高一数学二次函数求最值

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

高一数学二次函数知识点归纳

2019 高一数学二次函数知识点归纳为了帮助考生们了解更多高中知识点,查字典数学网分享了高一数学二次函数知识点归纳,供您参考! I. 定义与定义表达式 一般地,自变量x 和因变量y 之间存在如下关系: y=ax A2+bx+c (a , b, c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0 时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 II. 二次函数的三种表达式 一般式:y=axA2+bx+c(a ,b,c 为常数,a0) 顶点式:y=a(x-h)A2+k[ 抛物线的顶点P(h,k)] 交点式:y=a(x-x?)(x-x?)[ 仅限于与x 轴有交点A(x? ,0) 和 B(x?,0) 的抛物线] 注:在3 种形式的互相转化中,有如下关系: h=-b/2ak=(4ac-bA2)/4ax? ,x?=(-bbA2-4ac)/2a III. 二次函数的图像在平面直角坐标系中作出二次函数y=xA2 的图像,可以看出,二次函数的图像是一条抛物线。 IV. 抛物线的性质 1. 抛物线是轴对称图形。对称轴为直线

x=-b/2a 。对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0 时,抛物线的对称轴是y 轴(即直线x=0) 2. 抛物线有一个顶点P,坐标为 P(-b/2a , (4ac-bA2)/4a) 当-b/2a=0 时,P在y轴上;当=bT-4ac=0时,P在x轴上。 3. 二次项系数a 决定抛物线的开口方向和大小。 当a0 时,抛物线向上开口;当a0 时,抛物线向下开口。 |a| 越大,则抛物线的开口越小。 4. 一次项系数b 和二次项系数a 共同决定对称轴的位置。当a 与 b 同号时(即ab0),对称轴在y 轴左; 当a 与b 异号时(即ab0),对称轴在y 轴右。 5. 常数项c 决定抛物线与y 轴交点。抛物线与y 轴交于(0 ,c) 6. 抛物线与x 轴交点个数 =b A2-4ac0时,抛物线与x轴有2个交点。 =b A2-4ac=0时,抛物线与x轴有1个交点。 =bA2-4ac0 时,抛物线与x 轴没有交点。X 的取值是虚数(x=-bbA2-4ac 的值的相反数,乘上虚数i ,整个式子除以2a) V. 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=axA2+bx+c , 当y=0 时,二次函数为关于x 的一元二次方程( 以下称方程) ,

北师大版数学高一必修1练习 二次函数的性质

[A 基础达标] 1.函数f (x )=-x 2+4x +5(0≤x <5)的值域为( ) A . (0,5] B .[0,5] C .[5,9] D .(0,9] 解析:选D.f (x )=-x 2+4x +5=-(x -2)2+9(0≤x <5),当x =2时,f (x )最大=9;当x >0且x 接近5时,f (x )接近0,故f (x )的值域为(0,9]. 2.已知函数y =x 2-6x +8在[1,a )上为减函数,则a 的取值范围是( ) A .a ≤3 B .0≤a ≤3 C .a ≥3 D .10时,f (x )的对称轴为x =12a ,在????-∞,12a 上是递减的,由题意(-∞,2)?? ???-∞,12a , 所以2≤12a ,即a ≤14 ,综上,a 的取值范围是????0,14. 4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图像的对称轴为x =12 ,又函数图像开口向上,自变量离对称轴越远函数值越大,故选D. 5.设二次函数f (x )=-x 2+x +a (a <0),若f (m )>0,则f (m +1)的值为( )

高中数学-二次函数定区间上最值问题

高中数学-二次函数定区间上最值问题 一、二次函数知识点回顾 (一)二次函数的概念: 一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. (二)二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. (三)二次函数基本形式: 1、2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 二、二次函数闭区间上的最值解题思路分析 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 如设: f x a x b xc a ()() =++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 方法思路分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f x ()的最值:

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18) 一、选择题(本大题共9小题,共45.0分) 1. 若a >b ,则下列正确的是( ) A. a 2>b 2 B. ac >bc C. ac 2>bc 2 D. a ?c >b ?c 2. 不等式?2x 2+x +3≤0的解集是( ) A. {x|?1≤x ≤3 2} B. {x|x ≤?1或x ≥3 2} C. {x|x ≤?3 2或x ≥1} D. {x|?3 2≤x ≤1} 3. 下列各函数中,最小值为2的是( ) A. y =x +1 x B. y =sinx +1 sin x ,x ∈(0,π 2) C. y =2√x 2+2 D. y =x ?2√x +3 4. 下列四个结论中正确的个数是( ) (1)对于命题p:?x 0∈R 使得x 02?1≤0,则?p:?x ∈R 都有x 2?1>0; (2)已知X ~N(2,σ2),则P(X >2)=0.5 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为y ?=2x ?3; (4)“x ≥1”是“x +1 x ≥2”的充分不必要条件. A. 4 B. 3 C. 2 D. 1 5. 已知集合A ={y |y =1 2},B ={x|x 2<4},则A ∪B = A. (0,2) B. (?2,2) C. (?1,+∞) D. (?2,+∞) 6. 函数f(x)=?x 2+3x ?2a ,g(x)=2x ?x 2,若f(g(x))≥0对x ∈[0,1]恒成立,则实数a 的取 值范围为 A. (?∞,?2] B. (?∞,?1] C. (?∞,0] D. (?∞,1] 7. 已知函数f(x)=xe x +1 2x 2+x +a ,g(x)=xlnx +1,若存在x 1∈[?2,2],对任意x 2∈[1 e 2,e], 都有f (x 1)=g (x 2),则实数a 的取值范围是( ) A. [?3?1 e ?2e 2,e ?3?2e 2] B. (?3?1 e ?2e 2,e ?3?2e 2) C. [e ?3?2e 2,3 2] D. (e ?3?2e 2,3 2) 8. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π 3,则该三角形面积的最 大值是( ) A. 2√2 B. 3√3 C. 4√3 D. 4√2

高中数学-二次函数的性质与图象练习

高中数学-二次函数的性质与图象练习课时过关·能力提升 1函数y=x2-2x+m的单调递增区间为() A.(-∞,+∞) B.[1,+∞) C.(-∞,1] D.[-2,+∞) 解析因为二次函数的图象开口向上,且对称轴为x=1, 所以单调递增区间为[1,+∞). 答案B 2函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是() A.4 B.-4 C.与m的取值有关 D.不存在 解析因为函数f(x)的图象开口向上,且对称轴x=>0, 所以f(x)在(-∞,0]上为减函数, 所以f(x)min=f(0)=4. 答案A 3二次函数y=4x2-mx+5的对称轴为x=-2,则当x=1时,y的值为() A.-7 B.1 C.17 D.25 解析由已知得-=-2,解得m=-16, 故y=4x2+16x+5.当x=1时,y=4×12+16×1+5=25. 答案D 4已知二次函数f(x)=x2-ax+7,若f(x-2)是偶函数,则a的值为()

A.4 B.-4 C.2 D.-2 解析由已知得f(x-2)=(x-2)2-a(x-2)+7=x2-(a+4)x+2a+11. 因为f(x-2)是偶函数, 所以其图象关于y轴对称, 即=0,所以a=-4. 答案B 5已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是() 答案D 6已知函数y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则实数m的取值范围是() A.[1,+∞) B.[1,2) C.[1,2] D.(-∞,2] 解析由于y=x2-2x+3=(x-1)2+2,其图象如图所示,且f(0)=3,f(1)=2,f(2)=3.结合图象可知m的取值 范围是[1,2]. 答案C 7已知二次函数f(x)=ax2+bx-1(a≠0).若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于() A.- B.- C.-1 D.0 解析由f(x1)=f(x2)可得f(x)图象的对称轴为x=, 故=-,即x1+x2=-,

1二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1. 当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 例2. 当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 例3. 当0x ≥时,求函数(2)y x x =--的取值范围. 例4. 当1t x t ≤≤+时,求函数215 22 y x x =--的最小值(其中t 为常数). 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系. (1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式; (3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值. 例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去. (1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式. (2)为了投资少而利润大,每间包房提高 x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.

