一种液压挖掘机并联式混合动力系统结构及控制策略

一种液压挖掘机并联式混合动力系统结构及控制策略
一种液压挖掘机并联式混合动力系统结构及控制策略

混动汽车动力系统控制策略设计

4.1控制系统的各状况分析 1.一键启动,车门解锁; 2.进人;由车门传感器检测:车门开启 →进人动作→车门关闭→车门锁死 3.设置路径;由语音提示,根据情况分析最优路径,最短距离,最短时间; 4.开始旅行 (1)判断蓄电池能否正常行驶 当SOC (剩余电量)≥0.4 将由蓄电池启动; 当SOC (剩余电量)≤0.4全程发动机驱动; (2)平地行驶 ①首先蓄电池驱动,然后由车速传感器和扭矩传感器检测分析是否满足下列任 意条件 Tre (汽车需求转矩 ) V (行驶速度) 满足则启动点火装置→发动机启动; ②此时由发动机驱动,后由车速传感器和扭矩传感器检测分析是否 满足下 列所有条件 Tm 满足则关闭发动机,由蓄电池驱动; ③制动 由加速度传感器和节气门位置传感器 (3) 爬坡 ①用坡度传感器检测坡度,同时满足下列时 α≤10% Tre≤Tm

α(坡度) 由蓄电池驱动 ②用坡度传感器检测坡度,满足下列任一项时 Tre≥Tm 发动机启动; ③爬坡制动时 车速传感器和加速度传感器检测车轮的旋转方向当旋转方向与实际方向相反紧 急制动 同时启动电动机发电机; (4)泥泞及高低不平路段 根据转矩传感器检测数据,启动发动机; (5)大风及恶劣天气行驶时 根据转矩传感器检测数据,启动发动机; 5.到达目的地旅行结束 电动机缓慢驱动汽车制动,解锁车门; 4.2控制系统的各个流程图 1.由SOC电量判断启动方式

2.由需求转矩和速度判断工作模式 (1).若由发动机驱动 (2)若由蓄电池驱动 4.0>soc

3制动工况 1)若由蓄电池驱动时发生制动时由加速度传感器和节气门位置传感器 2)若由发动机驱动时发生制动时由加速度传感器和节气门位置传感器 4.0>soc h km V /40<4 .0>soc h km V /40<

油电混合动力详解

只是临时替代产品!油电混合动力详解 如今节能减排已经成为一件很热门的事同时也是一件很重要的事,大到胡爷爷和奥巴马碰面都要谈。而对于汽车领域来说,同样也很热门,各个厂家都在竭尽所能的推出各种环保汽车。为汽车寻找代替能源,降低油耗甚至实现零油耗零排放,已经成为每一家车企的目标。 但在这之前,油电混合动力系统显然更有实际意义。下面我们将为大家简单介绍混合动力系统的分类和简单工作原理,以及如今各个厂家的混合动力代表车型。 本文导读: 1.目前关于油电混合动力汽车有很的说法,微混合、轻度混合动力、重混合动力、插入式混合动力等等,汽车探索为您解读它们分别是什么意思。 2.为您介绍混合动力汽车的发动机有什么特色,所用的电池有哪几种。 混合动力汽车由来已久

可能您会觉得难以置信,混合动力汽车已经有了上百年的历史。大名鼎鼎的费迪南德·保时捷在上世纪末就为一家名为Jacob Lohner的公司开发出一款油电混合动力汽车,甚至造出了四驱版本。 Lohner-Porsche的四驱车型 Lohner-Porsche的赛车型号

美国专利局关于“Mixed Drive for Autovehicles”的专利 如果您有机会查一查美国专利局那些被尘封的资料,会惊奇的发现今年的3月2日距美国的第一个混合动力汽车专利已经过去了整整一个世纪!1909年,身在比利时的德国人Henri Pieper 取得了一项名为“Mixed Drive for Autovehicles”的专利。 分类:目前主要以并联、混联为主,按混合度分类的说法也很常见 当然,以上的例子跟我们今天要说的混合动力汽车关系并不大。现代的混合动力汽车是从上世纪90年代末才开始逐渐发展起来的。按照其工作方式,大体上可以分为串联、并联和混联三种。 串联式:已经被淘汰 简单地说,串联式混合动力汽车的工作方式就是用传统发动机直接通过发电机为电池充电,然后完全由电动机提供的动力驱动汽车。其目的在于使发动机长时间保持在最佳工作状态,从而达到减排的效果。这种方式的好处是发动机可以不受行驶状态的影响,一直处于最佳工作状态,对于改善排放大有好处,但转换效率偏低。这种方式由于局限比较多,目前已不多见。丰田曾经将这种方式应用在考斯特上,并进行了批量生产。

