电压互感器二次回路异常的原因及对策 艾力·托合提

电压互感器二次回路异常的原因及对策 艾力·托合提
电压互感器二次回路异常的原因及对策 艾力·托合提

电压互感器二次回路异常的原因及对策艾力·托合提

发表时间:2019-08-29T10:22:25.360Z 来源:《云南电业》2019年2期作者:艾力·托合提[导读] 本文从三个部分分析变电站的电压互感器出现二次回路电压异常的主要原因及对继电保护装置的影响,利用继电保护技术的规程及加强反事故措施的要求以此减少电压互感器存在的二次回路异常现象。进而加强继电保护人员对电压互感器存在二次回路异常现象的认识。

(国电库车发电有限公司新疆库车县 842000)摘要:由于电压互感器存在二次回路异常现象,它常在继电保护装置不正确操作时出现,一些继电保护人员对此尚缺乏必要的认识。本文从三个部分分析变电站的电压互感器出现二次回路电压异常的主要原因及对继电保护装置的影响,利用继电保护技术的规程及加强反事故措施的要求以此减少电压互感器存在的二次回路异常现象。进而加强继电保护人员对电压互感器存在二次回路异常现象的认识。

关键词:二次回路;继电保护;电压互感器

一、导致TV二次回路出现异常的原因 TV二次回路之所以出现异常,主要是因为一些原因,导致TV的二次测量无法将一次电压的相位及幅值与系统所运行的状态进行正确的反应。对以往相关事故进行深入的分析得知,导致TV二次回路出现异常的主要有下面三个方面: 1.1相同的TV二次回路进行多点接地。

假如TV二次端子箱在接地之后,主控制室也进行了接地处理,两个接地点之间没有用电缆进行连接,或是多个TV中性点通过端子箱进行接地,然后通过电缆芯,进入到主控制室中进行连接。

对于上述中两种接地的方式,当出口处或者中性点接地系统的变电站接地出现短路故障的时候,因为变电站中的接地网中流进很多的短路电流,而在接地网中的各点电位各不相同,将会导致TV的每个二次接地点间产生电位差。因为TV中性点的电位各不相同,导致附加电压的产生,从而造成电压二次回路的中性点出现偏移,在此时,电压二次系统的中性点,即N600的电位是:此时电压二次系统中性点N600的电位为: EN600=E1Y1+E2Y2+…+EiYiY1+Y2+…+Yi(1)式中E1,E2…,Ei为各个TV中性点的电位;Y1,Y2,…,Yi是各个TV中性点进入主控制室,成为接地小母线的导纳。

因此,此时TV中性点附加的偏移电压是:△Ui=EN600-Ei(2)

因为存在这个附加的偏移电压,所以当TV二次回路使用零相接地的方式,时会导致UA0,UC0,3U0以及UB0出现异常,最终将会使继电保护的装置接收到的电压无法将一次电压中的相位、幅值正确的反映出来,从而导致继电保护的装置出现错误动作。

1.2TV二次回路的中性点与地接触不牢靠或者未接地

由于接地电阻较大,造成二次回路的中性点出现浮现电位,在这种情况之下中性点的电位是 EN=3UOYO+UAYA+UBYB+UCYCYO+YA+YB+YC(3)在通常的情况之下,3U0=0同时UA+UB+UC=0。另外三项负载相互对称之时,有EN=0,也就是说中性点的位置不变,不发生位移。当出现不对称这种情况时,3UO不等于0,同时UA、UB和UC之和也不为零,造成中性点偏移,出现严重误差。从(3)式中我们可以得到,负荷对称时,出现的情况是三相电对称性决定中性点偏移的大小程度,而接地出现短路故障时,故障点与TV安装处会出现一个距离,而这个距离就是造成三相电压出现不对称性程度的决定性因素,距离愈近则故障相与非故障相间的电压差别就愈大,TV二次回路中性点的偏移也就越大。

1.3TV不相同的二次绕组,在控制接地的引至时,使用一根电缆芯

如果TV二次的开口三角绕组与星型绕组使用一根根电缆芯引至控制室进行接地时,在系统正常运行中,由于星型绕组的负载在公用电缆芯上产生压降,将会造成开口三角绕组有输出。

1.4电压互感器二次绕组将该能量全部消耗

继电器是在同一铁芯上装有2组绕组的特殊装置,一侧绕组接于母线侧二次电压、另一侧绕组接于线路侧二次电压或是一侧的线圈接在甲线路测量二次电压、而另一侧的线圈接在乙线路测量二次电压。若同一串上接的甲线路断电但乙线路仍正常工作时,甲线路母线的侧断路器帮助继电器屏中检同期的继电器,将母线侧A相的二次电压反应到甲线路中第1绕组的电压回路A相之中;同理,在同一时间停止运行的中间联络断路器开关帮助继电器屏上面检同期的继电器将乙线路中的A相二次电压反映到线路甲中第2绕组的电压回路A相之中。在微机保护装置中,电压回路三相的不同名端都直接短接在了一起,因此在A相中感应出的电压又是通过中性点在BC两相上悬浮着,它们的大小相等,方向和A相保持一致。尽管感应出的电压其能量非常微弱,一旦电压互感器的二次隔离开关还没拉开时,能量就会被电压互感器二次绕组消耗,可是拉开电压互感器的二次开关后此能量就将全部作用在微机的保护和安全装置中的电压回路上面,此感应电压的能量对于微机保护装置来说已经是足够大的了。

