四川大学 理论力学 课后习题答案 第1周习题解答

四川大学 理论力学 课后习题答案 第1周习题解答
四川大学 理论力学 课后习题答案 第1周习题解答

静力学习题及解答—静力学基础
第 1 周习题为 1.2~1.9; 1.10~1.12 为选作。 1.1 举例说明由 F1 ? r = F2 ? r ,或者由 F1 × r = F2 × r ,不能断定 F1 = F2 。 解:若 F1 与 F2 都与 r 垂直,则 F1 ? r = F2 ? r = 0 ,但显然不能断定 F1 = F2 ; 若 F1 与 F2 都与 r 平行,则 F1 × r = F2 × r = 0 ,也不能断定 F1 = F2 ;
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.2 给定力 F = 3 (? i + 2 j + 3k ) ,其作用点的坐标为 (?3,?4,?6) 。已知 OE 轴上的 单位矢量 e =
3 (i + j + k ) ,试求力 F 在 OE 轴上的投影以及对 OE 轴之矩。 3 解:力 F 在 OE 轴上的投影
FOE = F ? e = 3 (?i + 2 j + 3k ) ?
3 (i + j + k ) = ?1 + 2 + 3 = 4 3
力 F 对坐标原点 O 之矩 i j k mO ( F ) = ? 3 ? 4 ? 6 = 3 (15 j ? 10k ) ? 3 2 3 3 3 根据力系关系定理,力 F 对 OE 轴之矩
mOE ( F ) = mO ( F ) ? e = 3 (15 j ? 10k ) ? 3 (i + j + k ) = 15 ? 10 = 5 3
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.3 长方体的长、宽和高分别为 a = 8cm 、 b = 4cm 、 h = 3cm ,力 F1 和 F2 分别作 用于棱角 A 和 B ,方向如图示,且 F1 = 10 N , F2 = 5N 。试求 F1 在图示各坐标轴 上的投影和 F2 对各坐标轴之矩。
解:力 F1 在坐标轴上的投影 a 80 F1 = N ≈ 8.48N F1x = 2 2 2 89 a +b +h ?b ? 40 F1 = N ≈ ?4.24 N F1 y = 2 2 2 89 a +b +h h 30 F1 = N ≈ 3.18 N F1z = 2 2 2 89 a +b +h 力 F2 在坐标轴上的投影 F2 x = 0 b F2 y = F2 = 4 N b2 + h2 ?h F2 = 3N F2 z = b2 + h2 力 F2 作用线上的 B 点坐标为 (a,0, h) = (8,0,3) ,则 F2 对坐标原点 O 之矩为
i j mO ( F2 ) = 8 0 k 3 = (?12i + 24 j + 32k ) N ? cm
0 4 ?3
根据力系关系定理, F2 对各坐标轴之矩为 mx ( F2 ) = ?12 N ? cm , m y ( F2 ) = 24 N ? cm , mz ( F2 ) = 32N ? cm
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.4 轴 AB 在 Ayz 平面内, 与铅锤的 Az 轴成 α 角。 悬臂 CD 垂直地固定在 AB 轴上, 与 Ayz 平面成 θ 角,如图所示。如在 D 点作用铅直向下的力 FP 。并设 CD = a , AC = h ,试求力 FP 对 A 点之矩及对 AB 轴之矩。
解:由于力 FP 平行于 z 轴,所以, FPx = FPy = 0 , FPz = ? FP ,
mz ( FP ) = xFPx ? yFPy = 0
mx ( FP ) 和 m y ( FP ) 只与 D 的 x 及 y 坐标有关。 D 的 x 坐标: a sin θ ; D 的 y 坐标: h sin α + a cosθ cosα ; FP 对 x 轴之矩: mx ( FP ) = ? FP (h sin α + a cosθ cosα ) ; FP 对 y 轴之矩: m y ( FP ) = FP a sin θ ;
所以 FP 对点 A 之矩为: m A ( FP ) = mx ( FP )i + m y ( FP ) j 轴 AB 的方向向量: e = (sin αj + cosαk ) 于是得到 FP 对轴 AB 之矩: mAB ( FP ) = m A ( FP ) ? e = FP a sin θ sin α
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.5 正三棱柱 OABCDE 的高为 10 2cm ,底面正三角形的边长为 10cm 。大小为 10N 的力 FP 作用于棱角 D ,力的作用线沿侧面的对角线 DB ,如图示。设沿图示 各坐标轴的基矢量为 i 、 j 和 k ,试求力 FP 的矢量表示,以及力 FP 对 O 点之矩 和对 CE 轴之矩。