并联式式混合动力汽车的全速控制策略

并联式式混合动力汽车的全速控制策略 摘要:并联式混合动力汽车综合了传统汽车和电动汽车的优点,不仅具有低油耗、低排放等优点,而且续驶里程不受限制,是目前最有希望替代传统汽车的方案。因此,对混合动力汽车关键技术的研究具有非常重要的应用价值。利用瞬态优化控制策略,通过对发动机、电动机、电动机在不同功率进行分配组合,来确定混合动力系统最佳工作模式和工作点切换。本文利用混合动力汽车的数学模型,在MATLAB/Simulink环境中建立了前向仿真模型,进行整车控制策略的研究,并对全速范围的运行控制策略进行了验证。 关键词:并联式混合动力汽车 MATLAB/Simulink 全速范围1 引言 并联式混合动力电动汽车主要由发动机、电动/发电机、电池组、能量管理系统等部件组成,与串联式混合动力电动汽车不同的是,发动机和电动/发电机以机械能叠加的方式来驱动汽车,可以组合成不同的功率输出模式。发动机功率和电动/发电机功率约为电动汽车所需最大驱动功率的50%~100%,其能量利用率高。因此,可以采用小功率的发动机与电动/发电机,使得整个动力系统的装配尺寸、质量都较小,造价也更低,行程也可以比串联式混合动力电动汽车的长些,但布置结构相对复杂,实现形式也多样化,其特

点更加接近内燃机汽车。并联式式混合动力驱动系统通常应用在小型混合动力电动汽车上。 因此,并联式驱动系统最适合在城市间道路和高速公路上行驶,工况稳定,发动机经济性和排放性都会有所改善,和混联式混合动力电动汽车相比较而言结构简单,价格也容易被广大消费者接受,因此,在电池技术问题没有得到很好的解决的情况下,它有望在不久的将来成为汽车商业的主流产品。 2 并联式式混合动力汽车的关键技术 混合动力汽车兼具传统燃油汽车和纯电动汽车的优点,是二者的完美结合,这个结合的纽带就是混合动力汽车的整车控制系统,整车控制系统的主要功能是进行整车能量管理和混合动力系统的控制。整车控制系统如同混合动力汽车的大脑,指挥各个系统的协调工作,以达到效率、排放和动力性的最优,同时兼顾行驶的平稳性。整车控制系统根据驾驶员的操作,如加速踏板、制动踏板、变速杆的操作等,判断驾驶员的意图,在满足驾驶需求的前提下,最优的分配电机、发动机、电池等动力部件的功率输出,实现能量的最优管理,使有限的燃油发挥最大的功效。 目前的混合动力汽车都不需要外部充电,因此,与传统汽车一样,混合动力汽车的能量全部来自于发动机的燃料燃烧所释放的热能,电机驱动所需的电能是燃料的热能在车

液压混合动力系统

液压混合动力系统国内外研发应用现状 1、液压混合动力系统工作原理 城市内行驶的车辆(特别是公交车、邮政车、环卫车等),始终处于频繁的缓速、制动、起步、加速等交变工况下运行。 静止车辆起步时要克服地面及传动系统的静摩擦,需更多的能量;运动车辆在缓速、制动时又要将动能向热能(制动器的摩擦热)转换并通过损耗热能来实现,浪费了许多能量。 以公交车为例:12米长、满载乘客时16吨重、车速为35公里/小时的公交车运行时,理论动能约为756KJ,按柴油热值折算为20ml柴油。如公交车平均每天运营240公里、平均每次有效缓速停车间隔300米(指进站、红灯及其它情况下的缓速停车)来计算,则平均每天有效缓速停车的次数为800次,平均每天有效缓速停车的动能损耗折算成柴油为16升,每百公里平均的缓速停车动能损耗折算成柴油约为6.7升。如按公交车百公里平均油耗35升计算,则有效缓速停车的动能损耗占总油耗的20%。再以上海为例:全市约18000辆公交车,平均每车每天运营240公里,平均每天的缓速停车动能损耗折算成柴油为288000升(约240吨)。以此类推,全国每天公交车缓速动能的损耗折算成柴油超过万吨。另外,按二氧化碳排放指数换算,每升柴油相当于2.7公斤二氧化碳,全国每天公交车缓速动能的损耗换算成二氧化碳也超过万吨。 城市内行驶车辆的缓速停车动能回收与利用,对我国的节能减排,有着重要的意义。车辆液压混合动力系统便具备了这样的功能。 车辆液压混合动力系统,是将车辆缓速停车动能以压力能的形式回收至液压蓄能器中,在车辆起步时,释放液压蓄能器中的压力能,转化成液压动力,驱动车辆完成起步过程。液压混合动力系统具有如下优点:

混合动力驱动方式、简介教学提纲

混合动力驱动方式、 简介

混合动力汽车的驱动方式 3.1混合动力汽车的定义 国际电子技术委员会(International Electro-technical Commission,简称IEC)对混 合动力车辆的定义为:在特定的工作条件下,可以从两种或两种以上的能量存 储器、能量源或能量转化器中获取驱动能量的汽车。其中至少有一种存储器或转化器要安装在汽车上。混合动力电动汽车(HEV)至少有一种能量存储器、能量源或能量转化器可以传递电能。串联式混合动力车辆只有一种能量转化器可以提供驱动力,并联式混合动力车辆则不止一种能量转化器提供驱动力。” 3.2混合动力汽车的驱动类型 根据混合动力驱动的联结方式,混合动力系统主要分为以下三类: 一是串联式混合动力系统。串联式混合动力系统一般由内燃机直接带动发 电机发电,产生的电能通过控制单元传到电池,再由电池传输给电机转化为动 能,最后通过变速机构来驱动汽车。在这种联结方式下,电池就象一个水库, 只是调节的对象不是水量,而是电能。电池对在发电机产生的能量和电动机需 要的能量之间进行调节,从而保证车辆正常工作。这种动力系统在城市公交上的应用比较多,轿车上很少使用。 二是并联式混合动力系统。并联式混合动力系统有两套驱动系统:传统的 内燃机系统和电机驱动系统。两个系统既可以同时协调工作,也可以各自单独 工作驱动汽车。这种系统适用于多种不同的行驶工况,尤其适用于复杂的路 况。该联结方式结构简单,成本低。本田的Accord和Civic采用的是并联式联 结方式。 三是混联式混合动力系统。混联式混合动力系统的特点在于内燃机系统和 电机驱动系统各有一套机械变速机构,两套机构或通过齿轮系,或采用行星轮 式结构结合在一起,从而综合调节内燃机与电动机之间的转速关系。与并联式 混合动力系统相比,混联式动力系统可以更加灵活地根据工况来调节内燃机的

油电混合动力汽车详解 (1)

油电混合动力汽车详解 【汽车探索详解】如今节能减排已经成为一件很热门的事同时也是一件很重要的事,大到胡爷爷和奥巴马碰面都要谈。而对于汽车领域来说,同样也很热门,各个厂家都在竭尽所能的推出各种环保汽车。为汽车寻找代替能源,降低油耗甚至实现零油耗零排放,已经成为每一家车企的目标。 但在这乊前,油电混合动力系统显然更有实际意义。下面我们将为大家简单介绍混合动力系统的分类和简单工作原理,以及如今各个厂家的混合动力代表车型。 1.目前兲于油电混合动力汽车有很的说法,微混合、轻度混合动力、重混合动力、插入式混合动力等等,汽车探索为您解读它们分别是什么意思。 2.为您介绍混合动力汽车的发动机有什么特色,所用的电池有哪几种。 混合动力汽车由来已久,可能您会觉得难以置信,混合动力汽车已经有了上百年的历史。大名鼎鼎的费迪南德·保时捷在上世纪末就为一家名为Jacob Lohner的公司开发出一款油电混合动力汽车,甚至造出了四驱版本。 Lohner-Porsche的四驱车型

Lohner-Porsche的赛车型号 美国专利局兲于“Mixed Drive for Autovehicles”的专利 如果您有机会查一查美国专利局那些被尘封的资料,会惊奇的发现今年的3月2日距美国的第一个混合动力汽车专利已经过去了整整一个世纪!1909年,身在比利时的德国人Henri Pieper取得了一项名为“Mixed Drive for Autovehicles”的专利。 分类:目前主要以并联、混联为主,按混合度分类的说法也很常见 现代的混合动力汽车是仍上世纪90年代末才开始逐渐发展起来的。按照其工作斱式,大体上可以分为串联、并联和混联三种。 串联式:已经被淘汰 简单地说,串联式混合动力汽车的工作斱式就是用传统发动机直接通过发电机为电池充电,然后完全由电动机提供的动力驱动汽车。其目的在于使发动机长时间保持在最佳工作状态,仍而达到减排的效果。这种斱式的好处是发动机可以不受行驶状态的影响,一直处于最佳工作状态,对于改善排放大有好处,但转换效率偏低。这种斱式由于局限比较多,目前已不多见。丰田曾经将这种斱式应用在考斯特上,并迚行了批量生产。

混合动力驱动方式,概述

混合动力汽车的驱动方式 3.1 混合动力汽车的定义 国际电子技术委员会(International Electro-technical Commission,简称IE C)对混合动力车辆的定义为:“在特定的工作条件下,可以从两种或两种以上的能量存储器、能量源或能量转化器中获取驱动能量的汽车。其中至少有一种存储器或转化器要安装在汽车上。混合动力电动汽车(HEV)至少有一种能量存储器、能量源或能量转化器可以传递电能。串联式混合动力车辆只有一种能量转化器可以提供驱动力,并联式混合动力车辆则不止一种能量转化器提供驱动力。” 3.2混合动力汽车的驱动类型 根据混合动力驱动的联结方式,混合动力系统主要分为以下三类:一是串联式混合动力系统。串联式混合动力系统一般由内燃机直接带动发电机发电,产生的电能通过控制单元传到电池,再由电池传输给电机转化为动能,最后通过变速机构来驱动汽车。在这种联结方式下,电池就象一个水库,只是调节的对象不是水量,而是电能。电池对在发电机产生的能量和电动机需要的能量之间进行调节,从而保证车辆正常工作。这种动力系统在城市公交上的应用比较多,轿车上很少使用。 二是并联式混合动力系统。并联式混合动力系统有两套驱动系统:传统的内燃机系统和电机驱动系统。两个系统既可以同时协调工作,也可以各自单独工作驱动汽车。这种系统适用于多种不同的行驶工况,尤其适用于复杂的路况。该联结方式结构简单,成本低。本田的Accord和Civic采用的是并联式联结方式。 三是混联式混合动力系统。混联式混合动力系统的特点在于内燃机系统和电机驱动系统各有一套机械变速机构,两套机构或通过齿轮系,或采用行星轮式结