高一数学函数一二次函数知识点测试题

高一数学第二单元一二次函数知识点及测试题 一次函数二次函数知识点: 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

二次函数在闭区间上的最值 (经典)

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为- -?? ???b a ac b a 2442 ,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是 f b a ac b a f x -?? ???=-2442 ,()的最大值是f m f n ()()、中的较大者。 (2)当[] - ?b a m n 2,时 若-< b a m 2,由f x ()在[] m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[] m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。 例1. 函数y x x =-+-2 42在区间[0,3]上的最大值是_________,最小值是_______。 练习. 已知232 x x ≤,求函数f x x x ()=++2 1的最值。 2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的 最值”。 例2. 如果函数f x x ()()=-+112 定义在区间[] t t ,+1上,求f x ()的最值。 例3. 已知2 ()43f x x x =--+,当[1]()x t t t ∈+∈R ,时,求()f x 的最值. 对二次函数的区间最值结合函数图象总结如下: 当a >0时??? ???? +<-+≥-=) )((212)())((2 12)()(21max 如图如图,,n m a b n f n m a b m f x f ?? ? ? ? ? ??? <-≤-≤->-=)(2)()(2)2()(2)()(543min 如图如图如图,,,m a b m f n a b m a b f n a b n f x f

高一数学《二次函数》试题

二次函数 1.解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且 2212269 x x += ,试问该二次函数的图像由()()2 31f x x =--的图像向上平移几个单位得到? 2.图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +?? = ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关 系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2 f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.)单调性 已知函数()2 2f x x x =-,()()2 2[2,4]g x x x x =-∈. (1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值. 变式1:已知函数()2 42f x x ax =++在区间(),6-∞内单调递减,则a 的取值范围是 A .3a ≥ B .3a ≤ C .3a <- D .3a ≤- x y O

高中数学二次函数教案人教版必修一

二次函数 一、考纲要求 1、掌握二次函数的概念、图像特征 2、掌握二次函数的对称性和单调性,会求二次函数在给定区间上 的最值 3、掌握二次函数、二次方程、二次不等式(三个二次)之间的紧 密关系,提高解综合问题的能力。 二、高考趋势 由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导数是二次函数,因此二次函数在高中数学中应用十分广泛,一直是高考的热点,特别是借助二次函数模型考查考生的代数推理问题是高考的热点和难点,另外二次函数的应用问题也是2010年高考的热点。 三、知识回顾 1、二次函数的解析式 (1)一般式: (2)顶点式: (3)双根式: 求二次函数解析式的方法: ○1已知时,宜用一般式○2已知时,常使用顶点式○3已知时,用双根式更方便

2、 二次函数的图像和性质 二次函数())0(2≠++=a c bx ax x f 的图像是一条抛物线,对称轴的方程为 顶点坐标是( ) 。 (1)当0>a 时,抛物线的开口 ,函数在 上递减,在 上递增,当a b x 2- =时,函数有最 值为 (2)当0x f , 当 时,恒有 ()0.-=?ac b 时,图像与 x 轴有两个交点,.),0,(),0,(21212211a x x M M x M x M ?=-= 四、基础训练 1、已知二次函数())0(2≠++=a c bx ax x f 的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值为 ,最大值为 。 2函数()322+-=mx x x f ,当]1,(-∝-∈x 时,是减函数,则实数m 的取值范围是 。 3函数()a ax x x f --=22的定义域为R ,则实数a 的取值范围是

最新2018高中数学二次函数试题(含答案)

二、二次函数(命题人:华师附中 郭键) 1.(人教A 版第27页A 组第6题)解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且2212269 x x +=,试问该二次函数的图像由()()231f x x =--的图像向上平移几个单位得到? 2.(北师大版第52页例2)图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +??= ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.(人教A 版第43页B 组第1题)单调性 x y O

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

高一数学二次函数试题(有详细解答)

高一数学二次函数试题 一.选择题(共23小题) 1.如果函数f (x)=x2+bx+c对任意实数t都有f(2+t)=f(2﹣t),那么() A.f(2)<f(1)<f (4)B.f(1)<f(2)<f (4) C.f(2)<f(4)<f (1) D.f(4)<f(2)<f (1) 考点:二次函数的图象;二次函数的性质. 专题:压轴题;数形结合. 分析:先从条件“对任意实数t都有f (2+t)=f (2﹣t)”得到对称轴,然后结合图象判定函数值的大小关系即可. 解答:解:∵对任意实数t都有f (2+t)=f (2﹣t) ∴f(x)的对称轴为x=2,而f(x)是开口向上的二次函数故可画图观察 可得f(2)<f(1)<f(4), 故选A. 点评:本题考查了二次函数的图象,通过图象比较函数值的大小,数形结合有助于我们的解题,形象直观. 2.二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),则有 () A.a bc>0 B.a+b+c<0 C.a+c>b D.3b<2c 考点:二次函数的图象;二次函数的性质. 专题:计算题. 分析:由二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,可以知道a<0,b=﹣2a,交点的横坐标x1∈(2,3),可得到,从而可得答案. 解答:解:∵二次函数f(x)=ax2+bx+c的图象开口向下, ∴a<0,又对称轴为x=1, ∴x=﹣=1, ∴b=﹣2a;

