液含硫、含氧量,适当控制温度。可添加稀渣剂,使渣充分上浮并扒渣,扒净渣后加草灰等覆盖剂以尽可能隔离空气。加包盖或采用密封式浇注包、采用氮气或氮气保护可有效地防止球他衰退。应加快浇注,尽量减少倒包、运输及停留时间。

21.球墨铸铁缩松的形成过程

球墨铸铁共晶凝固时间比灰铸铁长,呈粥状凝固,凝固外壳较薄弱,二次膨胀时,在石墨化膨胀力作用下使外壳膨胀,松弛了内部压力。因此在第二次收缩过程中,最后凝固的热节部位内部压力低于大气压,被树枝晶分割的小熔池处成为真空区,完全凝固后成为孔壁粗糙、排满树枝晶的疏松孔,即缩松缺陷。

22.球墨铸铁石墨漂浮的形成原因及防止措施

1)形成原因。碳当量过高,厚壁铸件凝固缓慢为石墨上浮提供了时间条件,加剧了石墨漂浮,稀土使共晶点左移,当稀土残留量>%时,石墨漂浮显着增加。镁使共晶点右移,提高残留镁量,减轻石墨漂浮。高温浇注延长了铁液在型内保持液态的时间,增加石墨漂浮。炉料原始石墨尺寸大、数量多,未熔石墨微粒促进液态下石墨形核析出和石墨漂浮:纯净炉料过冷度大,则不利于形核析出石墨,漂浮较少。

2)防止措旌。将碳当量控制在%~%以下,厚壁铸件由于凝固慢,易于发生石墨漂浮,故碳当量应该控制在更低的范围内。在碳当量不变的条件下,适当降低硅含量,有助于防止发生石墨漂浮。控制残留稀土量不可过高:控制浇注温度适当-大截面铸件可适量添加m止石墨化元素,局部放置冷铁也可防止该部位产生石墨漂浮。

23.复合蠕化剂处理铁液的优点缺点

1)复合蠕化剂处理铁液的优点是:这样既利用球化元素使石墨球化的作用,又使铁液中有足够的反球化元素,使石墨不能变为球状。允许有较宽的蠕化元素残留量,便于生产控制:

2)缺点是用此法生产的蠕墨铸铁中舍有钛等反球化元素,这种铁的回炉料不能作为生产其他种类铸铁(特别是球墨铸铁)使用,因而给炉料管理带来了麻烦。

24.石墨对铸铁减摩性的影响

1)石墨是六方晶格的片层状晶体结构,其基面上碳原子之间由共价键联结,而基面之间由。极性键联结。共价键键能可达到极性键能的7倍左右,故在外力作用下,石墨很容易沿基面解理。当相对滑动的表面间存在石墨时,其低能解理面会发生转动,使之基本平行于滑动界面,使得石墨成为一种很好的固体润滑剂,降低滑动界面的摩擦和磨损。

2)在摩擦过程中,铸铁中的石墨除能当作固体润滑剂外,在润滑条件下,还能吸附和保存润滑油,保持油膜的连续性。石墨脱落后在金属基体中留下的空穴,又能储存润滑剂,促进润滑油膜的形成。这是石墨有利的一面。在摩擦磨损中,石墨还具有不利的一面,这就是削弱基体的一面。

25.防止铸铁氧化的主要措施

加入合金元素铝、硅、铬等,以形成连续致密的能防止离子扩散的层下氧化膜:采用孕育处理,使共晶团及石墨细化,适当降低含碳量,以减少石墨数量:采用球墨铸铁等。

26.如何获得铸铁的耐蚀性能

铸铁组织中,石墨的电极电位高于渗碳体,而渗碳体又高于铁素体。因此当铸铁处于电解液中时,即会形成原电池而发生电化学腐蚀,使电位低的相受到腐蚀。当往铸铁或钢中加人适当的合金元素,如铬、硅或镍时,可同时提高其耐化学腐蚀和耐电化学腐蚀酌性能。这些合金元素能在铸铁的表面形成一层以Cr2O3或SiO2为主要成分的、或富镍的钝化膜,以保护工件,不使腐蚀性介质侵人其内部。这些合金元素又都是电极电位比铁高的金属,当溶入铸铁中时,能够提高铁素体的电极电位,从而减轻相间的电化学腐蚀过程。但为于形成一定厚

度(约l00nm以上)的钝化膜,并能显着提高铁索体的电极电位,合金元素需要达到一定的含量。

27.铸造碳钢的结晶过程

碳钢的结晶过程分为两个阶段:第一阶段由钢液开始结晶至完全凝固形成奥氏体为止,即一次结晶过程;第二阶段由奥氏体开始再结晶,析出先共析铁素体至共析转变终了为止,即二次结晶过程。实际上,在两次结晶过程之问,还发生奥氏体的粒化过程。

29.铸钢中的非金属夹杂物对性能的影响

非金属夹杂物割裂金属的基体,降低力学性能,特别是降低韧性,其作用大小取决于以下两方面的因素:一是夹杂物数量,夹杂物数量愈多,削弱力学性能的作用愈大:二是夹杂物形态,如长条形和尖角形的夹杂物在钢中,将造成缺口及应力集中,大幅度降低钢的力学性能,尤其是断裂韧性:而球形或圆钝形夹杂物的削弱作用则小得多。30.铸钢热处理目的

1)细化晶粒、提高性能。2)消除网状及魏氏组织。3)消除铸造内应力

31.高锰钢的热处理方法

高锰钢的基本热处理是固溶化处理,又称为水韧处理。因为高锰钢的铸态组级中有大量沿奥氏体晶界析出的网状碳化物,它大大降低钢的韧性。为了消除这些铸态碳化物,将钢加热至奥氏体相区温度(105~l100℃,视钢中碳化物尺寸而定)并保温一段时间讨当于每25mm壁厚保温1h人使铸态组织中的碳化物都溶解到奥氏体中。由于高锰钢合碳量高,为保证碳化物彻底溶解,选择1050—1100℃固溶,然后在水中进行淬火,由于快冷而使碳化物来不及析出,从而得到单一的奥氏体组织。这种用于高锰钢的通过固溶、水淬而获得高韧性的热处理方法即所谓的水韧处理.32.高锰钢的加工硬化机理