保护判断电压互感器

当满足AU+BU+CU=ΣU,而且ΣU>7V时,电压回路断线的一些有关,信息瞬时将由装置发出然后闭锁距离保护及带方向的相关保护。

二、降低电压二次回路电压降的方法

2.1装设计量专用电压二次回路

采用计量专用电压二次回路,有以下几个优点:采用专用电压二次回路,通过专用电缆线中的电流I显著减小,从而可以减小二次回路电压降ΔU及由此带来的电能计量误差。采用专用二次回路,电能表与继电保护、测量指示仪表的电压回路彻底分开,消除了相互之间的影响,其回路电压降不受接于其他二次回路中的继电保护、测量仪表等负荷变化的影响,并且提高了电压回路的可靠性,可按各自回路的负荷大小,准确度等级以及回路的接线不同而采用不同的设计方案。

2.2采用全电子式多功能电能表

电压互感器二次侧必须接地

复习思考题参考答案 1.什么叫电力系统和电力网? 由发电厂、电力网和电力用户组成的统一整体称为电力系统。电力系统能够提高供电的安全性、可靠性、连续性、运行的经济性,并提高设备的利用率,减少整个地区的总备用容量。 电力网是电力系统的有机组成部分,它包括变电所、配电所及各种电压等级的电力线路。它能够实现电能的经济输送和满足用电设备对供电质量的要求。 2.我国电网电压等级分几级? 目前,根据我国国民经济发展的需要,从技术经济的合理性及考虑电机电器制造工业的工艺水平等因素,国家颁布制定了我国电力网的电压等级,主要有0.22、0.38、3、6、10、35、110、220、330、550kV等10级。 3.电力负荷分几级?各级负荷对供电电源有何要求? 在电力系统中根据电力负荷对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。各级负荷对供电电源的要求如下: 一级负荷:应由两个独立电源供电,一用一备,当一个电源发生故障时,另一个电源应不致同时受到损坏。一级负荷中的特别重要负荷,除上述两个电源外,还必须增设应急电源。为保证对特别重要负荷的供电,禁止将其他负荷接入应急供电系统。 二级负荷:要求采用两个电源供电,一用一备,两个电源应做到当发生电力变压器故障或线路常见故障时不致中断供电(或中断供电后能迅速恢复)。在负荷较小或地区供电条件困难时,二级负荷可由一路6KV及以上的专用架空线供电。 三级负荷:三级负荷对供电电源无要求,一般为一路电源供电即可,但在可能的情况下,也应提高其供电的可靠性。 4.变配电所选址原则是什么? 一般来讲,变(配)电所位置选择应考虑下列条件来综合确定: (1)接近负荷中心,这样可降低电能损耗,节约输电线用量。 (2)进出线方便。 (3)接近电源侧。 (4)设备吊装、运输方便。 (5)不应设在有剧烈振动的场所。 (6)不宜设在多尘、水雾(如大型冷却塔)或有腐蚀性气体的场所,如无法远离时,不应设在污染源的下风侧。 (7)不应设在厕所、浴室或其他经常积水场所的正下方或贴邻。 (8)变(配)电所为独立建筑物时,不宜设在地势低洼和可能积水的场所。 (9)高层建筑地下层变(配)电所的位置,宜选择在通风、散热条件较好的场所。 (10)变(配)电所位于高层(或其他地下建筑)的地下室时,不宜设在最底层。当地下仅有一层时,应采取适当抬高该所地面等防水措施。并应避免洪水或积水从其他渠道淹渍变(配)电所的可能性。