混合动力控制原理

混合动力控制原理

————————————————————————————————作者:————————————————————————————————日期:

发动机启动模式 一:发动机起动模式 当驾驶者发出起动指令后,由电动机通过行星轮系给发动机供能,使之起动。该模式就是发 动机起动模式。在这种模式下,输出轴固定不动,与之啮合的齿轮副均不动,因此齿轮环静 止。 二、蓄电池充电模式 在这种模式中,电机通过电动机同步开关连接到太阳轮上,停车锁将输出轴锁定,所有齿轮副空转。发动机通过行星轮系给电动机供能,电动机工作在发电机状态,给蓄电池充电。 这种模式下的运动学和动力学关系与第一种模式相同,只是功率流动的方向 相反。 三、电动机驱动模式 汽车起动时速度较低,若发动机工作则效率较低,一般只让电动机单独工作。电机轴与电动机同步开关咬合,转矩通过电机齿轮传递到输出轴上。其余齿轮均空转。 四、混合驱动模式 在汽车加速和爬坡这样需要较高的功率时,工作与混合驱动模式。在这种模式中,电机轴与一组齿轮副共同作用,发动机和电机共同向输出轴提供转矩驱动车轮转动。由于有 四组齿轮,故可以得到不同的速度,可以根据具体运行环境选 五、发动机驱动模式 正常行驶时,发动机单独驱动时最经济的运行方式。在这种模式中,一组齿数比较低的齿轮副被用于将发动机的转矩传递给输出轴,电机轴空转。在这种模式下运行的HEv 类似于普通燃油汽车。 六、电力连续可变传动模式(CVT) 这种模式用到了行星轮系,为汽车的控制提供了两个自由度,允许发动机的状态优化至最佳燃油效率。发动机是唯一的动力源,给输出轴提供转矩驱动车轮运转的同时,给电机提供转矩,电机工作在发电机状态,将机械能转化成电能给蓄电池充电。太阳轮通过电机同步开关于电机轴咬合,第四组齿轮副于行星轮系的齿轮环相连。 七、能量回收模式 类似于Prius的再生制动动能回收。电机通过电机齿轮与输出轴连接,工作于发电机状态,将减速和刹车的机械能转化为电能为蓄电池重点。运动学和动力学关系与第一种模式相 同,只是功率流动的方向相反。 由上述可见,这种新设计的驱动系统可以完成Prius的驱动系统的全部工作模式,但是结构要简单,并且少了发电机以及在发电机处进行能量转换消耗的能 量,能够进一步的提高系统的效率。输出轴最终驱动汽车运行还要克服相关阻力,包括滚动阻力、空气阻力、坡道阻力以及汽车加速以跟随预定速度轨迹而加速过程中的惯性 等,如图4-9所 示。最终的速度关系为: 工作模式的选择: 1:驾驶者发出手动命令“起动”,汽车工作于发动机起动模式。 2:驾驶者发出手动命令“充电”,汽车工作于蓄电池充电模式。 3:在汽车所需要的功率较低、汽车运行速度较低、蓄电池储能较高、冷却液温度过高或发动机刚停止运行不久这几种情况之一下,汽车工作于电动机驱动模式。逻辑表达式如下:

浅谈混合动力汽车控制策略

浅谈混合动力汽车工作模式和控制策略 王志杰 (福建信息职业技术学院福州,350003) 摘要:依据混合动力电动汽车发展现状,介绍串联式、并联式和混联式的混合动力电动汽车的概况,探讨三种结构方式下的工作模式及其能量流动和几种典型控制策略。 关键词:混合动力汽车;HEV;控制策略; 0 前言 近几十年来,世界各国汽车工业都一直面对能源安全与环境保护两大挑战,为此,各国政府纷纷制定相应的对策,力图开发新一代的清洁节能型汽车。从上世纪90年代开始,全球各大汽公司首先把目光投放到电动汽车研究上,但由于车用蓄电池的能量密度低、质量较大,使得纯电动汽车的续驶里程短且成本较高,很难实现市场化,而混合动力汽车的出现正好解决了这一难题。 混合动力汽车(Hybrid-Electric Vehicel,缩写HEV)是将电动机与辅助动力单元组合在一辆汽车上做驱动力,辅助动力单元实际上是一台小型燃料发动机或动力发电机组。混合动力汽车结合了传统和电动驱动系统的特点,即明显减少汽车排放和降低油耗,又有大的行程。 控制策略是混合动力汽车的核心,它根据驾驶员意图和行驶工况,协调各部件间的能量流动合理进行动力分配,优化车载能源,提高整车经济性,适当降低排放,并在不牺牲整车性能的况下,实现两者之间的折中优化。 本文就混合动力汽车工作模式、能量流动和控制策略作了初步的论述,使人们对混合动力汽车技术有一定了解。 1 混合动力汽车技术 1.1串联式混合动力汽车 串联式混合动力电动汽车由发动机、发电机和电动机三大主要部件总成组成。发动机仅仅用于发电,发电机所发出的电能供给电动机,电动机驱动汽车行驶。发电机发出的部分电能向电池充电,来延长混合动力电动汽车的行驶里程。另外电池还可以单独向电动机提供电能驱动电动汽车,使混合动力电动汽车在零污染状态下行驶。 1.1.1工作模式及其能量流动 1.1.1.1纯蓄电池模式 当混合动力汽车负荷小(空载)时,由电池驱动电动机带动车轮转动,此时的能量流 动如图1所示。 1.1.1.2纯发动机模式 载荷比较大时,则由发动机带动发电机发电驱动电动机带动车轮转动。此时的能量流动如图2所示。 1.1.1.3混合驱动模式 当车处于启动、加速、爬坡的工况时,发动机-发电机和蓄电池共同向电动机提供电能。能量流动图如图3所示。