1)位错堆积论这种理论认为,高锰钢在经受强力挤压或冲击作用下,晶粒内部产生最大切应力的许多互相平行的平面之间产生相对滑移,结果在滑移界面的两方造成高密度的位错,而位错阻碍滑移的进一步运动,即起到位错强化的作用。其结果是增强了钢抵抗变形的能力和提高了钢的硬度。

2)形变诱导相变论认为高锰钢中奥氏体处于相对稳定的状态,在受力而发生变形时,由于应变诱导的作用,发生奥氏体向马氏体的转变,在钢的表面层中产生马氏体,因而具有高硬度。

34.不锈钢的化学成分碳的作用

碳是对不锈钢的组织和性能影响最大的元素之一,它的作用主要表现在以下两个方面。

一方面,碳稳定奥氏体,其作用约为镍的30倍。。另一方面,由于碳铬亲和力很大,碳可与铬形成一系列复杂的碳化物

35.不锈钢的化学成分镍的作用

镍是不锈钢的重要合金元素,它的作用是:

①化学性质不活泼,不易氧化,与硫、氯离子不易结合,具有高的化学稳定性.

②提高固溶体的电极电位,从而减轻电化学腐蚀:③扩大Fe-C相图的奥氏体相区

36.影响不锈钢组织的合金元素

影响不锈钢组织的合金元素可归纳为两类:

①如铬、钼、钛、铌。硅等元素都具有体心立方晶格,它们都缩小奥氏体相区,扩大铁素体相区,为铁素体形成元素.

②如镍、锰、铜、碳、氮等元素都具有面心立方晶格,它们都扩大奥氏体相区,缩小铁素体相区,为奥氏体形成元素。铁素体形成元素和奥氏体形成元素的相对量决定了不锈钢的组织。

37.提高铸造AlSi合金性能的途径

这些措施主要有:变质处理,合金化,热处理,精炼以及采用特种铸造方法。

38.为什么在各种铸造铝合金中,以Al-Mg合金的固溶强化效果最好

在各种铸造铝台金中,以Al-Mg合金的固溶强化效果最好这是因为Mg原子与周原子半径相差较大(约13%)而且Mg 在Al中有较大的固溶度(最大固溶度为 14. 9%)因此,当大量的Mg溶人AI时,固溶体的晶格就产生畸变,使其变形抗力增加。

39.人工时效又分为不完全人工时效、完全人工时效和过时效3种.

1)不完全人工时效把铝合金铸件加热到较低温度下(150~170℃)保温3—5h,以获得较好的抗拉强度、良好的塑性和韧性,但抗蚀性较低的热处理工艺。

2)完全人工时效把铸件加热到较高温度一下(175—185℃)保温5~24h,以获得足够的抗拉强度间最高的硬度八但伸长率较低的热处理工艺。

3)过时效把铸件加热到190~230℃,保温4~9h,使强度有所下降,硬度有所提高,以获得较好的抗应力、抗腐蚀能力的工艺,也称稳定化回火。

40.过剩相强化的效果与哪些因素有关

采用过剩相强化的效果与过剩相本身的特性,以及形态、数量、大小及分布有关。过剩相的强度、硬度愈高,强化效果愈大。过剩相增多,合金的强度、硬度上升,塑性下降,当过剩相增加较多或形成网状时,由于基体被分割包围,无从发挥其变形能力,晶界区的应力集中也难于松弛,使合金的塑性大大降低,强度也随之下降。粗大针状的过剩相怕铝硅台金中的未变质共晶硅)容易引起变形裂纹,也易于使合金的塑性和强度降低。

41.细化铸造铝合金的组织的方法

1)基体的细化铝合金的基体圭要是αAl相,因此基体的细化主要是指铸造铝合金中初生αAl相的细化。

生产中,常加人微量Ti、Zr、B等元素对铸造铝合金的基体进行细化。

2)过剩相的细化对于过剩相的细化,亦称为变质处理,例如,Al-Si台金加钠处理使共晶Si细化,由未变质时的粗大针状或片状变为海藻状或球粒状,提高了合金的力学性能,尤其是塑性。

3)有害相的细化在铸造铝合金的熔铸过程中,由于原材料或操作工艺等原因的影响,常带人许多有害杂质。例如,铝硅合金中铁杂质形成的粗大针状B相( Al5FeSi)削弱合金力学性能。可在铝硅合金中加人Mn使时β变成为团块状的AlSiMnFe相,从而改善了合金性能。

42.AI-Cu合金时效强化机理

时效强化的合金强度取决于时效过程中形成的各种脱溶相及其应变区对位错运动阻碍的状况。

1).位错运动受应变区所阻碍。

2)位错相受脱溶相阻碍可分为两种情况:

a.脱溶相不硬,不和基体一起变形时,位错可能切过脱溶相,由于使脱溶相粒子产生滑移,增加了相界面,提高了能量,故脱溶相对位错的通过也表现相当大的阻力.

b.脱溶相很硬,且尺寸、间距均较大时,运动的位错线就可能以绕过脱溶相的形式通过它们,并在这些脱溶相周围留下一位错环。

3)位错绕过脱溶相所受的阻力和脱溶相间距的大小有关,脱溶相分布越弥散,间距越小,位错绕脱溶相所需的力就愈大。即位错运动所受阻力也越大,反之阻力越小。在铝铜台金时效后期,析出稳定的脱溶相θ (CuAI2),共格联系已被破坏、应变区消失,故这时主要靠脱溶相本身对位错运动的阻碍来达到强化。

43.铸造铝合金的热处理工艺

最常用的铸造铝合金的热处理工艺有淬火( T4)淬火加不完全时效(T5)和淬火加完全时效(T6)另外还有人工时效( TI)退火(T2)淬火稳定化回火(T7)和淬火软化团火(T8).