电压互感器异常状况的处理及原因分析

电压互感器异常状况的处理及原因分析 摘要:电压互感器是供电系统的重要组成部分,如果电压互感器出现异常现象,会影响电能表计量的准确性,电力企业的工作人员,要定期对电压互感器进行检查,在发现电压互感器三相指示数值出现了较大的偏差,一定要采取有效的措施 进行处理。电力企业的检修人员要重视电压互感器的维护工作,要做好试验与记 录工作,在发现电压互感器出现异常状况后,要分析故障出现的原因,然后针对 问题找到处理的措施。 关键词:电压互感器;异常;处理;原因;计量 引言 电压互感器是电能表的基本元件,如果电压互感器出现异常状况会影响电能 表计量的准确性,还会影响电费的收缴数额,可能会对电力企业造成较大的经济 损失。电压互感器的异常状况包括指示异常、接线错误等,在发现异常现象后, 一定要及时处理,还要提出解决的思路,了解故障出现的原因,要善于总结故障 处理的经验,这样可以提高故障排除的效率,还可以避免电压互感器再次出现故障。 1、电压互感器严重异常的处理方法 在电压互感器运行的过程中,就如果出现以下现象,就说明互感器出现了严 重的异常现象,所采取的唯一处理方式就是停电处理。 1.1技术人员在对电压互感器的内部进行检查的过程中,听见互感器内部出现严重的放电声音或者是其他类型的比较异常的声响。 1.2电压互感器本身出现了温度过热的现象,如果互感器没有及时地得到检修和维护就很有可能出现爆炸或者是着火的现象。这一问题如果存在,工作人员就 应该立即断电处理。 1.3电压互感器出现了向外部喷油的现象,而且二次电压值出现了严重的异常现象。如果温度逐渐升高或者是逐渐降低,没有达到一定的平衡程度,说明互感 器的内部出现了严重的问题,需要得到及时地处理。 1.4电压表的指数不明确,在不断波动。甚至是超过或者低于额定值很大部分。出现这些现象则说明电压互感器出现了严重的问题。 2、电压互感器二次电压升降异常处理方法 如果电压互感器的二次电压出现了升降异常的现象,检修人员需要首先考虑 到一次电压的影响。如果一次电压没有出现任何异常的现象,就说明电压互感器 的内部出现了严重的问题。其中电磁式电压出现变化的现象可能是由于一次或者 是二次绕组之间出现了短路的现象。电容式压变可能会在较大的冲击作用下,冲 破局部的电容,出现严重的故障问题。所以说,一旦检修和维护人员发现了电压 互感器二次电压升降异常的现象,就应该对设备的运行状况进行严密地监控,加 强对压变的检查力度。在检查和观测的过程中,要将不同时间段内部的相关指数 和参数进行记录,作为主要的依据,并且形成报告的形式,为互感器的维护工作 提供重要的数据信息。 3、电压互感器二次失压异常的处理方式 出现电压互感器二次失压异常的现象很有可能是受到二次相开关的影响,如 果小开关出现了跳闸或者是熔丝熔断的现象就会对互感器的运行工作造成危害。 在这种状况下,很有可能会出现失压闭锁或者是电压鉴定不合理的现象。为了对 这一问题进行控制和预防,相关的检查人员应该着重检测电压互感器的二次失压

电压和电流互感器原理及结构

电压互感器: 工作原理: 其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

上图中两个尖尖一个接电压,一个接地,就形成了一次绕组,类似变压器,再有二次绕组接出来即可以。对于三个单相的电压互感器来说,每一相一端都接地,就形成了三相星型连接方式,这个接地就是PT的一次接地,即工作接地,主要作用是将中性点电位统一拉到地电位。使对地相对电压能准确统一的测量。 二次绕组必须接地,是安全接地,即:为防止高低电压绕组间绝缘击穿造成设备和人身事故,二次侧必须接地。 电磁式电压互感器

电容式电压互感器 为了获得理想的电压源,在网络中串入非线性补偿电感线圈L;为抗干扰,减少互感器开口三角形绕组的不平衡电压,提高零序保护装置的灵敏度,增设一个高频阻断线圈L’,为了抑制谐振的产生,常在互感器二次侧接入D阻尼器。

电压互感器常见故障及处理

电压互感器常见故障及处理: (1)电压三相指示不平衡:可能是保险损坏。 (2)中性点不接地:三相不平衡,可能是谐振,或受消弧线圈影响。 (3)高压保险多次熔断:内部绝缘损坏,层间和匝间故障。 (4)中性点接地,电压波动:若操作是串联谐振,没有操作是内绝缘损坏。 (5)电压指示不稳:接地不良,及时检查处理。 (6)电压互感器回路断线:退出保护,检查保险并更换,检查回路。 (7)电容式电压互感器的二次电压波动:可能是二次阻尼配合不当。二次电压低,可能接线断或分压器损坏。二次电压高,可能是分压器损坏。 (8)声音异常:电磁单元电抗器或中间变压器损坏。 电压互感器的作用 电压互感器是一种电压变换装置,有电压变换和隔离两重作用,它将高压回路或低压回路的高电压转变为低电压(一般为100V),供给仪表和继电保护装置实现测量、计量、保护等作用。 另外,某些电压互感器(或者其某一二次绕组)也用于从一次线路取点,用于给二次回路供电,这种互感器或绕组的特点是二次额定电压一般为220V,且二次负荷较大。 电压互感器的原理 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式 电压互感器的分类 (1)按安装地点可分为户内式和户外式。35kV及以下多制成户内式;35kV以上则制成户外式。 (2)按相数可分为单相和三相式,35kV及以上不能制成三相式。 (3)按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本二次侧外,还有一组辅助二次侧,供接地保护用。 (4)按绝缘方式可分为干式、浇注式、油浸式和充气式,干式浸绝缘胶电压互感器结构简单、无着火和爆炸危险,但绝缘强度较低,只适用于6kV以下的户内式装置;浇注式电压互感器结构紧凑、维护方便,适用于3kV~35kV户内式配电装置;油浸式电压互感器绝缘性能较好,可用于10kV以上的户外式配电装置;充气式电压互感器用于SF6全封闭电器中。 (5)此外,还有电容式电压互感器,电容式电压互感器实际上是一个单相电容分压管,由若干个相同的电容器串联组成,接在高压相线与地面之间,它广泛用于110kV~330kV的中性点直接接地的电网中。 电压互感器工作原理

电压互感器介绍及工作原理 (图文) 民熔

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 民熔电压互感器产品介绍 JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型 JDZX10-10电压互感器 10KV户内高压柜保护用REL10-10互感器