解: D 点坐标: (10 2 ,10,0) ; B 点坐标: (0,5,5 3 ) ; 矢量 DB 的单位矢量: nDB = (?
6 3 1 ,? , ); 3 6 2 10 6 5 3 所以力 FP 的矢量表示为: FP = FP nDB = (? i? j + 5k ) N 3 3 FP 对 O 点之矩(取点 B 为 FP 作用点)
i j k 50 0 5 5 3 = (50i ? 50 2 j + mO ( FP ) = 6k ) N ? cm 3 10 6 5 3 ? ? 5 3 3 而 FP 对 C 点之矩(取点 D 为 FP 作用点)
i j mC ( FP ) = xD ? xC y D ? yC 10 6 5 3 ? ? 3 3 而 FP 对 CE 轴之矩: k 100 z D ? zC = (50i + 6k ) N ? cm 3 5
mCE ( FP ) = mC ( FP ) ? nCE = (50i + = 50 2 N ? cm
100 1 3 6k ) ? ( j + k) 3 2 2
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.6 单位矢量分别为 e1 和 e2 的两相交轴的夹角为 θ ,处于两轴所在平面内的力 F 在这两轴上的投影分别为 F1 和 F2 ,试求力 F 的矢量表示。 解法 1:构建两个正交的单位矢量,并用此二矢量来表达力 F 。
由题意知, F ? e1 = F1 , F ? e2 = F2 。 若令 e1 = i ,则问题的关键在于寻求与 i 垂直的单位矢量 j 。 定义矢量 j′ : j′ = e2 ? (e2 ? e1 )e1 = e2 ? cosθe1 ,即图中的黑色矢量。显然有: i ? j′ = e1 ? (e2 ? cosθe1 ) = cosθ ? cosθ = 0 ,及 j′ 与 e1 (或 i )垂直。 定义 j 为 j′ 的归一化矢量: j′ e2 ? e1 cosθ j= = ,(注意图中的几何关系) j′ sin θ 于是得到力 F 在两正交方向上的投影: Fi = F ? i = F ? e1 = F1 e ? e cosθ F2 ? F1 cosθ = Fj = F ? j = F ? 2 1 sin θ sin θ 最终,力 F 的矢量表示为 ( F ? F1 cos θ )(e 2 ? e1 cos θ ) F1 ? F2 cos θ F ? F1 cos θ F = Fi i + F j j = F1e1 + 2 = e1 + 2 e2 2 2 sin θ sin θ sin 2 θ 解法 2:也可将力 F 通过 e1 和 e2 方向上的两个分力来表示,如图
根据几何关系,有: F3 + F4 cosθ = F1
F3 cosθ + F4 = F2
联立求解后,得: F ? F2 cos θ F ? F1 cos θ F3 = 1 F4 = 2 2 sin θ sin 2 θ 因此,力 F 的矢量表示为 F ? F2 cos θ F ? F1 cos θ F = F3 e1 + F4 e2 = 1 e1 + 2 e2 2 sin θ sin 2 θ
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.7 给定三力: F1 = 3i + 4 j + 5k ,作用点为 (0,2,1) ; F2 = ?2i + 2 j ? 6k ,作用点为 (1,?1,4) ; F3 = ?i ? 3 j + 2k ,作用点为 (2,3,1) 。试求力系的主矢,及其对坐标原点
O 的主矩。 解:主矢 FR′ = ∑ Fi = 3 j + k
i j k i 主矩 M O = 0 2 1 + 1 3 4 5 ?2 j ?1 2 k i 4 + 2 ?6 j 3 k 1 = 13i ? 4 j ? 9k
?1 ? 3 2
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.8 如图所示,已知 OA = OB = a , OC = 3a ,力 F1 、 F2 和 F3 的大小均等于 FP 。 试求力系的主矢,及其对坐标原点 O 的主矩。
解:
2 2 i+ j) ; 2 2 1 3 F2 的矢量为: FP (? j + k) ; 2 2 1 3 F3 的矢量为: FP ( i ? k) ; 2 2 1? 2 力系的主矢 FR ′ = ∑ Fi = (i ? j ) 2
F1 的矢量为: FP (?
i MO =
j
k
i
j a ?1 FP 2
k
i
j 0 0
k 3a 3 FP 2
主矩
a 0 0+0 2 2 ? FP FP 0 0 2 2 Fa = P ( 3i + 3 j + 2k ) 2
0 + 0 3 ?1 FP FP 2 2
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

