热传导+对流微分方程推导

热传导+对流微分方程推导
热传导+对流微分方程推导

热传导微分方程

导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。

1 傅立叶定律

傅立叶定律是导热理论的基础。其向量表达式为:

q gradT λ=-? (2-1)

式中:q ——热流密度,是一个向量,2/()Kcal m h

gradT ——温度梯度,也是一个向量,℃/m 。

λ——导热系数,又称热导率,/()Kcal mh C o ;

式中的负号表示q 的方向始终与gradT 相反。

2 导热系数(thermal conductivity )及其影响因素

导热系数λ(

/()Kcal mh C o

)是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。

导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。

导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。

在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为

x

T

?? 在t 时刻e 界面的温度梯度为dx x

T x T dx x x T x T 22??+??=????

+??

单位时间内六面体在x 方向流入的热流量为:dydz x

T

??-λ

; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ??

?

?

????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T

22??λ

图3-1 微分单元体各面上进出流量示意图

同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y

T

22??λ

单位时间内六面体在y 方向流入的净热量为:dxdydz z T

22??λ

单位时间内流入六面体的总热量为:

dxdydz z T y T x

T ???

?????+??+??222222λ (3-1)

六面体内介质的质量为:

dxdydz ρ

单位时间六面体内热量的变化量(增加)为:

Cdxdydz t

T

ρ?? 根据热量守恒定律:

Cdxdydz t T dxdydz z T y T x

T ρλ??=????????+??+??222222

C t T

z T y T x

T ρλ??=????????+??+??222222

t

T

z T y T x T C ??=

????????+??+??222222ρλ

t T

z T y T x

T a ??=

????????+??+??222222

C

a ρλ

=

α称为热扩散率或热扩散系数(thermal diffusivity ),单位m^2/s.

λ:导热系数,单位W/(m·K); ρ:密度,单位kg/m^3

c :热容,单位J/(kg·K).

思考:如果单元体内有热源:单位体积单位时间的散热量是q 方程怎么变?

4.岩石的热扩散率(导温系数) thermal diffusion coefficient ;thermal

diffusivity; thermal degradation

岩石的热扩散率也叫或热扩散系数,表示岩石在加热或冷却时各部分温度趋于一致的能

力。它反映岩石的热惯性特征,是一个综合性参数。热扩散率越大的岩石,热能传播温度趋于一致的速度越大,透入的深度也越大。

热扩散系数一般是根据岩石的导热系数(ramuda)、和密度(rou)的测量数据计算得到的。

图3-1 微分单元体各面上进出流量示意图

在t 时刻

w 界面流体速度为U ,流体温度为T

单位时间流入微元体的流体质量为:udydz dm ρ=1

带入微元体的热量为:uTCdydz ρ

e 界面流体速度为dx x u u ??+

,流体温度为dx x

T T ??+ 单位时间流出微元体的流体质量为:dydz dx x u u dm ?????

?

??+

=ρ2 带出微元体的热量为: Cdydz dx x T T dx x u u ??

??????+??????

??+

ρ dxdydz x

T

dx x u C Cdxdydz x T u TCdxdydz x u uTCdydz ????+??+??+ρρρ

ρ 如果不考虑x 方向速度变化,略去高阶微量,则e 界面带出微元体的热量为:Cdxdydz x

T

u

uTCdydz ??+ρρ 单位时间内在x 方向流入六面体的净热流量为:dxdydz x

T

uC

??-ρ; 同理, y 方向:dxdydz y T vC

??-ρ z 方向:dxdydz z

T wC ??-ρ

2.2巷壁与风流间的对流换热

运动着的流体与所接触的固体壁面之间的热量传递过程称为对流换热,它是流体(液体或气体)由于宏观相对运动,从某一区域迁移到温度不同的另一区域时引起热量传递的现象。固体壁面与流体之间存在温度差将产生对流换热,由于实际流体的粘性和壁面摩擦的共同影响,近壁流体分层流动,尤其与壁面直接接触的几何面上,总有一层很薄的流体粘附于表面,该层流体处于静止状态,所以热流通过表面层的传递只能依靠导热。显然,在流体发生热对流的同时,由于流体中温度分布的不均匀,也将伴随产生导热现象。因此,对流换热过程实际上是热对流和热传导的综合作用过程。