44.铸造镬合金分类

主要有三类:一类是以Mg-Al台金为基础,如镁铝锌合金和镁铝铝合金:另一类是以Mg-Zn合金为基础,如镁锌铝

合金等,这两类合金有较高的常温强度和良好的铸造性能,但耐热性较差,长期工作温度不能超过1500C:

第三类是以Mg- RE为基础,如镁稀土铝合金等,这类合金为耐热镁合金,可在250℃~300℃下长期工作。

45.冲天炉熔炼过程有哪些

主要包括燃烧过程、热交换过程和冶金反应过程三个部分,此外还有气体运动、炉渣形成及炉衬浸蚀等过程。46.铸铁熔炼的基本要求

要求:优质高产低耗长寿简便

l、铁液质量高:

铁液温度要高: 1400-1500℃

化学成分:波动范围小,C、S(50%) 增加Si(10%-20%)、Mn(15%-25%)烧损

2、高产:熔化率大(Q)

3、低耗:燃料的消耗少

铁焦比:α =m铁/m焦一般:8-10越高越好

4、长寿:炉衬寿命要求

5、操作简便自动化、机械化

47.焦炭的燃烧反应过程

在冲天炉内,焦炭由两大部分组成:一部分是底焦,即炉底以上1~2m厚的焦炭层:另一部分为层焦,它与金属炉料及熔剂分批分层加人炉内。开始送风后,空气经风口进人炉内只与底焦层中的焦炭发生燃烧反应,而层焦只处于预热、干燥及挥发物排出过程,未发生燃烧反应。层焦与底焦层接触后,一方面补充底焦,另一方面也开始发生燃烧反应。冲天炉内的焦炭燃烧,是在底焦层内的氧化带和还原带内进行,实质上是焦炭中的碳与人炉空气中的氧之间的反应。底焦燃烧所消耗的焦炭由层焦补充,以维持底焦内的燃烧反应能继续进行。

48.富氧送风对燃烧过程的影响

提高人炉空气中的含氧量,一方面增大燃烧速度,有利于形成集中的高温区:另一方面不参加燃烧反应的氨量和炉气总量减少,对提高燃烧温度有利。因此,富氧送风对燃烧过程的影响与预热送风的影响相似,只是作用机理不同而已。

49.强化冲天炉过热区热交换过程,可从哪两方面采取措施

其一是延长过热时间,具体办法是增加焦炭用量和采用适当块度、反应能力低的焦炭:其一二是提高焦炭表面温度,具体办法有预热送风,富氧送风,除湿送风,或采用固定碳含量高用灰分低)的优质焦炭。

50.冲天炉强化熔炼的主要措施

(1)预热送风

为了提高出铁温度及进一步提高冲天炉的热效率,预热送风是人们最早想到和应用的技术,目前热风温度最高可达到 9 0 0℃左右。

作用:1)可提高铁液温度,减少焦耗

2)缩短氧化区增大还原区,减少C、Si、Mn的烧损

3)减小风口冷风区

(2)除湿送风

空气中的水分被带人炉内,不仅给燃烧过程带来不利影响,而且使铁水含气量(主要是H2和O2大为增加,导致铸件因气孔、缩松、硬度不均匀等缺陷而报废。

影响:1)吸热、降温,

2)氧化消耗C、Si、Mn,

3)增加氢,恶化铁液质量

(3)富氧送风

富氧送风是在冲天炉的送风系统内,附加送氧装置,增加空气的氧含量,有助于改善燃烧条件,提高出铁温度和熔化率。

作用:1)提高容化率

2)提高铁水温度

3)降低焦铁比

51.冲天炉的热风装置按以下分类

①按热源分类有内热式,利用冲大炉本身炉气中的化学热(CO)或物理热:外热式,利用另外的热源门煤气、油等.以及综合式,即内外热都用:②按预热装置的安装位置不同可分为:炉外式,预热装置安装在冲天炉之外,需另占场地:炉内式,预热装置安装在冲天炉炉内(炉身或烟囱处) ③按换热方式不同而分为对流式、辐射式及综合式。52.冲天炉送风主要的除湿方法有哪三种

①吸附法,用多孔物质怕硅胶、分子筛)表面吸附水分子的能力,将空气中的水分除去,达到控制湿度的目的,在这个过程中只有物理吸附过程,没有化学反应发生.

②吸收法,利用吸水物质(CaCl2, LiCl2)吸收空气中的水分,达到控制湿度的目的,在这个过程中有化学反应发生,这两种方法都存在吸水物质饱和并需要再生两个过程,为了连续对空气除湿,必须两套装置,而且除湿的稳定性较差,在冲天炉上不宜使用-

③冷冻法,这是能真正用于冲天炉的除湿方法。冷冻除湿原理是将空气温度降到露点以下,使空气中的水分凝结成液体水珠。

53.富氧的具体方法有哪两种

一种是将工业纯氧直接加到冲大炉的送风管中,使空气的氧含量提高到24%左右,该法耗氧多、效果不太好:另一种方法是将工业纯氧经各个风口直接喷人炉内(一般只在下排风口内喷氧).

54.炼钢的主要任务什么

是:熔化炉料,去除合金液中的有害元素、非金属夹杂物和气体,使其含量不超过规定范围:调整钢液的化学成分,使各元索的含量符合规格要求:将合金液过热到一定温度以保证浇注需要。电弧炉熔炼法可以满足铸钢熔炼的绝大部分要求。

铝合金的熔炼与浇铸

铝合金的熔炼与浇铸 6.5.1铝合金的性能及应用 铝合金是比较年轻的材料,历史不过百年,铝合金以比重小,强度高著称,可以说没有铝合金就不可能有现代化的航空事业和宇航事业,在飞机、导弹、人造卫星中铝合金所占比重高达90%,是铸造生产中仅次于铸铁的第二大合金,其地壳含量达7.5%,在工业上有着重要地位。 铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如燃机的汽缸盖和活塞等,也适于用铝合金来制造。 铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660℃,铝合金的浇注温度一般约在730~750℃左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的在质量、尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,其流动性良好,有利于铸造薄壁和结构复杂的铸件。 铸造铝合金的分类、牌号: 铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、铸造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表1中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。 6.5.2 铝合金的熔炼设备

