电力电子技术理论大纲

电力电子技术理论大纲
电力电子技术理论大纲

**学院

电力电子技术()教学大纲

一、课程性质与地位

本课程是电气工程及其自动化专业的一门专业课,包括电力电子器件、电力电子电路和控制技术三部分内容。学生通过学习本课程后,掌握电力电子技术必要的基本理论、基本分析方法以及基本技能,为学习后续课程以及从事与电气自动化专业有关的技术工作和科学研究打下一定的基础。

二、教学内容与教学要求

第一章绪论

1.教学基本内容

(1)什么是电力电子技术

(2)电力电子技术的发展史

(3)电力电子技术的应用

2.教学重点、难点

重点:相关基本概念

难点:在工业及其他领域电力电子技术的应用

第二章电力电子器件

1.教学基本内容

(1)SCR、GTO、BJT、MOSFET、IGBT等电力电子器件工作原理、特性、主要参数

(2)功率集成电路与集成电力电子模块

2.教学重点、难点

重点:电力电子器件的性能特点、工作原理、电气特性和主要参数及选用方法

难点:了解电力电子器件的发展趋势。

第三章整流电路

1.教学基本内容

(1)单相半波可控、桥式全控、桥式半控整流电路

(2)三相可控整流电路,三相半波、三相桥式全控整流电路

(3)变压器漏感对整流电路的影响

(4)电容滤波的不可控整流电路

(5)整流电路的谐波和功率因数

(6)大功率可控整流电路

(7)整流电路的有源逆变工作状态

2.教学重点、难点

重点:单相全控桥式整流电路、三相全控桥式整流电路的电路结构、工作原理、电气

性能、波形分析方法和参数计算;电容滤波不可控整流电路的工作特点;变压器漏抗对整流电路的影响;可控整流电路的有源逆变工作状态。

难点:大功率可控整流电路的接线形式及特点;可控整流电路的有源逆变工作状态;锯齿波移相的触发电路的原理。

第四章逆变电路

1.教学基本内容

(1)逆变的概念及逆变器的分类

(2)电压型逆变电路

(3)电流型逆变电路

(4)多重逆变电路和多电平逆变电路

2.教学重点、难点

重点:无源逆变电路的概念、原理及分类;电压型、电流型单、三相桥式逆变电路的原理;