3种类型混合动力汽车控制策略的分析

万方数据

万方数据

万方数据

万方数据

100福建工程学院学报第6卷 电扭矩和电池系统的充电状态来决定。当制动回收充电力,机械制动系统开始工作,以确矩不能满足要求时保车辆的制动安全性。当车速低于设定值或者电机转速低于设定值时,此时电机充电效率较低,能量回收系统不启动,直接采用机械制动,其基本控制策略如下: a.Mb>帆,若SDC<S0c一,则帆=膨。;若舳c≥sOC一,则电机停止工作肘b=M。。 b.帆>肘。,若SDC<s0C一,则帆=^f。+肘。;若SDC≥SDc一,则电机停止工作肘h=M。。式中,帆为整车需求的制动转距;肘。为机械摩擦制动转距。 3.2.4故障工况 当电机分总成出现故障时,采用纯发动机模式驱动;当发动机出现故障时,采用纯电动模式运行。3.3模型仿真简介 利用美国A呻ne国家实验室为响应美国政府的新—代车辆合作计划而开发的电动汽车仿真软件PsAT,根据需要对肘函数和Si枷1ink模块进行修改,可建立自己需要的整车仿真模型[43(图6)。 图6混联式肛V仿真结构模型 矾g.6Simlllink舳mctu弛modelfors盯ial-paraIlelI皿VsysteIm 从仿真性能及结果可以看出,在基础起步阶段混合动力汽车混联式与串联式和混联式相比,由于都由电机驱动,因此性能相近;在高速行驶时,由于串联式只是依靠电机驱动,动力性不如混联式,且油耗方面混联车也优于串联车。同时,串联车发电机的发电功率与驱动电机的驱动功率必须相当,才能保证整车的动力性;混联车可以避免这种情况,可选用更小的发电机与驱动电机,但是在机械与功率控制实现方面要复杂得多,实现多个能源的最优匹配难度更大。 4混合汽车应用前景和需要解决的问题 4.1混合汽车应用前景 串联式动力总成要求选择发动机的功率大,并且对电池要求很高,容量大,增加了电池和汽车的制造成本及重量,电机是唯一的动力源,能量转换效率低,所以比较适合大型公交车。并联式动力总成由发动机和电机2部分组成。因为发动机的变化受到车子工况变化的影响大,所以排放性较差,使用的范围较小,仅限于小型汽车,更适合在高速公路上行驶。混联式发动机功率选择较小,排放性能较好,对电池依赖比较小,基本上不需外来充电系统,发动机工作不受车辆行驶工况的影响,不要求像传统发动机那样具有良好的响应特性及宽广的转速运行范围。另外,可以充分利用串联式和并联式的优点,确保发动机和电动机基本上工作在经济区,大大提高了车辆的经济性。并且动力源传递效率高,使用车型范围广。但结构和控制复杂,从而成本也较高,目前主要应用于轿车。 4.2需要解决的关键技术问题 混合动力汽车要进入实用化,需要具备高比能量和高比功率的能量存储装置,低成本、高效率的功率电子设备和燃料经济性高、排放低的发动机,所面临的关键性技术和需要解决的问题包括以下几个方面: 1)内燃机与电机藕合功率分配比的最优控制。混合动力汽车发动机和电动机要相互配合工作,而根据运行工况控制它们适时启动和关闭,并使发动机始终工作在低油耗区的整个控制过程十分复杂,因此需要用成熟可靠的动力藕合装置以及先进的检测系统和控制策略实现功率的合理分配,以达到低油耗和良好的动力性目标。因此,可发展多种动力耦合装置,有传统的行星齿轮耦合器等,也可尝试集离合、动力合成、变速功能于一体的双离合自动变速动力偶合器等[5。;在控制策略上,可建立更优的模型,比如瞬时优化算法与逻辑门限判断相结合的白适应控制策略阳]。 2)能量存储装置(电池)要具有较高的比功率,以满足汽车加速和爬坡时对大功率的需要。 电池还要具有快速充电能力,以保证制动时能量 万方数据