铸造合金及其熔炼铸铁部分复习题

第一篇铸铁及其熔炼 1、按石墨形态的不同,铸铁分为灰口铸铁;球墨铸铁;蠕墨铸铁。 2、在Fe-G-Si相图中,硅的作用 (1)共晶点和共析点含碳量随硅量的增加而减少; (2)共晶转变和共析转变出现三相共存区; (3)改变共晶转变温度范围;提高共析转变温度; (4)减小奥氏体区域。 3、只考虑Si、P等元素对共晶点实际碳量影响的计算公式为CE=C+1/3(Si+P); 4、亚共晶铸铁凝固特点:凝固过程中,共晶体不是在初析树枝晶上以延续的方式在结晶前沿形核并长大,而是在初析奥氏体晶体附近的枝晶间、具有共晶成分的液体中单独由石墨形核开始;石墨作为领先相与共晶奥氏体共生生长; 5、过共晶铸铁的凝固特点:凝固过程则由析出初析石墨开始,到达共晶温度时,共晶石墨在初析石墨上析出,共晶石墨与初析石墨相连。 6、石墨的晶体结构是六方晶体。 7、如图所示,形成片状石墨的晶体生长是A向占优,而球状石墨是C向生长占优, 8、F、C型石墨属于过共晶成分铸铁中形成的石墨 A型B型D型F型 9、球状石墨形成的两个必要条件:铁液凝固时必须有较大的过冷度;铁液与石墨间较大的表面张力。 10、球墨铸铁的球状石墨的长大包括两个过程:石墨球在熔体中直接析出并长大;形成奥氏体外壳,在奥氏体外壳包围下长大。 11、由于球状石墨的生长是在共晶成分下形成的石墨和奥氏体分离长大,因此其共晶过程又称之为离异共晶; 12、灰铸铁的金相组织由金属基体和片状石墨组成,基体的主要形式有珠光体、铁素体、珠光体加铁素体。 13、普通铸铁中除铁以外,五大基本元素包括碳、硅、锰、硫、磷,其中碳、硅是最基本的成分,磷、硫是杂质元素,因此加以限制。 14、在铁碳双重相图中,稳定系和亚稳定系的共晶反应温度差别形成了共晶温度间隔,对于Ni、Si、Cr、S这四种元素来说,促进合金液在冷却过程中按稳定系转变的元素有Ni、Si,按亚稳定系转变的元素有Cr、S。 15、Cr元素在铸铁中的作用: (1)反石墨化元素,珠光体稳定元素;

铝合金铸造工艺简介

铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

钛合金及其热处理实用工艺简述

钛合金及其热处理工艺简述 钛业股份:新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在882.5℃以上为体心立方晶格的β相,在882.5℃以下为密排六方晶格的α相。钛 合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好;

(5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。 2 钛合金的合金化特点 钛合金的性能由Ti同合金元素间的物理化学反应特点来决定,即由形成的固溶体和化合物的特性以及对α?β转变的影响等来决定。而这些影响又与合金元素的原子尺寸、电化学性质(在周期表中的相对位置)、晶格类型和电子浓度等有关。但作为Ti合金与其它有色金属如Al、Cu、Ni 等比较,还有其独有的特点,如: (1)利用Ti的α?β转变,通过合金化和热处理可以随意得到α、α+β和β相组织; (2)Ti是过渡族元素,有未填满的d电子层,能同原子直径差位于±20%以的置换式元素形成高浓度的固溶体; (3)Ti及其合金在远远低于熔点的温度中能同O、N、H、C等间隙式杂质发生反应,使性能发生强烈的改变; (4)Ti同其它元素能形成金属键、共价键和离子键固溶体和化合物。 Ti合金合金化的主要目的是利用合金元素对α或β相的稳定作用,来控制α和β相的组成和性能。各种合金元素的稳定作用又与元素的电子浓度(价电子数与原子的比值)有密切关系,一般来说,电子浓度小于4的元素能稳定α相,电子浓度大于4的元素能稳定β相,电子浓度等于4的元素,既能稳定α相,也能稳定β相。 工业用Ti合金的主要合金元素有Al、Sn、Zr、V、Mo、Mn、Fe、Cr、Cu和Si 等,按其对转变温度的影响和在α或β相中的固溶度可以分为三大类:α稳定元素、β稳定元素、中性元素[6,7]。

铸造合金及熔炼思考题要点

第一篇铸造有色合金及其熔炼思考题及参考答案 1.基本概念:屈服强度、抗拉强度、固溶强化、时效强化 屈服强度就是指金属对起始塑性变形的抗力;抗拉强度是代表最大均匀塑性变形抗力的指标;固溶强化是指形成固溶体使合金强化的方法;时效强化是指通过热处理利用合金的相变产生第二相微粒,造成的强化。 2.金属材料的强化机制主要有哪些,对强度和塑性有什么影响? 晶界强化、固溶强化、分散强化、形变强化、复合强化。形变强化与粒子强化在强度提高时,塑性会显著降低;固溶强化在强度提高时塑性还能保持较好的水平;晶界强化时,细化晶粒提高强度也改善塑性。 3.铸造合金的使用性能有哪些? 机械性能、物理性能和化学性能 4.铸造合金的工艺性能有哪些? 铸造性能、熔炼性能、焊接性能、热处理性能、机加工性能 5.基本概念:变质处理、机械性能的壁厚效应 所谓变质处理是在熔融合金中加入少量的一种或几种元素(或加化合物起作用而得),改变合金的结晶组织,从而改善合金机械性能。这种随铸件壁厚增加而使机械性能下降的现象,称为机械性能的壁厚效应。 6.铝硅合金进行变质处理的原因及方法? 原因:铝硅合金中的硅相在自发非控制生长条件下会长成粗大的片状,这种形态的脆性相严重割裂基体,大大降低合金的强度和塑性,为了改变这种状况,必须进行变质处理。方法:生产上常在合金液中加入氟化纳与氯盐的混合物来进行变质处理,加入微量的纯钠也有同样效果。 7.镁、铜、铁和锰对铝硅合金组织和性能的影响? 1)镁:少量的镁,即能大大提高抗拉和屈服强度,随着镁量增加,强化效果不断增大,强度急剧上升,而塑性下降;2)铜:使铝硅合金强度显著增加,但伸长率下降,提高合金的热强性;3)铁:恶化了合金的机械性能,特别是塑性,

钛合金及其热处理工艺简述

钛合金及其热处理工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在882.5℃以上为体心立方晶格的β相,在882.5℃以下为密排六方晶格的α相。钛合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺 规范与流程 Revised by Chen Zhen in 2021

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》

铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。

KG钛及钛合金真空自耗熔炼工艺规程

本规程适用于技术(研发)中心钛及钛合金电极的熔炼。编制依据:《钛镍加工材项目初步设计》 GB/T2524-2010《海绵钛》 设备合同 1.主要设备性能 1.1 真空自耗电弧炉技术性能。 设备主要技术参数