JDZ9-10电压互感器

电压互感器和变压器的基本结构非常相似,它也有两个绕组,一个称为一次绕组,另一个称为二次绕组。两个绕组都安装或缠绕在铁芯上。两个绕组之间以及绕组和铁芯之间有绝缘,因此两个绕组之间以及绕组和铁芯之间存在电隔离。 电压互感器运行时,一次绕组N1与线路回路连接,二次绕组N2与仪表或继电器连接。因此,在测量高压线上的电压时,虽然一次电压很高,但二次电压很低,可以保证操作人员和仪器的安全。 其工作原理与变压器相同,基本结构为铁芯、一次绕组和二次绕组。其特点是容量很小且相对恒定,在正常运行时接近空载状态。 电压互感器本身的阻抗很小。一旦二次侧短路,电流会迅速增加并烧坏线圈。因此,电压互感器的一次侧用熔断器连接,二次侧可靠接地,以避免一次侧和二次侧绝缘损坏时,二次侧对地高电位造成人身和设备事故 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

常用电压互感器的接线

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 图1 (正确)图2(错误) 图3 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的

电压互感器典型故障的处理分析与总结

电压互感器典型故障的处理分析与总结 摘要:电力系统运行过程中,一旦有异常情况发生时,继电保护能够在第一时 间内将问题部位从系统中切除,保证无故障部分的正常运行。对于继电保护 装置来讲,其主要由互感器、二次回路、保护装置或是自动装置等组成。电压互 感器二次回路虽然设备不多,接线也不复杂,但却是最易发生问题的位置, 一旦二次电压回路出现问题,则会造成严重的后果,因此需要针对电压互感器二 次回路中的问题进行有效处理。 关键词:电压互感器;故障;故障处理 引言 电压互感器是反映电力系统运行工况的最主要元件之一,其采集的电压数据 是否正常是电力系统电测计量、继电保护装置及各种安全自动装置正常运行 的必备条件。电压互感器发生故障,会影响所在母线上设备电压采集异常,使线 路保护失去方向性,母线、失灵、主变保护电压闭锁开放,安全自动装置启 动甚至母线失压,从而影响整条母线设备的可靠供电,事故后果非常严重。提高 电压互感器的事故分析和处理,快速隔离故障,恢复母线其他设备正常送电,是运维人员分析和总结的重点。 1电容式电压互感器简介 电容式电压互感器由电容分压器和电磁单元组成。电容分压器由主电容 C1 (C11、C12、C13、C14)和分压电容 C2组成,具有降压和分压作用;电磁 单元由中间变压器(T)、补偿电抗器(L)、放电间隙(P)、电阻(R)和载波 耦合装置(J)组成。分压电容抽取系统部分电压连接在一次绕组上,分压电 容末端接地或与结合滤波器串接后接地。这样的结构缩减了整台互感器的体积, 串联电容与结合滤波器串接后可作为高频载波信号的通道。电容式电压互感 器有两种形式,内置式和外置式。上图为互感器内置形式,分压电容放置在上部 的充油套管内,下部的油箱内有一次绕组的补偿电抗器,两组二次绕组和避 雷器或放电间隙。二次绕组 da、dx 输出电压为100V,绕组a、x 输出电压 为 100V/。电容式电压互感器为单相式结构,多用于110kV 及以上电压等级的系统。一般配置在母线或线路 A 相,为保护、测量、计量或断路器同期和重 合闸装置提供电压判据。 2电压互感器的常规检查和常见故障 在对电压互感器常规检查过程中,主要是针对所接表计指示是否正常和保护 装置是否误动进行检查,同时还要观察电压互感器二次侧和外壳接地情况, 运行时噪声、温度、端子箱清洁和受潮情况、二次回路电缆、瓷瓶清洁和完整性、二次回路漏油等情况,及时发现缺陷。当电压互感器存匝间短路和铁芯短路 进会导致内部过热,产生高温,油位急剧上升和膨胀,导致漏油故障发生。当电 压互感器连接部位松动或是高压侧绝缘受到损坏时,会有臭味或是冒烟情况 发生。当内部绝缘损坏或是连接部位接触不良时,绕组与外壳之间或是引线与外 壳之间会有火花放电现象发生。另外,回路中联结电缆短路、二次回路导线 受潮或是损伤、内部金属短路缺陷、户外端子箱受潮、端子联结处锈蚀、接 线中存在隐患及切换开关接触不良等情况都会导致电压互感器二次回路短路 故障发生。在对电压互感器故障进行处理过程中,不得用近控方法拉开异常 运行的电压互感器的高压刀闸,同时故障电压互感器二与正常运行的电压互感器 二次不得并列,对受电压影响的保护进行停用,并做好负荷转移准备。