2020年智慧树知道网课《理论力学(西安交通大学)》课后章节测试满分答案

绪论单元测试 1 【多选题】(2分) 下面哪些运动属于机械运动? A. 发热 B. 转动 C. 平衡 D. 变形 2 【多选题】(2分) 理论力学的内容包括:。 A. 动力学 B. 基本变形 C. 运动学 D. 静力学

3 【单选题】(2分) 理论力学的研究对象是:。 A. 数学模型 B. 力学知识 C. 力学定理 D. 力学模型 4 【多选题】(2分) 矢量力学方法(牛顿-欧拉力学)的特点是:。 A. 以变分原理为基础 B. 以牛顿定律为基础 C.

通过力的功(虚功)表达力的作用 D. 通过力的大小、方向和力矩表达力的作用 5 【多选题】(2分) 学习理论力学应注意做到:。 A. 准确地理解基本概念 B. 理论联系实际 C. 熟悉基本定理与公式,并能在正确条件下灵活应用 D. 学会一些处理力学问题的基本方法 第一章测试 1 【单选题】(2分)

如图所示,带有不平行的两个导槽的矩形平板上作用一力偶M,今在槽内插入两个固连于地面的销钉,若不计摩擦,则。 A. 板不可能保持平衡状态 B. 板必保持平衡状态 C. 条件不够,无法判断板平衡与否 D. 在矩M较小时,板可保持平衡 2 【单选题】(2分)

A. 合力 B. 力螺旋 C. 合力偶 3 【单选题】(2分) 关于力系与其平衡方程式,下列的表述中正确的是: A. 在求解空间力系的平衡问题时,最多只能列出三个力矩平衡方程式。 B. 在平面力系的平衡方程式的基本形式中,两个投影轴必须相互垂直。 C. 平面一般力系的平衡方程式可以是三个力矩方程,也可以是三个投影方程。

D. 任何空间力系都具有六个独立的平衡方程式。 E. 平面力系如果平衡,则该力系在任意选取的投影轴上投影的代数和必为零。 4 【单选题】(2分)

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

理论力学课后题参考答案

1.1 沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为 由题可知示意图如题1.1.1图: { { S S 2 t 1 t 题1.1.1图 设开始计时的时刻 速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a .则有 :()()??? ??? ? +-+=-=2 21210211021221t t a t t v s at t v s 由以上两式得 1102 1 at t s v += 再由此式得 ()() 2121122t t t t t t s a +-= 1.26一弹性绳上端固定,下端悬有m 及m '两质点。设a 为绳的固有长度,b 为加m 后的 伸长,c 为加m '后的伸长。今将m '任其脱离而下坠,试证质点m 在任一 瞬时离上端O 的距离为 解 以绳顶端为坐标原点.建立如题1.26.1图所示坐标系. 题1.26.1图 设绳的弹性系数为k ,则有 kb mg = ① 当 m '脱离下坠前, m 与m '系统平衡.当m '脱离下坠前,m 在拉力T 作用下上升,之后作简运.运动微分方程为 ()y m a y k mg =-- ② 联立①② 得 b b a g y b g y +=+ ③ 0=+y b g y 齐次方程通解 t b g A t b g A Y sin cos 2 11+= 非齐次方程③的特解 b a Y +=0 所以③的通解b a t b g A t b g A Y +++=sin cos 2 11 代入初始条件:0=t 时,,c b a y ++=得0,21==A c A ; 故有 b a t b g c y ++=cos 即为m 在任一时刻离上端O 的距离. O m m ' T

清华大学理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂 线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时, 轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

理论力学课后习题答案

第五章 习题5-2.重为G的物体放在倾角为α的斜面上,摩擦系数为f;问要拉动物体所需拉力T的最小值是多少,这时的角θ多大? 解:(1) 研究重物,受力分析(支承面约束用全反力R表示),画受力图: (2) 由力三角形得 (3) 当T与R垂直时,T取得最小值,此时有:

习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m的力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。 解:(1) 研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图: (2) 由力三角形得: (3) 列平衡方程: 由(2)、(3)得: (4) 求摩擦系数:

习题5-7.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1) 顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之 值。 解:(1) 研究整体,受力分析,画受力图: 列平衡方程 (2) 研究尖劈A,受力分析,画受力图 由力三角形得

(3) 撤去P力后要保持自锁,则全反力与N A成一对平衡力 由图知 习题5-8.图示为轧机的两个轧辊,其直径为d=500mm,辊面间开度为a=5mm,两轧辊的转向相反,已知烧红的钢板与轧辊间的摩擦系数为f=0.1;试 问能轧制的钢板厚度b是多少? 解:(1) 研究钢块,处于临界平衡时,画受力图: (2) 由图示几何关系:

习题5-10.攀登电线杆用的脚套钩如图所示,设电线杆的直径d=30cm,A、B间的垂直距离b=10cm,若套钩与电线杆间的摩擦系数 f=0.5;试问踏 脚处至电线杆间的距离l为多少才能保证安全操作? 解:(1) 研究脚套钩,受力分析(A、B处用全反力表示),画受力图: (2) 由图示几何关系: 习题5-12.梯子重G、长为l,上端靠在光滑的墙上,底端与水平面间的摩擦系数为f;求:(1)已知梯子倾角α,为使梯子保持静止,问重为P 的人的活动范围多大?(2)倾角α多大时,不论人在什么位置梯 子都保持静止。 解:(1) 研究AB杆,受力分析(A处约束用全反力表示),画受力图:

理论力学课后习题答案分析

第五章 Lt 习题5-2.重为G的物体放在倾角为a的斜面上,摩擦系数为 所需拉力T的最小值是多少,这时的角9多大? 解:(1)研究重物,受力分析(支承面约束用全反力R表 示), (2)由力三角形得 sin(a +甲」gin[(90J - a + (a + 6)] 千曲")& 皿0 -

??0=甲聽=arctgf T=Gsin(tt +(pJ

习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m勺力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。 解:(1)研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图: (2)由力三角形得: R广护血(4亍-趴)& =0co昭5—忙) (3)列平衡方程: Vm o (F) = 0: - M+K血礼x/*+&$in化xr = O 由⑵、(3)得: M=FT[sin(45tf -(p H) + cos(45J -(p fl)]xrx sin(p w =JP>sin(p… x2sin45L,cos(p K 化35° (4)求摩擦系数: Wr =04243

习题5-7. 尖劈顶重装置如图所示,尖劈 A 的顶角为a ,在B块上受重物Q的作用, A、B块间的摩擦系数为f (其他有滚珠处表示光滑);求:(1)顶起重 物所需力P之值;(2)取支力P后能保证自锁的顶角a之值。 解:(1)研究整体,受力分析,画受力图: 列平衡方程 审":-S+JV X=O ■^ = Q 由力三角形得 P 二JV 勰(a+w)二伽(d +v)^?r(ff+) 1 (2)研究尖 劈

理论力学(盛冬发)课后习题答案ch04

·36· 第4章 空间力系 一、是非题(正确的在括号内打“√”、错误的打“×”) 1.力在坐标轴上的投影是代数量,而在坐标面上的投影为矢量。 ( √ ) 2.力对轴之矩是力使刚体绕轴转动效应的度量,它等于力在垂直于该轴的平面上的分力对轴与平面的交点之矩。 ( √ ) 3.在平面问题中,力对点之矩为代数量;在空间问题中,力对点之矩也是代数量。 ( × ) 4.合力对任一轴之矩,等于各分力对同一轴之矩的代数和。 ( √ ) 5.空间任意力系平衡的必要与充分条件是力系的主矢和对任一点的主矩都等于零。 ( √ ) 6.物体重力的合力所通过的点称为重心,物体几何形状的中心称为形心,重心与形心一定重合。 ( × ) 7.计算一物体的重心,选择不同的坐标系,计算结果不同,因而说明物体的重心位置是变化的。 ( × ) 8.物体的重心一定在物体上。 ( × ) 二、填空题 1.空间汇交力系共有三个独立的平衡方程,它们分别表示为0=∑x F 、 0=∑y F 和 0=∑z F 。 空间力偶系共有三个独立的平衡方程,它们分别表示为0=∑x M 、 0=∑y M 和 0=∑z M 。而空 间任意力系共有六个独立的平衡方程,一般可表示为 0=∑x F 、 0=∑y F 、 0=∑z F 、 0) (=∑F x M 、 0) (=∑F y M 和 0)(=∑F z M 。 2.由n 个力组成的空间平衡力系,如果其中的(n -1)个力相交于A 点,那么另一个力也必定通过点A 。 3.作用在同一刚体上的两个空间力偶彼此等效的条件是力偶矩矢相等。 4.空间力对一点的矩是一个矢量,而空间力对某轴的矩是一个代数量。 5.空间力F 对任一点O 之矩)(F M O 可用矢量积来表示,即F r F M ?=)(O 。写成解析表达式为 k j i F M )()()()(x y z x y z O yF xF xF zF zF yF -+-+-=。 6.当空间力与轴相交时,力对该轴的矩等于零。 7.空间力系向一点简化,若主矩与简化中心的选择无关,则该力系的主矢等于零,该力系可合成为一个合力偶。若空间任意力系向任一点简化,其主矩均等于零,则该力系是 平衡力系。 8.力螺旋是指由一力和一力偶组成的力系,其中的力垂直于力偶的作用面。力螺旋可分为左螺旋和右螺旋。

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

理论力学课后习题答案

《理论力学》课后答案 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是:

向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。 习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核:

结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

理论力学课后习题及答案

理论力学课后习题及答案

应按下列要求进行设计(D ) A.地震作用和抗震措施均按8度考虑 B.地震作用和抗震措施均按7度考虑 C.地震作用按8度确定,抗震措施按7度采用答题(共38分) 1、什么是震级?什么是地震烈度?如何评定震级和烈度的大小?(6分) 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分) 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。(2分) 震级的大小一般用里氏震级表达(1分) 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。(1分) D.地震作用按7度确定,抗震措施按8度采用 4.关于地基土的液化,下列哪句话是错误的(A)A.饱和的砂土比饱和的粉土更不容易液化 B.地震持续时间长,即使烈度低,也可能出现液化 C.土的相对密度越大,越不容易液化 D.地下水位越深,越不容易液化 5.考虑内力塑性重分布,可对框架结构的梁端负弯矩进行调幅(B )A.梁端塑性调幅应对水平地震作用产生的负弯矩进行 B.梁端塑性调幅应对竖向荷载作用产生的负弯矩进行 C.梁端塑性调幅应对内力组合后的负弯矩进行 D.梁端塑性调幅应只对竖向恒荷载作用产生的负弯矩进行 6.钢筋混凝土丙类建筑房屋的抗震等级应根据那些因素查表确定( B )A.抗震设防烈度、结构类型和房屋层数 B.抗震设防烈度、结构类型和房屋高度 C.抗震设防烈度、场地类型和房屋层数 D.抗震设防烈度、场地类型和房屋高度 7.地震系数k与下列何种因素有关? ( A ) A.地震基本烈度 B.场地卓越周期 一、 C.场地土类 1.震源到震中的垂直距离称为震源距(×)2.建筑场地类别主要是根据场地土的等效剪切波速和覆盖厚度来确定的(√)3.地震基本烈度是指一般场地条件下可能遭遇的超越概率为10%的地震烈度值 (×)4.结构的刚心就是地震惯性力合力作用点的位置(×)5.设防烈度为8度和9度的高层建筑应考虑竖向地震作用(×)6.受压构件的位移延性将随轴压比的增加而减小C.地震作用按8度确定,抗震措施按7度采用答题(共38分) 1、什么是震级?什么是地震烈度?如何评定震级和烈度的大小?(6分) 震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分) 地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。(2分) 震级的大小一般用里氏震级表达(1分) 地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。(1分) D.地震作用按7度确定,抗震措施按8度采用 4.关于地基土的液化,下列哪句话是错误的(A)E.饱和的砂土比饱和的粉土更不容易液化 F.地震持续时间长,即使烈度低,也可能出现液化 G.土的相对密度越大,越不容易液化

理论力学课后习题答案

第11章 动量矩定理 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。 (×) 2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。(√) 3. 质点系动量矩的变化与外力有关,与内力无关。 (√) 4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。 (√) 5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。 (×) 6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。 (×) 7. 质点系对某点的动量矩定理e 1d ()d n O O i i t ==∑L M F 中的点“O ”是固定点或质点系的质 心。 (√) 8. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 221 3ml mr =+,式中m 为AB 杆的质量。 (×) 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d ()d n P P i i t ==∑L M F 的形式,而 不需附加任何条件。 (×) 10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。 (×)

图 二、填空题 1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。 2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。 3. 质点系的质量与质心速度的乘积称为质点系的动量。 4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。 5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。 6. 质点M 质量为m ,在Oxy 平面内运动, 如图所示。其运动方程为kt a x cos =,kt b y sin =,其中 a 、b 、k 为常数。则质点对原点O 的动量矩为abk L O =。 7. 如图所示,在铅垂平面内,均质杆OA 可绕点O 自由转动,均质圆盘可绕点A 自由转动,杆OA 由水平位置无初速释放,已知杆长为l ,质量为m ;圆盘半径为R ,质量为M 。 则当杆转动的角速度为ω时,杆OA 对点O 的动量矩O L =ω231 ml ;圆盘对点O 的动量矩 O L =ω2Ml ;圆盘对点A 的动量矩A L =0。 图 图 8. 均质T 形杆,OA = BA = AC = l ,总质量为m ,绕O 轴转动的角速度为ω,如图所示。则它对O 轴的动量矩O L =ω2ml 。 9. 半径为R ,质量为m 的均质圆盘,在其上挖去一个半径为r = R /2的圆孔,如图所示。 则圆盘对圆心O 的转动惯量O J =232 13 mR 。 图 图 10. 半径同为R 、重量同为G 的两个均质定滑轮,一个轮上通过绳索悬一重量为Q 的重

第01章习题答案

魏 泳 涛 1.1举例说明由r F r F ?=?21,或者由r F r F ?=?21,不能断定21F F =。 解:若1F 与2F 都与r 垂直,则021=?=?r F r F ,但显然不能断定21F F =; 若1F 与2F 都与r 平行,则021=?=?r F r F ,也不能断定21F F =;

魏 泳 涛 1.2给定力)32(3k j i F ++-=,其作用点的坐标为)6,4,3(---。已知OE 轴上的单位矢量)(3 3k j i e ++=,试求力F 在OE 轴上的投影以及对OE 轴之矩。 解:力F 在OE 轴上的投影 4321)(3 3)32(3=++-=++?++-=?=k j i k j i e F OE F 力F 对坐标原点O 之矩

魏 泳 涛 1.3长方体的长、宽和高分别为cm 8=a 、cm 4=b 、cm 3=h ,力1F 和2F 分别作用于棱角A 和B ,方向如图示,且N 101=F ,N 52=F 。试求1F 在图示各坐标轴上的投影和2F 对各坐标轴之矩。 解:力1F 在坐标轴上的投影