2.原料 原料来自315T制样用自耗电极成形液压机压制的¢30X390的电极 3.钛及钛合金熔炼 3.1 钛及其合金的熔炼工艺流程 水、电、气输送正常—开机—装炉—抽真空—熔炼—坩埚冷却—破真空—取出铜坩锅倒出钛锭—停止工作—关水、关电、关气。 3.2 熔炼工艺参数 3.2.1 熔炼工艺参数。

3.2.2熔铸前检查系统并进行预抽空,炉内预真空度不得低于0.133Pa,泄漏率不得大于0.667Pa/min。 3.2.3在熔炼过程中,熔炼电流需逐渐增加。 3.2.4在结晶器周围设有稳弧线圈,以保证熔炼电弧的稳定。通过“稳弧调节”电位器调节其电流,最大电流为5A。 3.2.5电弧电压的大小代表电弧的长短,熔炼过程中保证弧压的稳定非常重要。熔炼过程中弧压的大小为0-40V。 3.2.6 补缩工艺参数实际生产中生产。 3.3 引弧料 同批号的钛料、铺满坩埚底为益。

3.4 注意事项 3.4.1 压制完的电极在熔炼前必须放入干燥箱内干燥20~40min,干燥温度在90~105℃之间。 3.4.2 在熔炼开炉前,必须对真空自耗电弧炉的传动系统、冷却系统、电控系统、真空系统及炉体进行检查,检查无误,方可开炉熔炼。 3.4.3抽空 真空泵使用必须遵照使用说明书的要求,进行启动、停泵、维护。 3.4.4每炉熔炼工作完成后,必须清洗结晶器。防止熔炼时电极与结晶器侧壁放电。 3.4.5熔炼期间冷却水不能间断。 3.4.6熔炼进行时,现场要有操作控制人员,观察炉内熔炼情况和监视冷却水水温水压等。 3.4.7 在熔炼完的铸锭或扒完皮的铸锭上,必须有明显的标记。 3.4.8试锭和试样的制备严格按GB/T2524-2010进行。 4.主要工模具

浅谈钛合金现代熔炼技术

浅谈钛合金现代熔炼技术 随着科学技术的发展以及人民生活水平的提高,钛在工业生产、航空航天、国防军工以及日常生活中的应用越来越多,从而对钛及钛合金材质和性能的要求越来越高,而钛合金原料的熔炼无疑是最重要最关键的一环,其熔炼的优劣直接影响到后续加工的成品的性能指标是否达到产品要求,从而推动了钛合金现代熔炼技术的发展,其中包括电子束、等离子冷床炉等新技术的发展,为提高钛合金铸锭的冶金质量和力学性能创造了良好的条件和基础。 1、钛合金熔炼方法 1.1 真空自耗电弧炉熔炼法(简称VAR法) 随着真空技术的发展和计算机的应用,VAR法很快成为钛的成熟的工业生产技术,今天的钛及其合金铸锭绝大部分是使用此方法生产的。VAR法显著特点是功率消耗低、熔化速度高和良好的质量重现性,VAR法熔炼的铸锭具有良好的结晶组织和均匀的化学成分。通常,成品铸锭应由VAR法熔炼制得.至少要经过两次重熔。 用VAR法生产钛铸锭,世界各国生产厂家使用的工艺基本相似,差别在于使用不同的电极制备方式和设备.电极制备可分为三大类,一是采用按份加料连续压制的整体电极,排除了电极焊接工序:二是单块电极压制,拼焊成自耗电极。并通过等离子氩弧焊或真空焊焊接成一体;三是利用其它熔炼法制备铸造电极。 现代先进的VAR炉的技术特点和优势:(1)全同轴功率输入,也就是说整个炉体高度上的完全同轴性,称同轴供电’,减少偏析现象的产生;(2)坩埚内电校可在X 轴向/Y轴向上微调;(3)具有精确的电极称重系统,熔炼速率得到自动控制,实现了恒速熔炼’。保证了熔炼质量;(4)保证每次熔炼的重复性和一致性;(5)灵活性,即一台炉子能够生产多种锭型以及铸锭的大型化,可大幅度提高生产率;(6)具有良好的经济性。 “同轴供电”方式可以避免因坩埚供给电流不平衡所造成的磁偏漏.减弱或消除感应磁场对熔炼产品的不利影响.并且提高了电效率,从而获得质量稳定的铸锭。 “恒速熔炼”的目的是为了提高铸锭质量,通过先进的电控系统和重量传感器来确保熔炼过程中电弧的长度和熔化速率的恒定,从而控制了凝同过程。可以有效的防止偏析现象,保障了铸锭的内在质量。 现代钛熔炼用VAR炉除具有以上两大特点外,还实现了VAR炉的大型化,现代VAR炉可熔炼直径为1.5m,重32t的大型铸锭.vAR法是现代钛及钛合金标准的工业熔炼法.还有以下技术需要解决.第一,电极制备方法.制备电极工艺非常繁琐.需要用昂贵的压力机将海绵钛、中间合金和返回残料压制成整体电极或单块小电扳.单块电极还需要焊接成自耗电极.同时为了保证自耗电极成分的均匀性,还需要配置布料、称料、混料等相应的设施。第二,偶尔存在的偏析等冶金缺陷.如成分偏析和凝固偏析。前者是由于杂质元素或合金元素在电极中分布不均匀.熔炼时来不及平衡分布就凝固所产生;后者是由于原料或工艺过程偶尔带入了高密度夹杂物(HDI) 和低密度夹杂物(LDI),这些夹杂物质在熔炼过程中无法彻底溶解,从而导致产生危害极大的夹杂等冶金缺陷。 1.2 非自耗真空电弧炉熔炼法(简祢NC法) 目前,水冷铜电极已经取代了钛工业起步阶段的钨一钍台金电投或石墨电扳,解决了工业污染问题,从而使NC法成为熔炼钛及钛台金的重要方法,几吨级的NC炉已在欧美运转。水冷铜电极分为两种类型:一种是自旋转的;另一种是旋转磁场的,其目的在于防止电弧对电极的烧损。NC炉也可分为两种:一种是在水冷铜坩埚内熔炼原料,在水冷铜模中浇铸成铸锭;另一种是在水冷铜坩埚内连续投人原料,熔炼和凝固。 NC法熔炼的优点是:①可以省去压制电极和焊接电极工序;②可以使电弧在物料上停留较长时间,从而提高铸锭成分均匀化程度;③可以使用不同形状和尺寸的原料,在熔炼过程