牛顿冷却公式

对流换热过程是一个受很多因素影响的复杂过程,如流体的流动状况、流体的物理性质、壁的形状和大小、表面粗糙度等。一般情况下对流换热的计算可采用牛顿冷却公式。根据对流换热定律,可以计算出从壁面某处进入通风风流的显热热流密度:

)

(T T q w s -=α (3)

式中:

w

T = 巷道壁面的温度;

T = 巷道内风流的平均温度;

α= 巷道壁面的换热系数。在围岩与风流的热交换过程中,多半是井巷低温风流流经高温岩壁,井巷壁面向风流放热,所以矿内常把上式中的对流换热系数α

2/()Kcal m h C o

)称为巷壁与风流的换热系数,简称为放热系数。

圆形巷道(柱体)围岩与风流换热控制方程

地热通过围岩向风流的传热现象与围岩本身的热传导、巷道壁面向风流的对流换热以及壁面上的水分蒸发等因素有关。由于实际情况下围岩的散热是一个很复杂的过程,为了方便本论文的研究,对要研究的物理模型做了简化和假设:

1) 巷道为圆形、无限扩展,围岩岩石均质、各向同性; 2) 不考虑围岩壁面的热辐射作用。

根据上述假设,可得到描述考虑壁面水分蒸发时围岩与风流热质传递的数学方程,如式(3-1):

020200001() (;0)(,) ()(,) (0)()() (0)t r R w a v w a r r T T T

a r r R t t r r r T r t T r r R T r t T t T

T T f L m m t r λασ===????=+?<<>??????

?=<≤?

??=≥????=-+-≥???

(3-1)

式中:R ——调热圈半径,m ;其他符号的意义同前章所述。

根据简化的数学模型,可将巷道围岩划分为一系列等间距 (R ?)的同心圆,取垂直于长轴的巷道断面角度为θ?,如图3-1所示。

图3-1 巷道围岩内节点划分 Fig.3-1 Node division in surrounding rock

热传导+对流微分方程推导

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象.此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m . λ--导热系数,又称热导率,/()Kcal mh C ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(th erm al c ondu ct iv ity )及其影响因素 导热系数λ(/()Kcal mh C )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量. 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k(W/m·K,此处的K 可用℃代替). 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量.单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程. 3.热传导微分方程推导 在t时刻w界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

一维热传导MATLAB模拟

昆明学院2015届毕业设计(论文) 设计(论文)题目 一维热传导问题的数值解法及其MATLAB模拟子课题题目无 姓名伍有超 学号201117030225 所属系物理科学与技术系 专业年级2011级物理学2班 指导教师王荣丽 2015 年 5 月

摘要 本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。 关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟

Abstract In this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems. Keywords: One-dimensional heat conduction; method of variable separation; finite difference method; numerical method; MATLAB simulation

热传导方程的求解

应用物理软件训练 前言 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其

他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。 本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。

题目:热传导方程的求解 目录 一、参数说明 (1) 二、基本原理 (1) 三、MATLAB程序流程图 (3) 四、源程序 (3) 五、程序调试情况 (6) 六、仿真中遇到的问题 (9) 七、结束语 (9) 八、参考文献 (10)

一、参数说明 U=zeros(21,101) 返回一个21*101的零矩阵 x=linspace(0,1,100);将变量设成列向量 meshz(u)绘制矩阵打的三维图 axis([0 21 0 1]);横坐标从0到21,纵坐标从0到1 eps是MATLAB默认的最小浮点数精度 [X,Y]=pol2cart(R,TH);效果和上一句相同 waterfall(RR,TT,wn)瀑布图 二、基本原理 1、一维热传导问题 (1)无限长细杆的热传导定解问题 利用傅里叶变换求得问题的解是: 取得初始温度分布如下 这是在区间0到1之间的高度为1的一个矩形脉冲,于是得 (2)有限长细杆的热传导定解问题

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。

在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系: 圆柱坐标系: 球坐标系: 其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维)