魏 泳 涛 1.4 轴AB 在Ayz 平面内,与铅锤的Az 轴成α角。悬臂CD 垂直地固定在AB 轴上,与Ayz 平面成θ角,如图所示。如在D 点作用铅直向下的力P F 。并设a CD =,h AC =,试求力P F 对A 点之矩及对AB 轴之矩。 解:由于力P F 平行于z 轴,所以,0P P ==y x F F ,P P F F z -=, 0)(P P P =-=y x z yF xF m F )(P F x m 和)(P F y m 只与D 的x 及y 坐标有关。 D 的x 坐标:θsin a ; D 的y 坐标:αθαcos cos sin a h +; P F 对x 轴之矩:)cos cos sin ()(P P αθαa h F m x +-=F ; P F 对y 轴之矩:θsin )(P P a F m y =F ; 所以P F 对点A 之矩为:j F i F F m )()()(P P P y x A m m += 轴AB 的方向向量:)cos (sin k j e αα+= 于是得到P F 对轴AB 之矩:αθsin sin )()(P P P a F m A AB =?=e F m F

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

考研院校航天领域高校排名

考研院校航天领域高校排名 神舟十号载人飞船于6月11日17时38分在酒泉卫星发射中心成功发射,飞行乘组由男航天员聂海胜、张晓光和女航天员王亚平组成,聂海胜担任指令长。神十升天,燃起了很多考研学子的航天梦,根据教育部学位中心发布的《2012年学科评估结果》,在“航天宇航科学与技术”领域实力排名的高校情况如下:Top.1 北京航空航天大学 学科整体水平得分 92分 北京航空航天大学,简称“北航”,成立于1952年,由当时的清华大学、北洋大学、厦门大学、四川大学等八所院校的航空系合并组建,是新中国第一所航空航天高等学府,现隶属于工业和信息化部。 航空科学与工程学院 航空学院前身是清华大学航空系,是1952年北航成立时最早的两个系之一,当时称飞机系(设飞机设计和飞机工艺专业),1958年更名为航空工程力学系,1970年更名为五大队,1972年更名为五系,1989年定名为飞行器设计与应用力学系,2003年成立航空科学与工程学院。早期的航空学院荟萃了一批当时国内著名的航空领域的专家,如屠守锷、王德荣、陆士嘉、沈元、王俊奎、吴礼义、张桂联、徐鑫福、徐华舫、何庆芝、伍荣林、史超礼、叶逢培等教授,屠守锷院士是第一任系主任,他们为本院发展奠定了坚实基础。在北航发展史上,航空学院不断输出专业和人才,

先后参与组建七系、三系、十四系、宇航学院、飞行学院、无人机所、土木工程系、交通学院等院系。 Top.2国防科学技术大学学科整体水平得分 88分 国防科技大学是国防部和教育部双重领导下的国家重点综合性大学,列入国家“985工程”和“211工程”的重点建设。学校的前身是1953年创建于黑龙江省哈尔滨市的军事工程学院,简称“哈军工”。 航天与材料工程学院 航天与材料工程学院前身是哈尔滨军事工程学院下设的导弹工程系,创建于1959年。学院以航天和新材料技术为特色,主要从事卫星、导弹等各种飞行器总体设计技术、推进技术、控制和测试发射技术、新材料技术、应用化学技术等方面的高素质人才培养和科学研究工作。 Top.3西北工业大学 学科整体水平得分 87分 西北工业大学坐落于古都西安,是我国唯一一所以同时发展航空、航天、航海工程教育和科学研究为特色,以工理为主,管、文、经、法协调发展的研究型、多科性和开放式的科学技术大学,隶属工业和信息化部。 航空学院 岁月如梭,光阴荏苒,源于1933年的西北工业大学航空学院历经了从初期的交通大学航空门(1935年)、南京大学(原中央大学)航空工程教育(1935年)和浙江大学航空工程教育(1933年),到1952年成立于南京的华东航空学院飞机工程系,再到西迁后的西

理论力学课后习题及答案解析..

第一章 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力 偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是: 取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且:

如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是: 向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。校核: 结果正确。(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组:

反力的实际方向如图示。 校核: 结果正确。 习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。 解:(1) 研究整体,受力分析(BC是二力杆),画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。