钛合金的合金化原理

四、钛合金的合金化原理 1.钛合金的合金化特点 钛合金的性能由Ti 同合金元素间的物理化学反应特点来决定,即由形成的固溶体和化合物的特性以及对α?β转变的影响等来决定。而这些影响又与合金元素的原子尺寸、电化学性质(在周期表中的相对位置)、晶格类型和电子浓度等有关。但作为Ti 合金与其它有色金属如Al、Cu、Ni 等比较,还有其独有的特点,如: (1)利用Ti 的α?β转变,通过合金化和热处理可以随意得到α、α + β和β相组织;(2)Ti 是过渡族元素,有未填满的d 电子层,能同原子直径差位于±20%以内的置换式元素形成高浓度的固溶体;(3)Ti 及其合金在远远低于熔点的温度中能同O、N、H、C 等间隙式杂质发生反应,使性能发生强烈的改变;(4)Ti 同其它元素能形成金属键、共价键和离子键固溶体和化合物。 Ti 合金合金化的主要目的是利用合金元素对α或β相的稳定作用,来控制α和β相的组成和性能。各种合金元素的稳定作用又与元素的电子浓度(价电子数与原子的比值)有密切关系,一般来说,电子浓度小于4 的元素能稳定α相,电子浓度大于4的元素能稳定β相,电子浓度等于4 的元素,既能稳定α相,也能稳定β相。 工业用Ti 合金的主要合金元素有Al、Sn、Zr、V、Mo、Mn、Fe、Cr、Cu 和Si等,按其对转变温度的影响和在α或β相中的固溶度可以分为三大类。能提高相变点,在α相中大量溶解和扩大α相区的元素叫α稳定元素;能降低相变温度,在β相中大量溶解和扩大β相区的元素叫β稳定元素;对转变温度影响小,在α和β相中均能大量溶解或完全互溶的元素叫中性元素。按合金元素与Ti 的反应特点或二元状态图的类型,可以分成四大类(图1-44): (1)α稳定型状态图(图1-44(a)) Al、Ga、Sn 和间 隙式元素C、N、O 等与 Ti 形成这种状态图。 这些元素分别属于Ⅲ B~ⅥB 族,外层电子 (S、P)数<4,如Al 为 3S2P1,故为α稳定元 素;Sn 的外层电子为 5S2P2=4,对相变温度 影响小,故又属于中性 元素。

钛合金的制备方法

专题报道 钛合金的制备方法 一种用熔分钛渣制备含钛合金的方法 热处理钛合金的方法和所得零件 机械合金化热处理法制备6AI4V钛合金粉的工艺 冲压成形性和强度的平衡优异的钛或钛合金板 一种钛合金棒材的制备方法 一种低成本钛合金的制备方法 大规格高性能钛及钛合金锭的熔铸方法 一种粉末冶金钛合金及其制备方法 一种凝胶注模-自蔓延高温合成制备钛合金材料的方法 微量稀土合金化处理的TA16钛合金 一种低密度高铸造性能钛合金材料及其制备方法 一种低弹性模量的铸造钛合金 一种低密度高性能钛合金材料及其制备方法 一种钛合金TI-62222S及其制备方法 一种钛合金TI-811-1及其制备方法 通过粉末冶金法制备基于钛合金的并且TIB强化的复合部件的方法 一种用熔分钛渣制备含钛合金的方法 申请号:201110267053.6 公布日:2012-01-18 申请(专利权)人:攀钢集团攀枝花钢铁研究院有限公司 摘要:本发明提供了一种用熔分钛渣制备含钛合金的方法。所述方法包括以下步骤:将熔分钛渣直接热装入炉;升温至熔池澄清后,加还原剂进行冶炼,控制反应温度;反应完毕后,镇静沉降;出渣、出合金,冷却制得含钛合金。本发明采用钒钛磁铁矿直接还原或非高炉炼铁后得到的熔分钛渣为原料制备含钛合金,能够有效的利用熔分钛渣中的钛资源,采用热渣直接入炉的方式,降低了生产成本和能源消耗,对提高钒钛磁铁矿资源的综合利用率具有重要意义。 热处理钛合金的方法和所得零件 申请号:200980156528.5 公布日:2012-01-11 申请(专利权)人:奥贝尔&杜瓦尔公司 摘要:本发明涉及一种热处理Ti?5-5-5-3型钛合金的方法,该Ti5-5-5-3型钛合金具有以重量百分数计的以下组成:4.4-5.7%铝,4.0-5.5%钒,0.30-0.50%铁,4.0-5.5%钼,2.5-3.5%铬,0.08-0.18%氧,痕量至0.10%的碳,痕量至0.05%的氮,痕量至0.30%的锆,痕量至0.15%的硅,其余百分数是钛和杂质,其特征在于所述合金的热处理包括:将合金加热到800-840℃且低于该合金的β-转变的第一平台;维持第一温度平台1-3小时;在没有中间再加热的情况下将合金冷却至760℃-800℃的第二平台;维持第二温度平台2-5小时;将合金冷却至室温;将

(工艺流程)铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔 炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制 品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体