∴f(x)=ax2﹣2ax+c. 又与x轴的两个交点中,一个交点的横坐标x1∈(2,3),a<0, ∴即:, ∴, ∴a+c>﹣2a=b.C符合. 又a<0,b=﹣2a>0,c>0, ∴abc<0,排出A, ∵二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1, ∴f(1)=a+b+c>0,排出B,f(﹣1)=f(3), 图象与x轴的两个交点中一个交点的横坐标x1∈(2,3), ∴f(﹣1)=f(3)<0,而f(﹣1)=a﹣b+c=﹣b+c<0, ∴3b>2c,排出D. 故选C. 点评: 本题考查了二次函数图象与性质,关键在于准确把握题目信息的意图,合理转化,特别是分析与应用是难点.属于中档题. 3.(2011?厦门模拟)已知函数,这两个 函数图象的交点个数为() A.1B.2C.3D.4 考点:二次函数的图象;一次函数的性质与图象. 专题:综合题. 分析:本题考查的知识点是指数函数的图象,要求函数y=f(x)的图象与函数y=3x的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案. 解答:解:在同一坐标系下,画出函数y=f(x)的图象与函数y=3x的图象如下图:

高中数学二次函数(二)(T)

二次函数(二) 【知识要点】 一、怎样处理有关二次方程的根的问题? 【典型例题】 例1.设有一元二次方程()()02122=++-+m x m x ,试问: (1)m 为何值时,有一正根,有一负根; (2)m 为何值时,有一根大于1,有一根小于1; (3)m 为何值时,有两正根; 例2.已知函数()()132+-+=x m mx x f 的图象与x 轴的交点至少有一个在原点的右侧,求实数的m 的 范围。

例3.(1)关于240 的方程有实数解,求a的取值范围 +-= x x x a (2)关于240[3,0] 的方程在区间上有实数解,求a的取值范围 +-=- x x x a 例4.对x 实数讨论关于的方程24310 a -+--=的解的情况。 x x a

例5.关于x 的方程2 3(3)10a x a x +-+=在区间[1,0]-上有实数解,求a 取值范围 . 例6.对于函数()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个不动点,已知函数 2()(1)(1)(0)f x a x b x b a =+++-≠, (1)当1,2a b ==-时,求函数()f x 的不动点; (2)对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若()y f x =的图象上,A B 两点的横坐标是()f x 的不动点,且,A B 两点关于直线2121y k x a =+ +对称,求b 的最小值.

课堂训练及作业: 1.关于x 的方程()()02122=-+-+a x a x 的一根比1大,另一根比1小,则有( ) A 、21<<-a B 、12>--k D.2-k 或3±=k 4.关于2 210[0,3]x x x a +--=的方程在区间 上有实数解,求a 的取值范围为 5.方程0422=+-ax x 的两根均大于1,则实数a 的取值范围是_____。 6.已知二次函数()()()()b a b x a x x f <---=2,并且()βαβα<,是方程()0=x f 的两根。则βα,,,b a 的大小关系为 (用小于号排列)。 7.已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________ 8.已知a 是实数,关于2 10x x a x a --+=的方程在区间[-3,0]有解,求a 的取值范围.