混合动力车(HEV)系统及控制方式剖析

混合动力车(HEV)系统及控制方式剖析 时间:2012-04-25 18:56:51来源:作者: 在2009年日本国内新车销量中,丰田“普锐斯(Prius)”以超过20万辆的业绩高居榜首,如今EV" title="HEV">HEV已完全成为大众型汽车。HEV通过充分利用马达,大大改善了发动机汽车起动及减速时的能耗和尾气排放等缺点,同时还解决了EV存在的行驶距离和充电时间等问题。本文将 对HEV系统的种类及特点进行介绍。 混合动力车(HEV)系统完美融合了发动机汽车和电动汽车(EV)的技术,对EV采用的马达及电池技术进行了充分利用。EV尽管从汽车黎明期就已出现,并在1900年以前达到了实用水平,但迄今为止一直未能实现全面普及。 在第二次世界大战后的汽油紧缺时期,EV作为替代能源汽车开始在日本上市。1949年日本国内EV产量达到3299辆,占到当时日本汽车保有量的3%。但是,随着发动机汽车的改进以及加油站的普及,EV的势头开始在日本逐渐衰退。 之后,汽车业界从1971年起将EV定位于环保汽车展开了开发。当时日本的通商产业省工业技术院利用大型项目制度(由汽车、电机及电池厂商参加)启动了EV的研发,众多汽车厂商及部件厂商投入了极大的精力。但在1980年以后,随着发动机汽车尾气净化技术的进步,EV再次消失了踪影。 在20年过后的1990年,美国加利福尼亚州制定了尾气排放规定“ZEV

法案”(零排放车辆法)。当时,除了EV以外,没有任何一种汽车能够达到这一规定,因此EV的开发再一次被启动。 ZEV法案的实施时间为1998年,由于必须要销售规定比例的EV,因此各公司开始奋力开发。但是该规定并未按期实行,最终以数年的限量生产而告终。 采用EV要素技术的HEV 如上所述,EV存在行驶距离、充电时间及成本方面的课题,迄今只在叉车等特定用途领域实现了普及。 而解决了EV的上述课题,燃效比发动机汽车出色且实现了低排放的汽车就是1990年下半年面市的HEV。丰田于1997年上市了“普锐斯(Prius)”,本田也于1999年推出了“Insight”。 这些HEV采用了为符合ZEV法案而开发的EV要素技术。尤其是镍氢充电电池,在1996年实用化的丰田“RAV4EV”及本田“EV PLUS”上得到了采用。由于有助于延长EV的持续行驶距离,因此即使说HEV没有镍氢充电电池就无法实现也不为过。另外,不仅是电池,为EV开发的使用稀土类磁铁的永久磁铁(PM)式同步马达也为HEV性能的提高做出了贡献。 在介绍HEV的系统之前,先来谈谈为符合ZEV法案而开发的EV。图1列出了丰田RAV4 EV的系统构成。该系统根据油门传感器检测的踩入量,由

混合动力汽车控制策略的分析

混合动力汽车控制策略的分析 摘要:混合动力汽车的动力系统基本可分为串联式、并联式和混联式3种,对并联型和串联型混合动力汽车控制策略研究现状进行分析。混联式混合动力系统结合了串联式和并联式两种结构的优点,使得能量流动的控制和能量消耗的优化具有更大的灵活性和可能性,并对混联式结构的几种控制方案进行了分析。指出混合动力汽车的控制策略不十分完善,需要进一优化。控制策略不仅仅要实现整车最佳的燃油经济性,而且还要兼顾发动机排放、蓄电池寿命、驾驶性能、各部件可靠性及整车成本等多方面要求,并针对混合动力汽车各部件的特性和汽车的运行工况,使发动机、电动机、蓄电池和传动系统实现最佳匹配。 关键词:混合动力汽车结构控制策略 1、混合动力汽车的研究背景 混合动力汽车是兼顾了电动汽车和传统汽车优点的新一代汽车结构型式,因其具有低油耗低排放的潜力,其动力性接近于传统汽车,而生产成本低于纯电动汽车,因此,最近几年来对混合动力汽车的研究开发成为世界上各大汽车公司、研究机构和大学的一个热点。以相信,在电动汽车的储能部件—电池没有根本性突破以前,使用混合动力电动汽车是解决排污和能源问题最具现实意义的途径之一。 混合动力电动汽车与传统的内燃机汽车和电动汽车不同,它一般至少有两种车载能量源,其中一种为具有高功率密度的能量源。利用两种能量源的特性互补,实现整车系统性能的改善和提高。要实现两者之间相互协调工作,这就需要有良好的控制策略。控制策略是混合动力汽车的灵魂,它根据汽车行驶过程中对动力系统的能量要求,动态分配发动机和电动机系统的输出功率。采用不同的控制策略是为了达到最优的设计目标,其主要目标为:最佳的燃油经济性、最低的排放、最低的系统成本、最佳的驱动性能。 当前开发研制的混合动力汽车可以分为三类:串联式、并联式、混联式混合动力电动汽车。在各部件的选型确定以后,采用合适的控制策略是实现最佳燃油经济性,降低排放的关键。目前提出的混合动力汽车控制策略还不成熟,实用性不强,只有基于工程经验进行设计的逻辑门限控制策略在实际商品化混合动力汽车中得到了应用。开发一种成熟实用的控制策略仍然是目前亟待解决的难题。随着对混合动力系统控制策略研究的深入,诸如自适应控制、模糊逻辑控制等方法也有运用。自适应控制策略,实际上是一种实时控制策略,它同时考虑了发动机的燃油消耗和排放。由于实时控制策略能够保证在任一时刻都是由效率最优的部件工作,因此其燃油经济性要优于模糊逻辑控制策略。但是实时控制策略过分依