传热基本方程及传热计算

第三节传热基本方程及传热计算 可知,要强化传热过程主要应着眼于增加推动力和减少热阻, 也就是设法增大 t m 或者 增大传热面积A 和传热系数K 。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建 立在上述基本方程的基础上的, 传热计算则主要解决基本方程中的 Q ,A,K, tm 及有关量的 计算。传热基本方程是传热章中最主要的方程式。 、传热速率Q 的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热 量Qh ,必等于冷流体所吸收的热量 Qc ,即Qn Qc ,称之热量衡算式。 i.i. 无相变化时热负荷的计算 (1) ( 1)比热法 Q m h c ph T 1 T 2 m c C pc t 2 11 式中 Q ――热负荷或传热速率, J .S 1或W ; mh , mc ――热、冷流体的质量流量, kg.s -1; Cpc,Cph ――冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J . (kg.k ) -1; T 1 ,T 2——热流体进、出口温度,K(° C ); t 1 ,t 2 —冷流体的进出口温度,K(° C )。 (2) 热焓法 Q m(l 1 I 2) (4 — 13) 式中 丨 1 ――物料始态的焓,k J .kg -1; I 2 ――物料终态的焓,k J .kg -1。 2 ?有相变化时热负荷计算 Q Gr (4—14) 式中 G ――发生相变化流体的质量流量, kg.s -1; r ---- 液体汽化(或蒸汽冷凝)潜热, k J .kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化, 然后根据不同算式进行计算。 对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有: 从传热基本方程 或 Q kA t m t Q m 1 kA 传热推动力 传热热阻 (4-11) (4-lla) (4-12)

热传导方程傅里解

热传导方程傅里解

————————————————————————————————作者:————————————————————————————————日期:

热传导在三维的等方向均匀介质里的传播可用以下方程表达: 其中: ?u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。 ?/是空间中一点的温度对时间的变化率。 ?, 与温度对三个空间座标轴的二次导数。 ?k决定于材料的热传导率、密度与热容。 热方程是傅里叶冷却律的一个推论(详见条目热传导)。 如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。 热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。 热方程也是抛物线偏微分方程最简单的例子。 利用拉普拉斯算子,热方程可推广为下述形式

其中的是对空间变量的拉普拉斯算子。 热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。 就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 以傅里叶级数解热方程[编辑] 以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个空间变量的热方程,这可以当作棍子的热传导之模型。方程如下: 其中u = u(t, x) 是t和x的双变量函数。 ?x是空间变量,所以x∈[0,L],其中L表示棍子长度。

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

2热传导方程的初值问题

§2热传导方程的初值问题 一维热传导方程的初值问题(或Cauchy 问题) ?? ???+∞<<∞-=>+∞<<∞-=??-??x x x u t x t x f x u a t u ),()0,(0 ,),,(2 2 2? () 偏导数的多种记号xx x t u x u u x u u t u =??=??=??22,,. 问题也可记为 ?? ?+∞ <<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0 ,,),(2?. Fourier 变换 我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可 积,若积分 ? +∞ ∞ -dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。 将),(+∞-∞上绝对可积函数形成的集合记为),(1 +∞-∞L 或),(+∞-∞L , 即{ } ∞<=+∞-∞=+∞-∞? +∞ ∞ -dx x f f L L )(| ),(),(1 ,称为可积函数空间. 连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C , {}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。 定义 若),(+∞-∞∈L f ,那么积分 ),(?)(21 λπ λf dx e x f x i =? +∞ ∞ -- 有意义,称为Fourier 变换, )(? λf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ? +∞ ∞ --= =dx e x f f Ff x i λπ λλ)(21)(?)( 定理 (Fourier 积分定理)若),(),(1 +∞-∞?+∞-∞∈C L f ,那么我们有