高中数学必修1北师大版第二章二次函数的图像教案

§4.1 二次函数的图像 教学目的:理解二次函数的图像中a,b,c,h,k 的作用;领会二次函数图像移动的方法 教学重点:二次函数的图像中a,b,c,h,k 的作用 教学难点:领会二次函数图像移动的方法 教学方法:逐层推进 教学过程: 一.复习引入 说出下列函数的开口方向、对称轴、顶点 (1) y = (x+2)2-1, (2) y = - (x -2)2+2 , (3) y = a (x+h)2+k 二.问题探索 探索问题1: 2y x =和2(0)y ax a =≠的图像之间有什么关系? 实践探究1:在同一坐标系中做出下列函数的图像; 2y x =; 22y x =; 212y x = 观察发现1: 1.二次函数y=ax 2(a ≠0)的图像可由的y=x 2图像各点纵坐标变为原来的a 倍得到. 2.a 决定了图像的开口方向: a>o 开口向上,a<0开口向下. 3. a 决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大 巩固性训练一 下列二次函数图像开口,按从小到大的顺序排列为 (4),(2),(3),(1). 21()4f x x =; 21()2f x x =; 2 1()3 f x x =-; 2()3f x x =- 探索问题2: 2(0)y ax a =≠ 和 2(),(0)y a x h k a =++≠的图像之间有什么关系? 实践探究2:在同一坐标系中做出下列函数的图像: 22y x = ; 22(1)y x =+; 22(1)3y x =+- 观察发现2: 二次函数y=a(x+h)2+k (a ≠0),a 决定了二次函数图像的开口大小及方向; 而且“a 正开口向上,a 负开口向下”;|a |越大开口越小; h 决定了二次函数图像的左右平移,而且“h 正左移,h 负右移”; k 决定了二次函数图像的上下平移,而且“k 正上移,k 负下移”。 巩固性训练二: 1.将二次函数y=3x 2的图像平行移动,顶点移到(-3,2),则它的解析式为 Y=3(x+3) 2+2 。 2.二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x 2+1,f(x) 图像的顶点为(3,2),则f(x)的表达式为 Y=(x-3) 2+2 。 探索问题3: 2(0)y ax a =≠,和2(0)y ax bx c a =++≠的图像之间有什么关系? 观察发现3:一般的,二次函数2(0)y ax bx c a =++≠, 通过配方就可以得到它的恒等形式: 2(),(0)y a x h k a =++≠。 从而知道,由2(0)y ax a =≠ 的图像经过平移就可以得到2(0)y ax bx c a =++≠。

高中数学-二次函数定区间上最值问题

高中数学-二次函数定区间上最值问题 bx c ( a, b ,c 是常数,a 0 )的函数,叫做二次函数。这里需要强调:和一元. a 0,而 b , c 可以为零?二次函数的定义域是全体实数. 2 (二)二次函数 y ax bx c 的性质 当x —时,y 随x 的增大而减小;当 x 2a 2 当x —时,y 有最小值 4ac b . 2a 4a (三)二次函数基本形式: 2 1、y ax 的性质: 2 2. y ax c 的性质: 上加下减。 、二次函数知识点回顾 (一)二次函数的概 念: 1?当a 0时,抛物线开口向上,对称轴为 x 亦,顶点坐标为 b 4a c b 2 2a ' 4a 2.当a 0时,抛物线开口向下,对称轴为 x —,顶点坐标为 2a b 4a c b 2 2a ' 4a R 时, 2a P 时, 2a y 随x 的增大而增大;当 y 有最大值 2 4ac b 4a y 随x 的增大而减小; 2 一般地,形如 y ax 次方程类似,二次项系数 —时,y 随x 的增大而增大; 2a

3. y a x h 的性质: 2 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况 2 如设:f(X ax bxc (a 0),求f (x)在x [m,n]上的最大值与最小值。 方法思路分析:将f(x)配方,得顶点为 b 2a 4ac b2 、对称轴为x 4a b 2a 当a 0时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上f (x)的最值:

图1 大者。 当a 0时,可类比得结论。 三、例题分析归类 (一)、正向型 是指已知二次函数和定义域区间,求其最值。 对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。 此类问题包括以下四种情形: 1. 轴定区间定 2、轴定区间变 2 解:函数f(x) (x 1) 1,其对称轴方程为 x 如图1所示,若顶点横坐标在区间 t , t 1左侧时,有1 t ,此时,当x t 时,函数取 得 最小值 fx( )min ft( ) (t 1)2 1 o L J '、/ I h i 0 1 t t+1 x (1)当 y- 2a m , n 时,f (x)的最小值是f b 4a c b 2 2a 4a ,f (x)的最大值是 f (m)、 f(n) 中的较 .b (2)当— 2a b m , m ,由 若 2a 卄 b 若n —,由 2a f (x)在 m ,n 上是增函数则 f (x)在m , n 上是减函数则 f (x)的最小值是 f (x)的最大值是 f (m),最大值是 f (m),最小值是 f(n) f (n) (1)轴定,区间定;( 2 )轴定,区间变;( 3 )轴变,区间定;( 4 )轴变,区间变。 2 例1.函数y x 4x 2在区间[0,3]上的最大值是 ,最小值是 答案:函数的最大值为 f (2) 2,最小值为f (0) 例2.如果函数f (x) (x 2 1) 1定义在区间t , t 上,求f (x)的最小值。 ,顶点坐标为(1, 1),图象开口向上。

相关文档
最新文档