混合动力系统分为三大类:串联、并联和混联

燃油价格的上涨速度变得势不可挡,新能源汽车成为大势所趋,可是这会成为目前中国人花更多的钱买一辆混合动力车的理由吗?一个简单的加减乘除也许就能计算出哪种选择会花掉你更多的钱。但是,购买混合动力的车主除了能换回更高的燃油经济性和绿色动力标志,还体现着的一种积极的生活态度——先进、高效。 混合动力是一个新名词,意指将热动力和电动力两种动力来源,按照实际运转负荷大小进行灵活调控,以达到提高能量转换效率的一项技术。从环保的角度来说,混合动力比不上只排放水的氢动力和完全依靠电力的燃料电池技术。但是从现实的角度出发,混合动力是近十年内最容易实现的汽车新动力技术。 混合动力系统分为三大类:串联、并联和混联。串联的形式相当于发动机只充当一台发电机的角色,它的运转只为供给车辆行驶所需的电能,目前几乎不被使用。并联式混合动力的两个系统既可以同时协调工作,也可以各自单独工作驱动汽车。这种系统适用于多种不同的行驶工况,尤其适用于复杂的路况。而且具备结构简单和成本低的优点。目前主要被本田所运用。

混联式混合动力系统的特点在于发动机系统和电机驱动系统各有一套机械变速机构,两套机构或通过齿轮系,或采用行星轮式结构结合在一起,从而综合调节内燃机与电动机之间的转速关系。与并联式混合动力系统相比,混联式动力系统可以更加灵活地根据工况来调节

发动机的功率输出和电机的运转。此联结方式系统复杂,成本高,目前主要被丰田所运用。 了解完目前混合动力技术的大概结构和特点,就为大家推荐几款技术成熟的混合动力车型吧,毕竟高科技产品最大的推广阻力就是价格和可靠性,只要能满足这两个方面,就是值得推荐的成熟车型。 在中国丰田是最早将混合动力技术带入市场的品牌,其主要在售的混合动力车型包括丰田普锐斯和雷克萨斯的LS、RX、ES三个车系。

3种类型混合动力汽车控制策略的分析

第6卷增刊2008年12月 福建工程学院学报 Journal of Fujian University of Technol ogy Vol.6Supp l. Dec.2008 文章编号:1672-4348(2008)S0-0096-06 3种类型混合动力汽车控制策略的分析 余捷1,黄键2 (1.福州大学机械工程及自动化学院,福建 福州 350002;2.福建工程学院机电及自动化工程系,福建 福州 350014) 摘要:简述了混合动力汽车几种典型的布置结构,并对各种布置型式的控制系统的控制策略作了相 关介绍和优缺点分析。在此基础上,探讨了混合动力汽车还需要解决的问题和应用前景。 关键词:混合动力汽车;控制策略;分析 中图分类号:U469.72文献标识码:A Ana lysis of stra teg i es for con trolli n g hybr i d electr i c veh i cles(HEV) Yu J ie1,Huang J ian2 (1.College of Mechanical Engineering and Aut omati on,Fuzhou University,Fuzhou350002,China; 2.Electr omechanical and Aut omati on Engineering Depart m ent,Fujian University of Technol ogy,Fuzhou350014,China) Abstract:The structure and installati on of three basic types of hybrid electric vehicle(HE V)were elaborated.The p r oble m s t o be s olved for HE V and the app licati on p r os pects of HE V were exp l ored. Keywords:hybrid electric vehicle(HE V);contr ol strategy;analysis 0 引言 20世纪90年代以来,在能源和环境的双重压力下,电动汽车迎来了发展的良机。由于电池技术尚未突破技术难关,纯电动驱动有车速低、续驶里程短和价格较高等缺点,限制了纯电动汽车的发展。此时,“准绿色”的新型产品———混合动力型汽车(HEV)成为最佳选择。 目前,混合动力汽车在发达国家已经日益成熟,有些国家已进入实用阶段。日本丰田公司的“COASTER”“PR I U S”、美国通用公司的“EV21”、法国雷诺公司的“K ANG OO”和意大利的“I V E2 CO”等混合动力汽车均已上市。与传统型汽车相比,HEV在节能和排放上胜出一筹。虽然HEV 的价格比传统汽车高出20%左右,但随着各国环境立法的日趋严厉,混合动力汽车性能的日益提高以及其成本的不断降低,混合动力汽车的市场份额将逐渐增大。 先进的驱动技术是混合动力汽车取得成功并实现其优越性的关键。混合动力汽车是将电池与辅助动力单元(auxiliary power unit简称AP U)合用到一辆汽车上。目前,混合动力汽车的布置型式主要有串联式、并联式和混联式等。 1 串联式混合汽车 1.1 定义 串联式系统由发动机、发电机、储能装置、电机控制器和车辆传动系组成,其基本结构如图1所示。 由图1可知,串联式系统的基本结构是由发动机到发电机,然后由发电机把电能传递给电机控制器,或是储能装备(动力电池组或超级电容组),电机控制器再把电能传递给驱动电机,再由驱动电机机械连接传动系进行工作。 收稿日期:2008-05-15 基金项目:福建省科技平台建设项目(2007H2009) 第一作者简介:余捷(1984-),男(汉),福建福州人,硕士研究生,研究方向为汽车电子技术.