理论力学课后习题答案 第4章 运动分析基础

(b) 第4章 运动分析基础 4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2 π,试确定小环 A 的运动规律。 解:R v a a 2n sin ==θ,θsin 2 R v a = θθtan cos d d 2 t R v a t v a ===,??=t v v t R v v 02d tan 1d 0θ t v R R v t s v 00tan tan d d -==θθ ??-=t s t t v R R v s 0000d tan tan d θθ t v R R R s 0tan tan ln tan -=θθθ 4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的 1.?? ???-=-=225.1324t t y t t x , 2.???==t y t x 2cos 2sin 3 解:1.由已知得 3x = 4y (1) ???-=-=t y t x 3344 t v 55-= ? ??-=-=34y x 5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。 2.由已知,得 2 arccos 213arcsin y x = 化简得轨迹方程:2 9 4 2x y -= (2) 轨迹如图(b ),其v 、a 图像从略。 4-3 点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为 22 1Rt s π= ,式中s 以厘米计,t 以秒计。轨迹图形和直角坐标的关系如右图所示。当点第一 次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。 解:Rt s v π== ,R v a π== t ,222 n Rt R v a π== y 坐标值最大的位置时:R Rt s 2 2 1 2π π= = ,12 =∴t R a a x π==t ,R a y 2 π-= 4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。试求滑块的速度随距离x 的变化规律。 A 习题4-1图 习题4-2图 习题4-3图

四川大学 理论力学 课后习题答案 第1周习题解答

静力学习题及解答—静力学基础
第 1 周习题为 1.2~1.9; 1.10~1.12 为选作。 1.1 举例说明由 F1 ? r = F2 ? r ,或者由 F1 × r = F2 × r ,不能断定 F1 = F2 。 解:若 F1 与 F2 都与 r 垂直,则 F1 ? r = F2 ? r = 0 ,但显然不能断定 F1 = F2 ; 若 F1 与 F2 都与 r 平行,则 F1 × r = F2 × r = 0 ,也不能断定 F1 = F2 ;
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

静力学习题及解答—静力学基础
1.2 给定力 F = 3 (? i + 2 j + 3k ) ,其作用点的坐标为 (?3,?4,?6) 。已知 OE 轴上的 单位矢量 e =
3 (i + j + k ) ,试求力 F 在 OE 轴上的投影以及对 OE 轴之矩。 3 解:力 F 在 OE 轴上的投影
FOE = F ? e = 3 (?i + 2 j + 3k ) ?
3 (i + j + k ) = ?1 + 2 + 3 = 4 3
力 F 对坐标原点 O 之矩 i j k mO ( F ) = ? 3 ? 4 ? 6 = 3 (15 j ? 10k ) ? 3 2 3 3 3 根据力系关系定理,力 F 对 OE 轴之矩
mOE ( F ) = mO ( F ) ? e = 3 (15 j ? 10k ) ? 3 (i + j + k ) = 15 ? 10 = 5 3
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛

《理论力学》第六章作业答案

[习题6-2] 半圆形凸轮以匀速s mm v /10=沿水平方向向左运动,活塞杆AB 长l 沿铅直方向运动。当运动开始时,活塞杆A 端在凸轮的最高点上。如凸轮的半径mm R 80=,求活塞B 的运动方程和速度方程. 解:活塞杆AB 作竖向平动。以凸轮圆心为坐标原点,铅垂向上方向为x 轴的正向,则由图中的几何关系可知,任一时刻,B 点的坐标,即活塞B 的运动方程为: )(64)()(cos 2222 2cm t l vt R l R vt R R l R l x B -+=-+=-?+=+=? 活塞B 的速度方程为: )/(646422122s cm t t t t dt dx v B B --=--== [习题6-4] 点M 以匀速率u 在直管OA 内运动,直管OA 又按t ω?=规律绕O 转动。当0=t 时,M 在O 点,求其在任一瞬时的速度及加速度的大小。 解: ut r =,t ω?=。 设任一瞬时,M 点的坐标为),(y x M ,则点M 的运动方程为: t ut r x ω?cos cos ==, t ut r y ω?sin sin ==

速度方程为: t t u t u t ut t u t ut dt d dt dx v x ωωωωωωωsin cos )sin (cos )cos (-=?-+=== t t t u t t u t u v x ωωωωωωcos sin 2sin )(cos 222222 ?-+= t t u t u t ut t u t ut dt d dt dy v y ωωωωωωωcos sin cos sin )sin (+=??+=== t t t u t t u t u v y ωωωωωωc o s s i n 2c o s )(s i n 2222 22?++= 22 2 2)(t u u v v y x ω+=+ 任一瞬时,速度的大小为: 2222 2)(1)(t u t u u v v v y x ωω+=+=+= 加速度方程为: ) sin cos (t t u t u dt d dt dv a x x ωωω-== ]c o s s i n [)s i n (ωωωωωωω??+?-?-?=t t u t u t u t t u t u ωωωωc o s s i n 22--= t t t u t t u t u a x ωωωωωωωc o s s i n 4c o s )(s i n 4322222 222?++= )cos sin (t t u t u dt d dt dv a y y ωωω+== ωωωωωωω?-?+?+??=)s i n (c o s [c o s t t u t u t u t t u t u ωωωωsin cos 22?-= t t t u t t u t u a y ωωωωωωωcos sin 4sin )(cos 4322222222 ?-+= 22 2222)(4t u u a a y x ωω+=+ 任一瞬时,速度的大小为: 222222 2)(4)(4t u t u u a a a y x ωωωω+=+=+=