难点:逆变电路的原理

第五章直流-直流变流电路

1.教学基本内容

(1)基本斩波电路的工作原理。

(2)复合斩波电路和多相多重斩波电路

(3)带隔离的直流-直流变流电路

2.教学重点、难点

重点:直流变换电路的工作原理

难点:基本参数计算

第六章交流-交流变流电路

1.教学基本内容

(1)AC/AC变换的工作原理

(2)其他交流电力控制电路

(3)交-交变频电路

(4)矩阵式变频电路

2.教学重点、难点

重点:交流调功和斩波调压的原理

难点:交-交变频电路的原理及电路

第七章 PWM控制技术

1.教学基本内容

(1)PWM控制的基本原理

(2)PWM逆变电路及其控制方法

(3)PWM跟踪控制技术

(4)PWM整流电路及其控制方法

2.教学重点、难点

重点:PWM控制技术的原理

难点:PWM控制技术在逆变电路、整流电路的应用

第八章软开关技术

1.教学基本内容

(1)软开关的基本概念

(2)软开关电路的分类

(3)典型的软开关电路

(4)软开关技术新进展

2.教学重点、难点

重点:软开关的特点、分类

难点:软开关电路的构成、工作原理

第九章电力电子器件应用的共性问题

1.教学基本内容

(1)电力电子器件的驱动

(2)电力电子器件的保护

(3)电力电子器件的串联和并联使用

2.教学重点、难点

重点:电力电子器件驱动电路的基本要求;电力电子器件过电压产生原因和过电压保护的主要方法及原理;过电流保护的主要方法及原理。

难点:电力电子器件串联和并联使用的目的、基本要求以及具体注意事项

第十章电力电子技术的应用

1.教学基本内容

(1)晶闸管直流电动机系统

(2)变频器和交流调速系统

(3)不间断电源

(4)开关电源

(5)功率因数校正技术

(6)电力电子技术在电力系统中的应用

(7)电力电子技术的其他应用

2.教学重点、难点

重点:电力电子技术应用基本原理

难点:电力电子技术的应用

三、考核方式

本课程考核方式为考试。

四、主要教学参考书目和资料

1.王兆安刘进军,《电力电子技术》,机械工业出版社,2011年

2.浣喜明姚为正,《电力电子技术》,高等教育出版社,2011年附表:

潍坊科技学院

电力电子技术(09011111)课程实验教学大纲

一、实验教学目的和要求

电力电子技术实验是与《电力电子技术》课程同步开设的实验课程,是理论教学的深化和补充,具有较强的实践性,是一门重要的专业实验课。

通过实验,使学生巩固和加深电力电子技术理论知识,通过实践进一步加强学生独立分析问题和解决问题的能力、综合设计及创新能力的培养,同时注意培养学生实事求是、严肃认真的科学作风和良好的实验习惯,为今后工作打下良好的基础。

二、学时分配及实验项目表

三、实验课的考核

1.为了加强学生对实验教学的重视程度,促进实验教学质量不断提高,本课程实验教学要进行考核并评定等级。根据学生的现场实验结果和实验报告综合决定该学生的实验成绩。每个实验,预习报告占30%,实际操作40%,总结报告30%,根据学生完成的各个实验的成绩,算出其平均分数,最后得出该学生的实验成绩。实验成绩分:优(90—100分)、良(80—89分)、中(70—79分)、及格(60—69分)、不及格(60分以下)五级。实验成绩计入课程总成绩,实验成绩不合格者不能参加所属理论课程考试。实验缺课学时达1/4以上者,不得参加该门课程的考核。

2.实验成绩的评分要力求作到认真、客观、公正。

3.考核结果要记录存挡。

四、实验指导(参考)书和实验报告

教材(讲义、指导书):《电力电子技术》,王兆安、刘进军编,机械工业出版社,2011年实验报告要求:写明实验目的、实验原理、主要操作步骤、结果、讨论分析。

电力电子技术的实际应用(读书笔记)

电力电子技术的实际应用 摘要 随着科技的飞速进步,时代的高速发展,电力电子技术作为一个新兴的学科诞生并被迅速应用于电力电子领域中,已在国民经济中发挥着巨大作用,已对输变电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。电力电子技术是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术,其发展在优化电能使用、改造传统产业和发展机电一体化等新兴产业、扩大电网规模和功能等方面起到了重要作用。本文将重点介绍电力电子技术在电 理网络中的应用。 关键字:电力电子技术、输配电系统、晶闸管、电力网络。 在电气工程领域,电力电子技术作为一个新兴的学科,因其在电力领域中起到的巨大作用,越来越受到重视。随着晶闸管等电力器件的发明并被应用于电力领域,正式标志着电力电子技术被应用于电力系统,其在全球电力领域的发展中,有着里程碑的意义。 电力电子技术主要应用于电力领域中的电力系统中。电力系统由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。其功能就是产生电能,再经输电系统、变电系统和配电系统将电能供应到用户。为了实现此功能,电力电子技术的应用起到了举足轻重的作用。保证了用户能够获得安全、经济、优质的电能。 电力电子技术最初应用到电力领域的历史最早是在20世纪50年代利用不可控器件二极管构成的整流器来替代直流发电机对同步发电机进行励磁调节。随后出现的利用半控器件晶闸管构成的可控整流器更是为发电机的励磁提供里一个快捷有效的控制手段,从根本上改变了发电机的动态和静态性能,有效的改善了系统的稳定性。 在当前大范围使用的电力系统中,通常都是以固定的电压和频率来向用户提供交流电能的(例如我国使用220V、50Hz的交流电),但是最终的用户需要的电能可能形式会有着各式各样的差别,可能是不同频率的交流电、可能是同频率但电压不同的交流电也可能是直流电等等、如果这些要由普通的常规电力系统器件来完成,例如使用变频器,变压器和整流器等,这就需要大量的此类设备,且还要根据不同用户的要求而使用不同的器件,这是很不经济的,也不可能实现。而电力电气器件可以作为电力系统和用户之间的接口,通过受控的开关作用对系统输送到用户的电能进行不同的变换来满足用户不同的需求。故而自其问世以来,就被广泛的应用在电力领域的各个角落。 在电力领域中,实现常规电流变换的装置包括:整流器、逆变器、交流变换器和斩波器四种基本类型。整流器是利用电力电子器件的单向导电性和可控性将交流电能转换为可控的直流电能的变流装置;逆变器是将直流电能转换为交流电能的装置;交流变换器是把一种交流电能变换为另一种交流电能的装置;斩波器是把一种直流电脑变为另一种直流电能的装置。