混合动力汽车发动机起动控制策略研究

混联混合动力汽车发动机起动控制策略研究 左义和 项昌乐 闫清东 刘辉 (北京理工大学机械与车辆工程学院) 摘要:在对某混联混合动力汽车动力传动结构分析的基础上,基于Cruise软件构建了发动机起动控制策略,联合Matlab和Cruise进行控制策略仿真,仿真结果显示,可以实现发动机起动的平滑过渡,减轻起动发动机带来的齿轮冲击,同时发动机被控制在最低燃油消耗线附近,提高了燃油经济性。 关键词:混联混合动力汽车 发动机 起动控制 1.引言 随着世界性的能量危机和人们环保意识的增强,汽车产业研发的重点也开始由传统车辆向新能源汽车领域发展,从而引发了世界各大整车汽车厂研发混合动力汽车技术的热潮。 本文研究的对象就是某混联型混合动力汽车中发动机起停控制策略,由于混联型混合动力汽车的传动结构形式使得发动机的控制可以独立于车速,从而可以使得整车通过发动机和电动机共同提供动力,提高整车动力性,同时通过差动行星排结构使得可以通过协调电动机使得发动机被控制在最低燃油消耗线附近,提高发动机燃油经济性和改善排放性能。与此同时也带来了发动机起动控制的复杂和困难,而且可能会由于发动机突然起动给后面传动系统中的齿轮产生冲击,影响整车舒适性,同时因为发动机起动转矩不是直接耦合到驱动轴上,容易给驾驶员带来转矩丢失感。 针对上述问题,本文提出发动机起动控制策略,方法是基于发动机转速来控制的,通过调整行星排上的电动机转矩来间接调整发动机工作点,降低发动机转速波动,从而可以降低齿轮冲击和改善驾驶员的转矩丢失感。 2.整车模型的建立 研究的混联混合动力系统简图如图1所示,系统有两个动力源,发动机和电池,MG1电动机、MG2电动机分别连接到行星排的齿圈、太阳轮上,发动机通过一级齿轮增速机构连接到行星排的行星架上。C1离合器是节能离合器,通过它的断开和连接可以实现纯电模式和混合驱动模式直接的切换。Z1、Z2两个制动器是辅助发动机起停控制用的。MG1电动机后接了一个变速箱用于驾驶员档位的选择。

混合动力汽车的控制策略优化研究

混合动力汽车的控制策略优化研究 吴海啸张涌叶进 (南京依维柯汽车有限公司) 摘要 控制策略优化是提高混合动力各方面性能的最关键技术。混合动力汽车由其成本所限不适合过于复杂的控制算法。本文提出一种优化模糊控制方法,离线进行发动机优化控制计算后,运用模糊控制算法实现综合优化控制,仿真实验证明其优于基础的电辅助逻辑控制。通过调整各优化目标的权值和修改模糊控制规则灵活地实现不同的控制目标。 关键词:混合动力优化模糊控制 面对石油资源短缺和环境问题对汽车工业的新挑战,混合动力汽车(HEV)应运而生,目前各大汽车厂商、研究机构及高校纷纷投入较大的精力研究改善混合动力汽车的燃油经济性和排放性能。在混合动力系统结构、动力总成参数匹配、发动机等确定的情况下,优化HEV控制策略是最可行、最重要的途径。 HEV控制策略核心是实时合理的分配发动机和电机的动力输出,在保证整车动力性的基础上实现燃油经济性和排放性能的提高。在研究初期,采用依靠直观思维的逻辑门限分配策略[1],随着研究的深入,人们引入了各种优化算法来设计能量管理策略。常见的做法是根据工程经验设置参数初值,然后通过试错法对这些参数进行调整,显然,这种方法难以找到全局最优解;大量文献曾报道优化控制算法研究,包括基于全局优化的算法[2,3],基于SOC变化量补偿的算法[4],遗传算法[5]等,但由于HEV控制策略优化空间具有高度非线性、不连续、多模态等特点,一些优化算法会失效,很难建立起明确的目标方程式,更难以实现多目标优化。本文提出一种将优化算法与模糊控制相结合的方法,可降低计算难度,同时兼顾电机特性和电池特性,并以某混合动力轻型商用车为基础进行设计并仿真,验证了其有效性。 1.1整车结构及参数简介 本文轻型商用车采用ISG电机轻度混合并联系统结构,图1为系统结构图,其中发动机为某1.8L电喷汽油机,最大功率88kW,最大扭矩160Nm。ISG电机转子取代发动机飞轮,额定功率15kW,额定扭矩70Nm,峰值功率30kW。变速器为手动五速变速器,整车质量3500Kg。电池容量8Ah,额定电压288V。 1.2控制策略设计 混合动力汽车控制目标是实现整车油耗和排 引言 1控制策略设计

相关文档
最新文档