理论力学(盛冬发)课后习题答案ch07

第7章 点的合成运动 一、是非题(正确的在括号内打“√”、错误的打“×”) 1.点的速度和加速度合成定理建立了两个不同物体上两点之间的速度和加速度之间的 关系。 ( √ ) 2.根据速度合成定理,动点的绝对速度一定大于其相对速度。 ( × ) 3.应用速度合成定理,在选取动点和动系时,若动点是某刚体上的一点,则动系不可以固结在这个刚体上。 ( √ ) 4.从地球上观察到的太阳轨迹与同时在月球上观察到的轨迹相同。 ( × ) 5.在合成运动中,当牵连运动为转动时,科氏加速度一定不为零。 ( × ) 6.科氏加速度是由于牵连运动改变了相对速度的方向而产生的加速度。 ( √ ) 7.在图7.19中,动点M 以常速度r v 相对圆盘在圆盘直径上运动,圆盘以匀角速度ω绕定轴O 转动,则无论动点运动到圆盘上的什么位置,其科氏加速度都相等。 ( √ ) 二、填空题 1.已知r 234=++v i j k ,e 63=-ωi k ,则k =a 18 i + -60 j + 36 k 。 2.在图7.20中,两个机构的斜杆绕O 2的角速度均为2ω,O 1O 2的距离为l ,斜杆与竖直方向的夹角为θ,则图7.20(a)中直杆的角速度=1ωθ θωcos sin 2 ,图7.20(b)中直杆的角 速度=1ω2ω。 图7.19 图7.20 3.科氏加速度为零的条件有:动参考系作平动、0=r v 和r e v ω//。 4.绝对运动和相对运动是指动点分别相对于定系和动系的运动,而牵连运动是指牵连点相对于定系的运动。牵连点是指某瞬时动系上和动点相重合的点,相应的牵连速度和加速度是指牵连点相对于定系的速度和加速度。 5.如图7.21所示的系统,以''Ax y 为动参考系,Ax'总在水平轴上运动,AB l =。则点B 的相对轨迹是圆周,若kt ?= (k 为常量),点B 的相对速度为lk ,相对加速度为2lk 。

理论力学_习题集(含答案)

《理论力学》课程习题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《理论力学》(编号为06015)共有单选题,计算题,判断题, 填空题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。 一、单选题 1. 作用在刚体上仅有二力A F 、B F ,且0+=A B F F ,则此刚体________。 ⑴、一定平衡 ⑵、一定不平衡 ⑶、平衡与否不能判断 2. 作用在刚体上仅有二力偶,其力偶矩矢分别为A M 、B M ,且A M +0=B M ,则此刚体________。 ⑴、一定平衡 ⑵、一定不平衡 ⑶、平衡与否不能判断 3. 汇交于O 点的平面汇交力系,其平衡方程式可表示为二力矩形式。即()0=∑A i m F ,()0=∑B i m F ,但________。 ⑴、A 、B 两点中有一点与O 点重合 ⑵、点O 不在A 、B 两点的连线上 ⑶、点O 应在A 、B 两点的连线上 ⑷、不存在二力矩形式,∑∑==0,0Y X 是唯一的 4. 力F 在x 轴上的投影为F ,则该力在与x 轴共面的任一轴上的投影________。 ⑴、一定不等于零 ⑵、不一定等于零 ⑶、一定等于零 ⑷、等于F 5. 若平面一般力系简化的结果与简化中心无关,则该力系的简化结果为________。 ⑴、一合力 ⑵、平衡 ⑶、一合力偶 ⑷、一个力偶或平衡 6. 若平面力系对一点A 的主矩为零,则此力系________。 ⑴、不可能合成一个力 ⑵、不可能合成一个力偶

⑶、一定平衡 ⑷、可能合成一个力偶,也可能平衡 7. 已知1F 、2F 、3F 、4F 为作用刚体上的平面共点力系,其力矢关系如图所示为平行四边形,因此可知________。 ⑴、力系可合成为一个力偶 ⑵、力系可合成为一个力 ⑶、力系简化为一个力和一个力偶 ⑷、力系的合力为零,力系平衡 8. 已知一平衡的平面任意力系1F 、2F ……1n F ,如图,则平衡方程∑=0A m ,∑=0B m ,∑=0Y 中(y AB ⊥),有________个方程是独立的。 ⑴、1 ⑵、2 ⑶、3 9. 设大小相等的三个力1F 、2F 、3F 分别作用在同一平面内的A 、B 、C 三点上,若AB BC CA ==,且其力多边形如b <>图示,则该力系________。 ⑴、合成为一合力 ⑵、合成为一力偶 ⑶、平衡

相关文档
最新文档