热传导方程抛物型偏微分方程和基本知识

1. 热传导的基本概念 1.1温度场 一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导, 即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。 温度场:在任一瞬间,物体或系统内各点的温度分布总和。 因此,温度场内任一点的温度为该点位置和时间的函数。 〖说明〗 若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳 态的导热状态。 若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态 的导热状态。 若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为 一维稳态温度场。 1.2 等温面 在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。 1.3 温度梯度 从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交 的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。 温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。 〖说明〗 温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。 稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律 物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和 温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。 傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。 定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比: q = dQ/ds = -λ·dT/dX 式中:q 是热通量(热流密度),W/m2 dQ是导热速率,W dS是等温表面的面积,m2 λ是比例系数,称为导热系数,W/m·℃ dT / dX 为垂直与等温面方向的温度梯度 “-”表示热流方向与温度梯度方向相反 3. 导热系数 将傅立叶定律整理,得导热系数定义式: λ= q/(dT/dX) 物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系 数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。 导热系数大小由实验测定,其数值随状态变化很大。 3.1 固体的导热系数 金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 〖说明〗

一维热传导方程(Richardson格式)

中南林业科技大学 偏微分方程数值解法学生姓名:周晓虹 学号:20083710 学院:理学院 专业年级:08信计1班 设计题目:一维热传导方程的Richardson格式 2011年06月

一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。

传热基本方程及传热计算

第三节 传热基本方程及传热计算 从传热基本方程 m t kA Q ?= (4-11) 或 传热热阻传热推动力= ?=kA t Q m 1 (4-11a) 可知,要强化传热过程主要应着眼于增加推动力和减少热阻,也就是设法增大m t ?或者 增大传热面积A和传热系数K。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建立在上述基本方程的基础上的,传热计算则主要解决基本方程中的m t K A Q ?,,,及有关量的 计算。传热基本方程是传热章中最主要的方程式。 一、传热速率Q的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热量 h Q ,必等于冷流体所吸收的热量c Q ,即c n Q Q =,称之热量衡算式。 1. 1. 无相变化时热负荷的计算 (1) (1) 比热法 () ()1221t t c m T T c m Q pc c ph h -=-= (4-12) 式中 Q ——热负荷或传热速率,J.s -1或W ; c h m m ,——热、冷流体的质量流量,kg.s -1; ph pc c c ,——冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J.(kg.k )-1; 21,T T ——热流体进、出口温度,K(°C ); 21,t t -冷流体的进出口温度,K(°C )。 (2)热焓法 )(21I I m Q -= (4-13) 式中 1I ——物料始态的焓,k J.kg -1; 2I ——物料终态的焓,k J.kg -1。 2.有相变化时热负荷计算 Gr Q = (4-14) 式中 G ——发生相变化流体的质量流量,kg.s -1; r ——液体汽化(或蒸汽冷凝)潜热,k J.kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化,然后根据不同算式进行计算。对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有:

热传导+对流微分方程推导(精.选)

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m 。 λ——导热系数,又称热导率,/()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(thermal conductivity )及其影响因素 导热系数λ( /()Kcal mh C o )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

热传导方程的导出及其定解问题的导出

热传导方程的导出及其定解问题的导出 1. 热传导方程的导出 考察空间某物体G 的热传导问题。以函数(,,,)u x y z t 表示物体G 在位置(,,)x y z 及时刻t 的温度。 依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数 u n ??成正比,即 (,,) u dQ k x y z dSdt n ?=-? (1-1) 其中(,,)k x y z 称为物体在点(,,)x y z 处的热传导系数,它应取正值。(1-1)式中负号的出现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和 u n ??异号。 在物体G 内任取一闭曲面Γ,它所包围的区域记为Ω,由(1-1)式,从时刻1t 到2t 流进此闭曲面的全部热量为 21(,,)t t u Q k x y z dS dt n Γ?? ?=??????? ? (1-2) 这里 u n ??表示u 沿Γ上单位外法线方向n 的方向导数。 流入的热量使物体内部的温度发生变化,在实践间隔12(,)t t 中物体温度从1(,,,)u x y z t 变化到2(,,,)u x y z t ,它所应该吸收的热量是 21(,,)(,,)[(,,,)(,,,)]c x y z x y z u x y z t u x y z t dxdydz ρΩ -??? 其中c 为比热,ρ为密度。因此就成立 21 21(,,) (,,)(,,)[(,,,)(,,,)]t t u k x y z dS dt c x y z x y z u x y z t u x y z t dxdydz n ρΓΩ ??? =-??????????? (1-3) 假设函数u 关于变量,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为 2 21 1t t t t u u u u k k k dxdydzdt c dt dxdydz x x y y z z t ρΩΩ????????????????? ++=?????????? ? ? ? ?????????????? ???? 交换积分次序,就得到 2 1 0t t u u u u c k k k dxdydzdt t x x y y z z ρΩ?? ?????????????---=?????? ? ? ??????????????? ? (1-4) 由于12,,t t Ω都是任意的,我们得到