电压互感器常见故障及处理方法

1.电压互感器的常见故障及分析 (1)铁芯片间绝缘损坏。故障现象:运行中温度升高。产生故障的可能原因:铁芯片间绝缘不良、使用环境条件恶劣或长期在高温下运行,促使铁芯片间绝缘老化。 (2)接地片与铁芯接触不良。故障现象:运行中铁芯与油箱之间有放电声。产生故障的原因:接地片没插紧,安装螺丝没拧紧。 (3)铁芯松动。故障现象:运行时有不正常的振动或噪声。产生故障的原因:铁芯夹件未夹紧,铁芯片问松动。 (4)绕组匝间短路。故障现象:运行时,温度升高,有放电声,高压熔断器熔断,二次侧电压表指示不稳定,忽高忽低。产生故障的原因:系统过电压,长期过载运行,绝缘老化,制造工艺不良。 (5)绕组断线。故障现象:运行时,断线处可能产生电弧,有放电响声,断线相的电压表指示降低或为零。产生故障的原因:焊接工艺不良,机械强度不够或引出线不合格,而造成绕组引线断线。 (6)绕组对地绝缘击穿。故障现象:高压侧熔断器连续熔断,可能有放电响声。产生故障的原因:绕组绝缘老化或绕组内有导电杂物,绝缘油受潮,过电压击穿,严重缺油等。 (7)绕组相间短路。故障现象:高压侧熔断器熔断,油温剧增,甚至有喷油冒烟现象。产生故障原因:绕组绝缘老化,绝缘油受潮,严重缺油。 (8)套管间放电闪络。故障现象:高压侧熔断器熔断,套管闪络放电。产生故障原因:套管受外力作用发生机械损伤,套管间有异物或小动物进入,套管严重污染,绝缘不良。 2.电压互感器回路断线及处理 当运行中的电压互感器回路断线时,有如下现象显示:“电压回路断线”光字牌亮、警铃响;电压表指示为零或三相电压不一致,有功功率表指示失常,电能表停转;低电压继电器动作,同期鉴定继电器可能有响声;可能有接地信号发出(高压熔断器熔断时);绝缘监视电压表较正常值偏低,正常相电压表指示正常。 电压回路断线的可能原因是:高、低压熔断器熔断或接触不良;电压互感器二次回路切换开关及重动继电器辅助触点接触不良。因电压互感器高压侧隔离开关的辅助开关触点串接在二次侧,与隔离开关辅助触点联动的重动继电器触点也串接在二次侧,由于这些触点接触不良,而使二次回路断开;二次侧快速自动空气开关脱扣跳闸或因二次侧短路自动跳闸;二次回路接线头松动或断线。 电压互感器回路断线的处理方法如下: (1)停用所带的继电保护与自动装置,以防止误动。

电压互感器与电流互感器的作用原理两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器; D:在第二位,表示单匝贯穿式,在型号的最后一个字母时表示差动保护用(部分生产厂用B或C标出)

电压互感器二次回路短路故障的处理

电压互感器二次回路短路故障的处理 作者:丁义 来源:《沿海企业与科技》2011年第09期 [摘要]电力系统在运行过程中常会遇到电压不稳定的状况,电压、电流过高或过低均会给系统性能造成很大的破坏。为了防止系统的电压值、电流值超出线路承受的标准范围,常常用互感器作为调控装置,对两者按照标准要求调控处理后才能正常运行系统。电压互感器在使用期间会受到故障的影响,导致互感器调控电压的性能减弱。针对这一问题,文章主要分析导致互感器回路故障发生的具体原因,并提出处理故障的有效策略。 [关键词]电压互感器;二次回路;短路;故障处理 [作者简介]丁义,广东省输变电工程公司工程师,研究方向:电力工程,广东广州,510160 [中图分类号] TM451 [文献标识码] A [文章编号] 1007-7723(2011)09-0087-0003 电力系统在运行过程中常会遇到电压不稳定的状况,互感器作为调控装置对电压稳定具有调节作用。电压互感器是按照系统运行的标准要求,将大电压转变成低电压,以满足设备实际运行的承载能力。同时,电压互感器也可用于电力系统的测量保护,及时检测发现电压值的异常以判断故障,从而降低了系统受损的程度。从目前电力行业的使用情况看,电压互感器在使用期间会受到故障的影响,导致互感器调控电压的性能减弱,电压互感器最多的故障则是二次回路短路,若不及时采取有效措施处理则会导致系统运行中断,给设备造成较大的损坏。 一、引起回路故障的常见原因 为了满足社会广大用户的用电需求,电力网络规划时在具体位置安装了电压互感器,从而保证了原始电压得到有效的转换。二次回路在电力系统中属于低压回路,如:测量回路、继电保护回路、开关控制回路、操作电源回路等等,主要负责对一次回路中的参数、元件进行控制、保护、调节、测量、监视,以维持设备及系统的高效率运行。短路是电压互感器二次回路的多发故障,导致该故障发生的原因是多方面的。 1.电缆因素。当前,二次回路中连接了各种电力装置,包括:测量仪表、继电器、控制和信号元件,将这些结构安装具体的要求连接起来即可构成二次回路。连接电缆在装置或元件连接中有着重要作用,可以协调线路电压、电流的运行。当连接电缆发生短路后,会立刻造成电压互感器二次回路出现短路故障。 2.质量因素。导线自身的质量好坏也是影响二次回路故障的一大因素。导线作为电压互感器传递电压、电流的介质,其性能强弱会对二次回路造成直接性的影响。如果二次回路中所用

电压互感器二次回路压降测试作业指导书

电压互感器二次回路压降测试 作业指导书

目录 1.概述………………………………………………………….() 2.应用范围…………………………………………………….() 3.引用标准、规程、规范…………………………………….() 4.使用仪器、仪表及准确度等级……………………….() 5.试验条件…………………………………………………….() 6.试验项目……………………………………………………() 7.试验方法……………………………………………………() 8.试验结果的处理…………………………………………….() 9.安全技术措施……………………………………………….()附录A.试验记录格式……………………………………….()