电力电子技术复习提纲

第一章 电力电子技术的定义,四大类电力变换,电力电子技术的研究对象 电力电子技术的发展史 第二章 电力电子器件的定义 与信息电子器件相比,电力电子器件的特征 电力电子器件的主要工作状态,电力电子器件的主要损耗,冷却方式(哪种最常用) 应用电力电子器件的系统组成 电力电子器件的分类 电力二极管:封装类型,电气符号,工作原理,主要参数,主要类型,应用场合 晶闸管:封装类型,电气符号,工作原理,主要参数,工作时的特性,主要的派生器件,英文缩写,应用场合 门极可关断晶闸管,电力晶体管:主要参数,英文缩写,电气符号,应用场合 电力场效应晶体管:分类,工作原理,应用场合,主要参数,英文缩写,电气符号 绝缘栅双极晶体管:电气符号,工作原理,主要参数,英文缩写,应用场合 熟悉其他新型电力电子器件有哪些,当前电力电子器件的发展趋势 掌握课后P42 1~5 第三章 整流的定义,整流电路的分类 单相: 主要的典型单相可控整流电路 1)单相半波可控整流电路:电路,带阻性负载、阻感负载、有续流二极管(续流二极管的作用)的电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角 2)单相桥式全控整流电路:电路,带阻性负载、阻感负载、反电动势负载的电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角 3)单相全波可控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,与单相桥式全控整流电路的主要区别 三相: 自然换相点的概念 1)三相半波可控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,电阻负载时输出电压断续的临界触发角 2)三相桥式全控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,电阻负载时输出电压断续的临界触发角 变压器漏感对整流电路的影响,换相重叠角的概念 整流电路的谐波和无功的影响 什么是逆变?为什么逆变?逆变的种类?发生有源逆变的条件?逆变失败的原因?最小逆变角 课后P95 3,4,5,6,7,9,10,11,12,13,26,29 第四章 逆变的定义,逆变的分类,有源逆变和无源逆变的概念 换流的概念,换流方式,各种换流方式适用的范围,掌握负载换流的工作原理,掌握强迫换流的工作原理及分类,哪些换流方式属于自换流,哪些属于外部换流 无源逆变电路的分类:电压型和电流型

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

《电力电子技术》教学大纲(2017)

《电力电子技术》教学大纲 课程编号:131504269 课程类型:专业必修课 课程名称:电力电子技术学分:4 适用专业:电气自动化技术 第一部分大纲说明 一、课程的性质、目的和任务 本课程是电气自动化技术专业的专业必修课,主要目的和任务是使学生熟悉各种电力电子器件的特性和使用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电力电子装置的应用范围及技术经济指标。 二、课程的基本要求 1.熟悉和掌握晶闸管、电力MOSFET、IGBT等典型电力电子器件的结构、原理、特性和使用方法; 2.熟悉和掌握各种基本的整流电路、直流斩波电路、交流电力变换电路和逆变电路的结构、工作原理、波形分析和控制方法; 3.掌握PWM技术的工作原理和控制特性,了解软开关技术的基本原理; 4.了解电力电子技术的应用范围和发展动向; 5.掌握基本电力电子装置的实验和调试方法。 三、本课程与相关课程的联系 通过该课程的学习为《供配电技术》、《电力拖动》等课程准备必要的基础知识。 四、学时分配 本课程学分为4学分,建议开设56学时。