2013-2014-(1)铸造合金及其熔炼试题与答案

成都理工大学2013-2014学年 第一学期《铸造合金及其熔炼》试卷答案(A) 一、名词解释 1)HT200 是指抗拉强度不低于200Mpa的灰口铸铁; 2)QT500-7是指抗拉强度不小于500MPa,伸长率不小于7的球墨铸铁。 3)ZL201:铸造铝铜合金ZAlCu5Mn,是重要的耐热高强度铸铝合金,成份Cu 4.5~5.3%,Mn 0.6%~1.0%,Ti 0.15~0.35%,其余为Al。 4)孕育处理:铸铁铁液在浇注前,在一定的温度和成分下,加入一定量的孕育剂如硅铁等,改变铁液的凝固过程,改善铸态组织,从而达到提高铸件性能为目的的处理方法,谓之孕育处理。 5)球化处理:向铁水中加入稀土镁合金(球化剂)。(其中镁是具有很强球化能力的元素)。球化剂的作用是使石墨呈球状析出。我国应用最广的球化剂是稀土镁合金。 6)铝合金的吸附精炼:是指在铝合金熔炼时通入不溶气体或加入精炼剂产生不溶于铝液的气体,在上浮的过程中吸附氧化夹杂,同时清除氧化夹杂及其表面依附的H2,达到净化铝液的方法。(3分) 7)水韧处理:高锰钢的含碳量一般在0.9~1.4%,属于高碳钢,铸态组织为奥氏体和碳化物以及少量的珠光体组成,为了消除碳化物,铸件加热至奥氏体化温度,保温至组织全部奥氏体化后,淬火得到单一的奥氏体组织,从而提高铸件的韧性,这一处理成为水韧处理。 8)时效强化(沉淀强化):时效处理,又称低温回火。时效强化是指在网溶度随温庋降低而减少的合金系中,当合金元素含量超过一定限量后,淬火可获得过饱和固溶体。在较低的温度加热(时效),过饱和固溶体将发生分解并析出弥散相,引起合金强度、硬度升高而塑性下降的过程。它也被称为沉淀强化。 9)T4 固溶处理:将铸件加热至固相线附近,使强化相溶入α(Al)中,在淬入冷却介质中获得过饱和的α(Al)固溶体,提高铸件的强度和塑性的一种热处理工艺。 10)吹氩精炼:利用氩是惰性气体,既不溶于钢液中,又不合钢液中的元素反应,因此向钢包内的钢液中吹氩,氩气泡在缓慢上升过程中吸附非金属夹杂和溶解在钢液中的气体,达到净化作用;同时由于氩气泡内CO的分压力为0,因此[C]和[O]在氩气泡和钢液界面上发生反应形成CO进入氩气泡,从而达到脱氧的目的。 二、填空(20分) 1、石墨形态的不同,铸铁分为灰口铸铁;球墨铸铁;蠕墨铸铁。 2、球状石墨形成的两个必要条件:铁液凝固时必须有较大的过冷度;铁液与石墨间较大的表面张力。 3、不锈钢中铬的主要作用,其作用包括:(1)在铸件表面形成致密的氧化膜;(2)提高铁素体的电极电位。 4、铸钢件断面典型的晶粒分布如图所示,包括三个区域:1—表面细晶区;2—柱状晶区;3—中间等轴晶区。 5、碳钢铸件热处理的目的是细化晶粒,消除魏氏体(或网状组织)和消除铸造应力。热处理方法有退火、正火或正火加回火。 6、铝合金的变质处理包括三类:(1)α(Al)的晶粒细化处理;(2)初晶Si的细化处理; (3)共晶硅的变质处理。(3分) 7、铸造黄铜是以Zn为主加元素的铜合金,铸造性能好表现在:(1)结晶温度范围小,充型能力强;(2)锌的沸点低,有自发除气作用。 8、木炭是熔炼铜合金时应用的覆盖剂,主要作用是防氧化、脱氧和保温。 三、简答(40) 1、影响铸铁石墨化程度的主要因索? 答:(1)、化学成分 1)碳和硅:碳是形成石墨的元素,也是促进石墨化的元素。含碳愈高,析出的石墨愈多、石墨片愈粗大。硅是强

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围本熔炼工艺适用于砂型和金属型铸造ZL101A 合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A 合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1铝合金料熔化设备规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易超750℃,熔化过程的铝液吸气倾向较大。

3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC 材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm 为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1 所示,使用前涂料需预热到50~90 ℃。 表1 涂料配方 3.1.3炉料的存放与处理, 熔炼所使用的炉料需存放在干燥、不易混淆和污染的地方,铝

铸造合金及其熔炼复习摘要要点

铸造合金及其熔炼复习思考题 铸铁及其熔炼 1.什么是Fe-C双重相图,那一个相图是热力学稳定的,如何用双重相图来解释同一化学 成分的铁水在不同的冷却速度下会得到灰口或白口,硅、铬对双重相图共晶临界点各有何影响? 2.什么是碳当量、共晶度,有何意义。 3.分析片状石墨、球状石墨、蠕虫状石墨与奥氏体的共晶结过程和形成条件。 4.铸铁固态相变有那些,对铸铁最终组织有何影响? 5.冷却速度、化学成分(C、Si、Mn、 Cr、Cu等)对铸铁的一次结晶和二次结晶有何影响? 6.灰铸铁中石墨的分布形态有那几种,对铸铁的性能有何影响,从化学成分、冷却速度及 形核等方面说明其形成条件。 7.灰铸铁的基体和非金属夹杂物有那些类型,对铸铁的性能有何影响? 8.灰口铸铁的性能有何特点?与其组织有何关系?汽车上那些铸件采用灰口铁生产? 9.影响灰铸组织、性能的因素有那些,根据组织与性能的关系分析提高灰铸铁性能的途径 和措施。 10.灰铸铁孕育处理的目的是什么,有那些作用,孕育铸铁化学成分的选择原则是什么,提 高孕育效果有那些途径和措施? 11.说明球墨铸铁生产的工艺过程,其化学成分选择的原则是什么,与灰口铸铁有何不同? 12.球墨铸铁的球化剂和球化处理方法有那些? 13.球铁凝固组织中为何易于出现自由渗碳体,如何消除自由渗碳体? 14.根据铸铁组织形成原理分析在铸态下获得高韧性、高强度球墨铸铁的途径与措施。 15.球墨铸铁比灰口铸铁易出现缩孔、缩松缺陷,分析其原因和防止措施。 16.铸铁的热处理有何特点,生产上球墨铸铁采用那些热处理工艺? 17.蠕墨铸铁有何性能特点? 18.蠕墨铸铁的化学成分选择与灰铁和球铁有何不同,蠕化剂和蠕化处理工艺有那些? 19.简述可锻铸铁生产工艺过程,化学成分选择原则,为何对于薄壁小件采用可锻铸铁生产 有优越性? 20.减摩铸铁与抗磨铸铁的组织要求有何不同,常用减摩铸铁和抗磨铸铁有那些? 21.提高铸铁的耐热性能的途径和措施有那些?常用耐热铸铁有那些? 22.提高铸铁的耐蚀性能的途径和措施有那些,硅、铭、铬三元素在耐热铸铁及耐蚀铸铁中 的作用是什么? 23.简述冲天炉的结构与熔炼的一般过程。 24.简述冲天炉内炉气和温度的分布,影响铁液温度的主要因素。 25.冲天炉内铁液成分变化的一般规律? 26.简述感应电炉熔炼原理,感应炉内铁水成分的变化及铁液质量。 铸钢及其熔炼 27.与铸铁比较,铸钢的性能和生产工艺有何特点? 28.影响铸造碳钢力学性能的因素主要有那些?