1 概述 本作业指导书针对的测试对象是发电厂和变电站计量用电压互感器二次回路导线所引起的电压降。试验目的是检验用于电能计量中电压互感器二次回路压降的误差。电能计量装置综合误是由电流互感器的误差、电压互感器的误差、电能表的误差及电压互感器二次导线压所引起计量综合误差所组成。因此电能计量综合误差的计算与修正,需要准确地检测出电压互感器二次回路压降的误差。现行规程规定压降的检测周期为2年。 2.应用范围 本作业指导书适用于对新装及运行中高供高计的电力用户和发、供电企业间用于电量交易的电能计量装置电压互感器二次回路压降的测试工作。 3.引用标准、规程、规范 (1)DL/T448-2000 《电能计量装置技术管理规程》 (2)JJG169-1993 《互感器校验仪检定规程》 (3)JJG1027-1991 《测量误差及数据处理》 (4)国家电网安监字[2005]83号《国家电网公司电力安全工作规程》4.使用仪器、仪表及准确度等级 表1电压互感器二次回路压降测试用标准仪器 5.试验条件 5.1压降测试仪: 5.1.1等级不应低于2级;基本误差应包含测试引线所带来的附加误差。

电压互感器的异常和事故处理

电压互感器的异常和事故处理. 一、220kV电压互感器二次小开关跳开或二次熔断器熔断的处理 1、异常现象 (1)母线电压表,有功表无功表降为零。 (2)220kV出线或主变“交流电压消失”信号出现,距离保护装置故障,220kV母差“低电压”掉牌等。 (3)故障录波器可能动作。 2、异常处理 (1)汇报调度。 (2)停用该母线上线路距离保护(相间及接地)、高频闭锁保护。 (3)停用故障录波器。 (4)试送次级开关,若不成功,应汇报工段(区)处理。(5)不准以220kV母线电压互感器二次并列开关将正、副母压变二次回路并列,防止引起事故扩大。 220kV I、Ⅱ母PT的二次并列开关,正常运行应断开,如在双母线接线时,仅当220kV热倒母线,即把母联开关合上并改为非自动后,为防止电压切换中间继电器承受过大的不平衡负荷,把PT二次并列开关投人,待倒母线结束,将母联开关改为自动之前,先分开该并列开关。

220kV, 110KV母线PT切换装置直流熔断器熔断时,有关线路综合重合闸的交流电压消失、振荡闭锁动作或距离保护装置故障、交流电压消失光字牌告警,此时距离及零序保护被闭锁,应立即向调度汇报,将距离保护停用后,更换直流熔断器。 220kV电压互感器有两只快速空气开关,如果其中一只空气开关出现断相或跳开,反映在电压表有明显变化,应立即检查处理。 二、500kV电压互感器的二次小开关跳开或熔断器熔断 1、异常现象 (1)电压互感器对应的电压回路断线,有关保护发失压信号。 (2)电压互感器对应的电压表指示偏低或无指示,有、无功表计指示降低或为零。 2、异常处理 (1)汇报所属调度,申请停用有关保护。 (2)更换熔断器或合上二次小开关。 (3)若二次小开关仍跳开说明二次回路有短路,应通知有关部门处理。 三、本体出现故障的处理

电流互感器二次侧开路时二次电压的计算

电流互感器二次侧开路时二次电压的计算 电流互感器二次侧开路时,互感器成空载运行,此时,一次侧线路电流全部成为励磁电流,使铁心内的磁通密度比额定情况增加很多,一方面使二次侧感应出很高的电压,可能使绝缘击穿,同时对测量人员也很危险;另一方面,铁耗会大大增加,使铁心过热,影响电流互感器的性能,甚至烧坏互感器。下面来分析一只1200/5A的CT二次开路电压: 已知:一次额定安匝I1n N1n=1200A,N2n=240,A c=25.5cm2,L c=75.4cm,f=50Hz,铁芯是冷轧硅钢片,卷铁芯,取K=4.13×10-2,于是二次开路峰值电压:: 注:公式来自《互感器设计原理》 E KL—二次开路电压(峰值),V; N2n—额定二次匝数; A c—铁芯有效截面积,cm2; f—电源频率,Hz; L c—铁芯的平均磁路长,cm; I1n—额定一次电流,A; N1n—额定一次匝数; K—系数,与铁芯材质和铁芯型式有关,对于冷轧硅钢板卷铁芯取4.13×10-2;叠片铁芯取2.59×10-2;如上计算表明,当一次正常运行时,CT二次电流最大也就5A左右。但是在开路时,开路峰值电压能到7.1kV。这样的高压可能造成互感器纵绝缘的损坏,也可能对二次线路上的仪表等产 生威胁。 另,上述理论分析和实际情况并不完全符合。例如我们在国家高电压计量站对一台LZZBJ4-35 CT 变比为1600/5的保护绕组进行了开路电压峰值测试:对一次绕组通以额定电流1分钟,二次绕 组开路,测得开路峰值电压为1412V,比上述公式计算得到的数据小很多,当然这样的电压也足以对人身和仪表产生威胁。 因此,电流互感器在使用中必须与二次负荷确切联结,不接负荷时则应可靠短接,短接的导线必须有足够的截面,以免当一次过电流时产生的较大的二次电流将导线熔断,造成二次开路而出现高电压。