五、教材与参考书 教材:《电力电子技术》(第5版),王兆安、刘进军主编,机械工业出版社,2009 主要参考书: 1.《电力电子技术习题集》,李先允,陈刚,中国电力出版社,2007 2.《电力电子技术》,黄家善,机械工业出版社,2011 3.《电力电子技术》,高文华,机械工业出版社,2012 六、教学方法与手段建议 本课程是电气自动化技术专业的专业必修课程,主要教学目标是构建学生电力电子技术的基本理论、基本技能和培养学生应用与创新能力。因此,通过改革教学模式、教学内容、教学方法与手段,激发学生学习兴趣和求知欲,增进学习效果,提高学习质量。为此,在教学过程中,要注重理论联系实际,重视工程观点,着重于基本概念的熟悉、基本原理的理解以及系统应用案例的分析设计能力;采用灵活多样的教学方法,因材施教,具体包括:启发式教学法、讨论研究式教学法、多媒体教学法、现场教学法、实物教学法、案例教学法等;积极探索理论和实践相结合的教学模式,使理论学习和技能训练与生产生活中的实际应用相结合,通过典型知识的实践应用,提高学习兴趣,激发学习动力,掌握相应知识和技能。 七、课程考核方式与成绩评定办法 闭卷考试。平时成绩:30%;期末考试成绩:70%(笔试,闭卷)。 第二部分课程内容大纲 第一章绪论(2学时) 一、教学目的和要求 掌握电力电子技术的基本概念、学科地位、基本内容;了解电力电子技术的发展史;了解电力电子技术的应用、电力电子技术的发展前景;了解本教材的内容。 二、教学内容 1.电力电子技术的基本概念、学科地位、基本内容和发展历史; 2.电力电子技术的应用范围;

电力电子技术期末复习考卷综合

一、填空题: 1、电力电子技术的两个分支是电力电子器件制造技术和 变流技术 。 2、举例说明一个电力电子技术的应用实例 变频器、 调光台灯等 。 3、电力电子承担电能的变换或控制任务,主要为①交流变直流(AC —DC )、②直流变交流(DC —AC )、③直流变直流(DC —DC )、④交流变交流(AC —AC )四种。 4、为了减小电力电子器件本身的损耗提高效率,电力电子器件一般都工作在 开关状态,但是其自身的功率损耗(开通损耗、关断损耗)通常任远大于信息电子器件,在其工作是一般都需要安装 散热器 。 5、电力电子技术的一个重要特征是为避免功率损耗过大,电力电子器件总是工作在开关状态,其损耗包括 三个方面:通态损耗、断态损耗和 开关损耗 。 6、通常取晶闸管的断态重复峰值电压UDRM 和反向重复峰值电压URRM 中较 小 标值作为该器件的额电电压。选用时,额定电压要留有一定的裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的2~3倍。 7、只有当阳极电流小于 维持 电流时,晶闸管才会由导通转为截止。导通:正向电压、触发电流 (移相触发方式) 8、半控桥整流带大电感负载不加续流二极管电路中,电路可能会出现 失控 现象,为了避免单相桥式 半控整流电路的失控,可以在加入 续流二极管 来防止失控。 9、整流电路中,变压器的漏抗会产生换相重叠角,使整流输出的直流电压平均值 降低 。 10、从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为 触发角 。 ☆从晶闸管导通到关断称为导通角。 ☆单相全控带电阻性负载触发角为180度 ☆三相全控带阻感性负载触发角为90度 11、单相全波可控整流电路中,晶闸管承受的最大反向电压为 2√2U1 。(电源相电压为U1) 三相半波可控整流电路中,晶闸管承受的最大反向电压为 。(电源相电压为U 2) 12、四种换流方式分别为 器件换流 、电网换流 、 负载换流 、 强迫换流 。 13、强迫换流需要设置附加的换流电路,给与欲关断的晶闸管强迫施加反压或反电流而关断。 14、直流—直流变流电路,包括 直接直流变流电路 电路和 间接直流变流电路 。(是否有交流环节) 15、直流斩波电路只能实现直流 电压大小 或者极性反转的作用。 ☆6种斩波电路:电压大小变换:降压斩波电路(buck 变换器)、升压斩波电路、 Cuk 斩波电路、Sepic 斩波电路、Zeta 斩波电路 升压斩波电路输出电压的计算公式 U= 1E β=1- ɑ 。 降压斩波电路输出电压计算公式: U=ɑE ɑ=占空比,E=电源电压 ☆直流斩波电路的三种控制方式是PWM 、 频率调制型 、 混合型 。 16、交流电力控制电路包括 交流调压电路 ,即在没半个周波内通过对晶闸管开通相位的控制,调节输出电压有效值的电路, 调功电路 即以交流电的周期为单位控制晶闸管的通断,改变通态周期数和断态周期数的比,调节输出功率平均值的电路, 交流电力电子开关即控制串入电路中晶闸管根据需要接通或断开的电路。