一维热传导方程的前向 、紧差分格式

中南林业科技大学 本科课程论文 学院:理学院 专业年级:09信息与计算科学一班 课程:偏微分方程数值解法 论文题目:一维热传导方程的前向Euler和紧差分格式指导教师:陈红斌 2012年7月

学生姓名:唐黎学号: 20093936分工:程序编写,数值例子 学生姓名:何雄飞学号:20093925分工:格式建立,资料收集 学生姓名:汪霄学号:20093938分工:文档编辑,资料整理 学生姓名:毛博伟学号:20093931分工:公式编辑,查找资料 学生姓名:倪新东学号:20093932分工:数据分析,查找资料 学生姓名:何凯明学号:20093924分工:数据分析,查找资料

目录 1引言 (1) 2物理背景 (1) 3网格剖分 (2) 4.1.1向前Euler格式建立 (2) 4.1.2差分格式的求解 (4) 4.1.3收敛性与稳定性 (4) 4.1.4 数值例子 (7) 4.2.1紧差分格式建立 (10) 4.2.2差分格式求解 (12) 4.2.3数值例子 (13) 总结 (17) 参考文献 (18) 附录 (19)

1 引言 本文考虑的一维非齐次热传导方程的定解问题: 22(,),0,0,u u a f x t x l t T t x ??-=<<<≤?? (,0)(),0,u x x x l φ=≤≤ (0,)(), (1,)(), 0.u t t u t t t T αβ==<≤ 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设 (),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.() ,,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为 (),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 ,u u u u c kx k k t x x y y z z ρ ????????????? =++ ? ? ???????????? ?? 如果物体是均匀的,此时,k c 以及ρ均为常数.令2 k a c ρ = ,上式方程化为 2222 2222,t u u u u a a u x y z ?? ???=++=? ?????? 若考虑物体内有热源,其热源密度函数为(),,F F x y z =,则有热源的热传导方程为 ()2,,,,t u a u f x y z t =?+ 其中F f c ρ = .

一维热传导方程的前向 、紧差分格式

页眉内容 中南林业科技大学 本科课程论文学院:理学院 专业年级:09信息与计算科学一班 课程:偏微分方程数值解法 论文题目:一维热传导方程的前向Euler和紧差分格式指导教师:陈红斌 2012年7月 学生姓名:唐黎学号: 分工:程序编写,数值例子 学生姓名:何雄飞学号: 分工:格式建立,资料收集 学生姓名:汪霄学号: 分工:文档编辑,资料整理 学生姓名:毛博伟学号: 分工:公式编辑,查找资料 学生姓名:倪新东学号: 分工:数据分析,查找资料 学生姓名:何凯明学号:

页眉内容 分工:数据分析,查找资料 目录 1引言 (1) 2物理背景 (1) 3网格剖分 (2) 4.1.1向前Euler格式建立 (2) (4) 4.1.4 数值例子 (7) (10) (12) (13) 总结 (17) 参考文献 (18) 附录 (19)

页眉内容 1 引言 本文考虑的一维非齐次热传导方程的定解问题: 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设(),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.(),,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为(),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 如果物体是均匀的,此时,k c 以及ρ均为常数.令2k a c ρ =,上式方程化为 若考虑物体内有热源,其热源密度函数为(),,F F x y z =,则有热源的热传导方程为 其中F f c ρ =. 3 网格剖分 取空间步长N l h /=和时间步长M T /=τ,其中M N ,都是正整数.用两族平行直线),1,0(N j jh x j Λ==和),,1,0(M k k t k Λ==τ将矩形域}0,0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x .记),(k j k j t x u u =.以h G 表示网格内点集合,即 位于开矩形G 的网点集合;h G 表示所有位于闭矩形的网点集合;h h h G G -=Γ是网格界点集合. 引进如下记号:

相关文档
最新文档