电流互感器和电压互感器故障处理注意事项

在测量交变电流的大电流时,为便于二次仪表测量需要转换为比较统一的电流(我国规定电流互感器的二次额定为5A),另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用,电流互感器就是升压(降流)变压器. 它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器,电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。 对于电流互感器和电压互感器发生故障时,相应处理注意事项如下所示: 1、电压互感器故障处理注意事项: 如果电压互感器内部有异响并产生烟雾,漏油等比较严重的现象,而一侧高压熔丝并没有立即熔断,这时应避免隔离开关切断故障电压互感器,因为此时电压互感器中的电流可能比较大,以防拉开隔离开关时产生喷弧。应该想办法断开有关电源的断路器,然后在无电状态下在拉开电压互感器的隔离开关,特别是在电压互感器发生着火时,应先切断电源,然后使用二氧化碳灭火器或者干式灭火器灭火。 2、电流互感器发生故障时,应该处理注意如下几个事项: (1)电流互感器在运行中二次侧不得开路,一旦二次侧开路,,由于铁损过大,温过高而烧毁,或使副绕组电压升高而将绝缘击穿,发生高压触电的危险。所以在换接仪表时如调换电流表、有功表、无功表等应先将电流回路短接后再进行计量仪表调换。当表计调好后,先将其接入二次回路再拆除短接线并检查表计是否正常。如果在拆除短接线时发现有火花,此时电流互感器已开路,应立即重新短接,查明计量仪表回路确无开路现象时,方可重新拆除短接线。在进行拆除电流互感器短接工作时,应站在绝缘皮垫上,另外要考虑停用电流互感器回路的保护装置,待工作完毕后,方可将保护装置投入运行。 (2)如果电流互感器有嗡嗡声响,应检查内部铁心是否松动,可将铁心螺栓拧紧。 (3)电流互感器二次侧的一端,外壳均要可靠接地。 (4)当电流互感器二次侧线圈绝缘电阻低于10~20 兆欧时,必须进行干燥处理,使绝缘恢复后,方可使用。 当电流互感器发生相关故障时,会直接影响一次系统线路的运行安全,应及时汇报上级和有关部门负责人,及时切断故障电流互感器电源,将故障电流互感器停用后在进行处理。在二次绕组开路时的处理方法,可根据现场实际情况处理故障,在按照有关要求采取一定的安全措施后,才能再次使用。

电流互感器电压互感器常见故障处理

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器)(1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随

较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常(2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断

电压互感器原理及作用

电压互感器和电流互感器都是一种特殊的变压器,它们的应用主要是保护测量仪表和继电器,同时使二次侧设备小型化,那么电压互感器的原理和作用具体是什么呢? 电压互感器的工作原理和特性 电压互感器可分为电磁式和电容分压式两种,电压等级在220kV 及以下时多为电磁式,那么就以电磁式介绍。 1.工作原理 电压互感器利用了电磁感应原理,在闭合的铁芯上,绕有两个不同匝数、相互绝缘的绕组,接入电源侧的是一次绕组N1,输出侧是二次绕组N2。 当一次绕组加有电压时,绕组就会有交流电流通过,铁芯中就会产生与电源频率相同的交变磁通¢1,由于一次绕组和二次绕组在一个铁芯上,根据电磁感应定律,在二次绕组会产生频率相同到数值不同的感应电动势E2。因为匝数的不同导致两个绕组的感应电动势不同,具体数值关系就是:N1/N2=U1/U2根据国标,电压互感器二次侧输出电压值是100V。 2.电压互感器特性 电压互感器一次电压不受二次负荷的影响。 电压互感器二次侧仪表或继电器的电压线圈阻抗很大,通过的电流很小,因此电压互感器正常工作时接近空载状态。

电压互感器二次侧不能短路,因为短路后二次侧会产生很大的短路电流,会烧毁电压互感器,所以一般电压互感器一次、二次侧装设熔断器用于短路保护。 电压互感器接线 电压互感器有单相和三相两种,三相电压互感器一般只有20kV 以下电压等级。 单相电压互感器:两台单相互感器接成Vv接线,三台单相电压互感器接成开口三角形。 三相电压互感器:一台三相三柱式接成Yy0接线,用于测量线电压。 结束语 电压互感器和电流互感器原理一样都是利用了电磁感应原理,通过“电生磁”和“磁生电”将高电压转化成低电压,将大电流转化成小电流,使二次侧设备(测量仪表和继电器)都能小型化,同时也能使工作人员原理高压,保障人身安全。

电流互感器及电压互感器常见故障处理

电流互感器及电压互感器常见故障处理 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器) (1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能

力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常 (2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作 处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断线等现象,检查相应的二次小开关是否跳闸,二次小开关跳闸可试送一次,不成功应查明原因,通知检修处理。 (3)拉开失压后误动的保护及自动装置。 (4)检查有无继电保护人员在电压互感器二次回路工作,误碰引起断路,或有短路情况。 3、电压互感器一次保险熔断