电力电子技术复习题及答案汇编

电力电子技术试题 1、请在空格内标出下面元件的简称:电力晶体管GTR;可关断晶闸管GTO ;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT;IGBT是MOSFET 和GTR 的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。。 4、在电流型逆变器中,输出电压波形为正弦波波,输出电流波形为方波波。 5、型号为KS100-8的元件表示双向晶闸管晶闸管、它的额定电压为800V伏、额定有效电流为100A安。 6、180°导电型三相桥式逆变电路,晶闸管换相是在_同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在_不同桥臂上的元件之间进行的。 9、常用的过电流保护措施有快速熔断器、串进线电抗器、接入直流快速开关、控制快速移 相使输出电压下降。(写出四种即可) 10、逆变器按直流侧提供的电源的性质来分,可分为电压型型逆变器和电流型型逆变器,电压 型逆变器直流侧是电压源,通常由可控整流输出在最靠近逆变桥侧用电容器进行滤波,电压型三相桥式逆变电路的换流是在桥路的本桥元件之间元件之间换流,每只晶闸管导电的角度是180o 度;而电流型逆变器直流侧是电流源,通常由可控整流输出在最靠近逆变桥侧是用电感滤波,电流型三相桥式逆变电路换流是在异桥元件之间元件之间换流,每只晶闸管导电的角度是120o 度。 11、直流斩波电路按照输入电压与输出电压的高低变化来分类有降压斩波电路;升压斩波电路;升降压斩波电路。 12、由晶闸管构成的逆变器换流方式有负载换流和强迫换流。 13、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为有源、逆变器与无源逆变器两大类。 14、有一晶闸管的型号为KK200-9,请说明KK快速晶闸管;200表示表示200A,9表 示900V。 15、单结晶体管产生的触发脉冲是尖脉冲脉冲;主要用于驱动小功率的晶闸管;锯齿波同 步触发电路产生的脉冲为强触发脉冲脉冲;可以触发大功率的晶闸管。 19、由波形系数可知,晶闸管在额定情况下的有效值电流为I Tn等于 1.57倍I T(AV),如果I T(AV)=100安培, 则它允许的有效电流为157安培。通常在选择晶闸管时还要留出 1.5—2倍的裕量。 20、通常变流电路实现换流的方式有器件换流,电网换流,负载换流,强迫换流四种。 21、在单相交流调压电路中,负载为电阻性时移相范围是0,负载是阻感性时移相范围是 。 22、在电力晶闸管电路中,常用的过电压保护有避雷器;阻容吸收;硒堆;压敏电阻;整流式阻容吸收等几种。 23、。晶闸管的维持电流I H是指在温度40度以下温度条件下,门极断开时,晶闸管从较大通态电流下降到 刚好能保持导通所必须的最小阳极电流。 25、普通晶闸管的图形符号是,三个电极分别是阳极A,阴极K和门极G晶闸管的导通条件是阳极加正电压,阴极接负电压,门极接正向电压形成了足够门极电流时晶闸管导通;关断条件是当晶闸管阳极电流小于维持电流I H时,导通的晶闸管关断。.。 27、绝缘栅双极型晶体管是以电力场效应晶体管栅极;作为栅极,以以电力晶体管集电极和发射极复合而成。 29、晶闸管的换相重叠角与电路的触发角α;变压器漏抗X B;平均电流I d;电源相电压U2。等到参数有关。