铸造合金及其熔炼复习总结1

1、计算下列灰铸铁的碳当量及共晶度,并简述各铸铁的一次结晶过程。 (1)C:3.1%;Si:1.6%;Mn:0.6%;P:0.08%;S:0.08%; (2)C:3.6%;Si:2.6%;Mn:0.5%;P:0.06%;S:0.08%; 碳当量:将元素对共晶点实际碳量的影响折算成碳量的增减称为碳当量。 CE=C+1/3(Si+P) 共晶成分=4.26% 过共晶>4.26% 亚共晶<4.26% 共晶度:铸铁的实际含碳量和共晶点的实际含碳量比值,表示铸铁偏离共晶点的程度。 S c=C铁/[4.26%-1/3(Si+P)] 过共晶>1 共晶=1 亚共晶<1 答:(1)碳当量CE=C+1/3(Si+P)=3.2%+1/3(1.5%+0.08%)=3.73% 共晶度S c=C铁/[4.26%-1/3(Si+P)]=3.2%/[4.26%-1/3(1.5%+0.08%)]=0.86 CE<4.26%为亚共晶成分,其一次结晶过程为:铁液冷却时,先遇到液相线,在一定的过冷下析出初析奥氏体并逐渐长大,当进入共晶阶段后,开始形成共晶团。 (2)碳当量CE=C+1/3(Si+P)=3.6%+1/3(2.7%+0.06%)=4.52% 共晶度S c=C铁/[4.26%-1/3(Si+P)]=3.6%/[4.26%-1/3(2.7%+0.06%)]=1.08 CE>4.26%为过共晶成分,其一次结晶过程为:铁液冷却时,先遇到液相线,在一定的过冷下析出初析石墨的晶核,并在铁液中逐渐长大,当进入共晶阶段后,开始形成共晶团。 2、试分析为什么灰铸铁一般不能通过热处理提高其性能,而球墨铸铁可以通过热处理来提高其性能。 答:在灰铁件的生产中,之所以不能通过热处理大幅度提高其性能,其主要原因是由于灰铸铁的组织是有片状石墨和基体组成,并且片状石墨的数量、分布、状态和尺寸大小对灰铸铁和性能影响极大,对其性能起着关键的作用。而热处理只能改变基体,基本不能改变片状石墨的数量、分布、形态和大小,因此在灰铸铁的生产中难以通过热处理大幅度改善和提高其力学性能。 而球墨铸铁中石墨呈球状,对基体的切割和缩减作用大大降低。基体的机械性能对球墨铸铁的性能起决定性作用。通过热处理可以改善其基体组织,从而提高机械性能。因此在球墨铸铁的生产中可以通过热处理来提高其力学性能。 3、简述其碳当量、冷却速度对灰铸铁组织和性能的影响。 答:当冷却速度一定时,碳当量越大,析出的铁素体越少,石墨越多,粗大,并且分布不均匀;灰铸铁的强度、硬度减小,塑性、韧性增大。碳当量越小,则反之。当碳当量一定时,随着冷却速度的增加,铁液的过冷度增大,灰铸铁的白口倾向越来越大,析出的铁素体增加,石墨减少,但石墨数量多,细小,并且分布均匀,灰铸铁的硬度、强度增大,塑性、韧性下降。随着冷却速度的减小,则反之。 4、简述灰铸铁与球墨铸铁在化学成分、金相组织及力学性能方面的主要差别。 答:灰铸铁和球墨铸铁在化学成分方面的差别是:灰铸铁碳量、硅量偏低,锰量、硫量、磷量偏高,而球墨铸铁碳量、硅量偏高,锰量、硫量、磷量较低,并含镁和稀土球化元素;二者在组织上的差别是:灰铸铁金相组织:片状石墨+珠光体+少量铁素体+极少量磷共晶和渗碳体,球墨铸铁的金相组织:球状石墨+基体(珠光体+铁素体)+极少量渗碳体(或没有);二者在性能上的差别:灰铸铁强度低(σb=100~400MPa),且是脆性性材料。球墨铸铁强度较高(σb=400~800MPa),且具有良好的塑性、韧性(延伸率=2~20%),依据不同比例的基体种类,可实现强度和塑、韧性的匹配。 5、分析在球墨铸铁生产中,为什么必须进行孕育处理。(简述球墨铸铁孕育处理的作用或目的) 答:1)消除结晶过冷倾向,球墨铸铁加入了Mg,RE等球化剂,共晶转变温度降低,结晶过冷倾向大,易形成白口组织。孕育处理可以消除结晶过冷倾向,避免按介稳定系凝固。 2)促进石墨化,球铁铁液经球化净化了体系,形核率降低。加入孕育剂,增加了石墨核心,细化球状石墨,提高球状石墨生长的稳定性,提高了石墨球的圆整度。 3)减小晶间偏析,球铁共晶团生长过程中,结晶前沿富集了正偏析元素,并产生脆性相,降低了铸铁的塑韧性,孕育处理能够使共晶团细化,减小晶间偏析,提高铸铁的塑性和韧性。 6、为什么铸态球墨铸铁组织中易出现少量渗碳体?如何避免和消除? 答:球墨铸铁铁液的结晶过冷倾向较灰铸铁大,并且球墨铸铁的结晶过冷倾向不随铁液硅含量的高低而变化,因此尽管球墨铸铁的碳硅含量比一般灰铸铁高,但人有较大的白口倾向,在球墨铸铁组织中常发现在共晶团边界上有少量渗碳体析出。若冷却较快,会形成局部或全部白口组织。所以在球化处理后,必须进行有效的孕育处理,以消除过冷倾向,避免铁液按介稳定系凝固。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》 铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。 (3)精炼剂准备 ①铝合金的精炼一般采用六氯乙烷、DSG铝合金除渣除气剂、铝精炼剂ZS-AJ 01C等精炼剂。 ②六氯乙烷使用前,置于熔炉旁预热。

相关文档
最新文档