电压互感器二次侧为什么有的电压互感器采用B相接地

电压互感器二次侧为什么有的电压互感器采用B相接地,而有的采用零相接地? 一般电压互感器的二次接地都在配电装置端子箱内经端子排接地。对220 千伏的电压互感器二次侧一般采用中性点接(也叫零相接地);对发电机及厂用电的电压互感器,大都采用二次侧B机接地。 为什么电压互感器的二次侧有两种接地方法呢?主要原因是: (1)习惯问题。通常有的地方(380伏低压厂用母线)为了节省电压互感器台数,选有V/V接。为了安全,二次侧总得有个接地点,这个接地点一般选在二次侧两线圈的公共点。而为了接线对称,习惯上总把一次侧的两个线圈的首端一个接在A相上,一个接在C相上,而把公共端接在B相。因此,二侧侧对应的公共点就是B 相,于是,成了B相接地。 从理论上讲,二次侧哪一相端头接地都可以,一次侧哪一相作为公共端的连接相也者可以,只要一、二次对应就行。 对于三个线圈星形连接的电压互感器有的也采用二次侧B相接地(如发电机及厂用高压母电压互感器),同样是为了接线对称的习惯问题。 有的星形连接的电压互感器,二次侧B相接地是为了与低压厂用各电压等级的电压互感器二次侧接方式相一致,因为在一个发电厂的厂用电中,总不希望同时存在几种电压互感器二次侧接地方式,不然的话,会给厂用电的二次接线造成不应有的麻烦。 (2)继电保护的特殊需要。220千伏的线路都装有距离保护,而距离保护对于电压互感器二次回路均要求零相接地,因为要接断线闭锁装置需要有零线。所以,220千伏系统的电压互感器是采用零相接地,即中性点接地而不采用B相接地。对于发电厂来说,为了满足不同要求,电压互感器二次侧既有中性点接地,又有B相接地的。当这两种接地方式的电压互感器都用于同期系统时,一般采用隔离变压器来解决因不同的接地方式引起的可能烧坏星形接线的电压互感器B相线圈的问题。 电压互感器二次侧B相接地的接地点一般放在熔断器之后。为什么B相也配置二次熔断器呢?这是为了防止当电压感器一、二次间击穿时,经B相接地点和一次侧中性点形成回路,使B相二次线圈短接以致烧坏。 凡采用B相接地的电压互感器二次侧中性点都接一个击穿保险器JB。这是考虑到在B相二次保险熔断的情况下,即使高压窜入低压,仍能击穿保险器,而使电压互感器二次有保护接地。击穿保险器动作电压约为500伏。 电压互感器开口三角形额定电压(单相): 用在大接地系统中的PT开口绕组额定电压为100V,用在小接地或不接地系统中的

电压互感器几种典型故障及处理分析

龙源期刊网 https://www.360docs.net/doc/af18029975.html, 电压互感器几种典型故障及处理分析 作者:周桂庭 来源:《科技信息·中旬刊》2017年第07期 摘要:文章对电压互感器中常见的故障进行了说明,介绍了电压互感器常见故障的处理方法,旨在有效提升电压互感器运行管理和故障处理工作的水平,避免造成更大的事故隐患,促进电力系统的发展。 关键词:电压互感器;母线电压;典型故障;处理方式 电压互感器是电力系统不可缺少的一种电器,在测量线路电压、功率和电能,以及保护线路故障中的贵重设备、电机和变压器发挥重要作用,其正常运作对供电安全与供电人员作业安全至关重要。近年来,电压互感器在电力系统中的应用越来越广泛,对其故障进行准确判断和处理具有现实意义。其中,220kV母线上的电压互感器(以下简称TV)经过一、二次电压变换后,通过本体二次快分开关接入TV并列装置,再将电压分别接入各个间隔保护装置,不同母线上所连接的间隔出线,其保护装置所接的母线电压与该间隔一次回路一起进行切换,终实现对该母线电压的采集。下面,将围绕电压互感器一、二次几种典的事故现象和处理模式,分析冷倒母线、热倒母线、二次TV并列的优缺点和处理注意事项,避免在事故处理中造成更大的事故隐患,提高运维人员的事故处理能力。 1 TV并列装置二次并列原理 以 220kV母线 TV电压切换装置为例,如果只发生 TV本体二次故障,可以用TV隔离开关隔离而不需要母线停电,可以采取二次并列的操作。并列前,先将故障TV所有二次快分开关全部断开,包括解开TV开口三角。在二次并列前,要一次先并列。然后将TV并列装置 KK把手切至“并列位置”启动 BLJ(TV自动并列继电器辅助接点)并列继电器,从而在TV并列装置内实现TV电压的二次并列。最后拉开需要检修TV的隔离开关,将TV转检修。 2.事故处理与分析 在典型的220kV双母线一次接线中,母联624连接220kV玉、域母线,6X14TV和 6X24TV作为220kV玉、域母线电压互感器挂在2条母线上正常运行(图1)。下面分析220 kV玉母线 6X14TV发生事故异常致使母线跳闸或不跳闸的几种处理方式。 2.1 TV本体一次故障 2.1.1 故障现象 1监控界面显示 220kV玉母母线失压为零;

相关文档
最新文档