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

《电力电子技术》教学大纲

教学大纲 课程代码:10120480 课程名称:电力电子技术 学分:3 周学时 2.5-1.0 面向对象:电气工程及其自动化、自动化等电气类专业学生 预修课程要求:电路原理,模拟电子技术基础,数字电子技术基础 一、课程介绍(100-150字) (一)中文简介 《电力电子技术》内容包括功率半导体器件、驱动及保护电路、交流-直流(AC-DC)变换电路、直流-直流(DC-DC)交换电路、直流-交流(DC-AC)变换电路、交流-交流(AC-AC)变换电路、软开关技术等。教学上除考虑课程本身的系统性外,还特别注意在电力电子技术在电力工程中的应用。通过本课程的学习,可掌握各电力电子变换装置的电路结构、基本原理、控制方法、设计计算,为今后从事相关科研工作打下坚实基础。 (二)英文简介 The course introduces power electronic devices, drive and snubber circuits, AC-DC Converters (Rectifiers), DC-DC Converters (Choppers), DC-AC Converters (Inverters ), AC-AC Converters (AC Controllers and Frequency Converters ), soft-switching techniques. Both theoretics and applications of power electronic technology are discussed in this course. The circuit configurations, fundamental theory, control and design methods of power electronic apparatus can be mastered , and a solid foundation for future research can be acquired through studying this course. 二、教学目标 (一)学习目标 电力电子技术横跨“电力”、“电子”与“控制”三个领域,是现代电子技术的基础之一,已被广泛地应用在工农业生产、国防、交通等各个领域,有着极其广阔的应用前景。《电力电子技术Ⅰ》是电类专业重要的专业基础课程。 (二)可测量结果 本课程通过对功率半导体器件、驱动及保护电路、交流-直流(AC-DC)变换电路、直流-直流(DC-DC)交换电路、直流-交流(DC-AC)变换电路、交流-交流(AC-AC)变换电路、软开关技术等内容的学习,使学生能掌握各类电能变换的基本原理,各电力电子变换装置的电路结构、基本原理、控制方法、设计计算;使学生具有初步设计、调试、分析电力电子变流装置的能力。 三、课程要求 (一)授课方式与要求

电力电子技术复习提纲

《电力电子技术》复习提纲 期末考试: 总成绩分配比例:平时10%+实验20%+期末70% 题型:填空、简答、计算、分析题(1308、1309) 第一章绪论 本章要点:1、电力电子技术概念。 2、电力变换的种类。 1电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类: (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现 (4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术 4.电力电子技术的诞生1957年美国通用电气公司研制出第一个晶闸管,1904年出现电子管,1947年美国著名贝尔实验室发明了晶体管。 5 电子技术分为信息电子技术与电力电子技术。信息电子技术主要用于信息处理,电力电子技术主要用于电力变换。 第2章电力电子器件 本章要点:1、电力电子器件的分类。 2、晶闸管的基本特性和主要参数(额定电流和额定电压的确定)。 3、全控型器件的电气符号。 复习参考:P42 2、3、4 1、电力电子器件一般工作在开关状态。 2、通常情况下,电力电子器件功率损耗主要为通态损耗,而当器件开关频率较高时,功率损耗主要为开关损耗。 3、电力电子器件组成的系统,一般由控制电路、驱动电路、主电路三部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。 4、按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为单极型器件、双极型器件、复合型器件三类。 5、按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为电压驱动型和电流驱动型两类。 6、属于不可控器件的是电力二极管,属于半控型器件的是晶闸管,属于全控型器件的是GTO 、GTR 、电力MOSFET 、IGBT ;属于单极型电力电子器件的有电力MOSFET,属于双极型器件的有电力二极管、晶闸管、GTO 、GTR,属于复合型电力电子器件得有IGBT ;在可控的器件中,容量最大的是晶闸管,工作频

《电力电子技术》教学大纲

《电力电子技术》教学大纲 学时:51 学分:3 适用专业:电子信息工程 一、课程的性质、目的和任务 电力电子技术是电子信息工程专业的一门专业选修课。其教学目的和任务:掌握各种主要的电力半导体器件的基本原理、特性及参数;熟悉AC/DC变换技术及DC/AC变换技术的基本原理及主要变换方法;对AC/AC变换技术、电力电子装置作一般了解;能阅读常见的电力电子电路及设计简单电力电子电路。 二、课程教学的基本要求 (1)了解新型电力电子器件; (2)理解可关断晶闸管;升降压变换电路;直流变换的PWM控制技术;电流型逆变电路;有源逆变电路;AC/AC变换电路;电力电子装置; (3)掌握电力二极管;晶闸管;电力晶体管;电力场效应管;绝缘栅双极型晶体管;电力电子器件的驱动与保护;DC/DC变换技术;DC/AC变换技术;整流电路;软开关技术。 三、课程教学内容 (一)概述 1.电力电子技术的发展 2.电力电子技术的应用领域 说明: 本章为电力电子技术课程的一般介绍。 (二)电力电子器件 1.电力电子器件概述 电力电子器件基本模型与特性电力电子器件的种类 2.电力二极管 电力二极管及其工作原理电力二极管的特性参数 3.晶闸管 晶闸管及其工作原理晶闸管的特性参数晶闸管的派生器件 4.可关断晶闸管 可关断晶闸管及其工作原理可关断晶闸管的特性参数 5.电力晶体管

电力晶体管及其工作原理电力晶体管的特性参数 6.电力场效应管 电力场效应管及其工作原理电力场效应管的特性参数 7.绝缘栅双极型晶体管 绝缘栅双极型晶体管及其工作原理绝缘栅双极型晶体管的特性参数 8.其它新型电力电子器件 静电感应晶体管静电感应晶闸管MOS控制晶闸管集成门换流晶闸管功率模块与功率集成电路 9.电力电子器件的驱动与保护 驱动电路保护电路缓冲电路散热系统 说明: 本章的重点是电力二极管、晶闸管、电力晶体管、电力场效应管的工作原理、特性、主要参数和使用方法。难点是电力电子器件的驱动与保护。 (三)DC/DC变换技术 1.直流变换电路工作原理 2.降压变换电路 3.升压变换电路 4.升降压变换电路 5.Cuk电路 6.带隔离变压器的直流变换器 反激式变换器正激式变换器半桥变换器全桥变换器 7.直流变换的PWM控制技术 直流PWM控制的基本原理直流变换的PWM控制技术 说明: 本章的重点是直流变换电路工作原理,降压变换电路,升压变换电路,带隔离变压器的直流变换器。难点是流变换的PWM控制技术。 (四)DC/AC变换技术 1.逆变器的性能指标与分类 逆变器的性能指标逆变器的分类 2.电力器件的换流方式与逆变电路的工作原理

《电力电子技术》复习资料

电力电子技术第五版复习资料 第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现 (4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。 (2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。 (3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO 、GTR。 (2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。 (3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 晶闸管的结构与工作原理

电力电子技术题解实例与习题复习资料

第一章绪论 1.1题解实例 一、填空题: 1、电力电子技术是一门交叉学科,其内容涉及、 和三大学科。 答:电气工程、电子科学与技术、控制理论 2、电力电子技术是依靠电力电子器件组成各种电力变换电路,实现电能的高效率转换与控制的一门学科,它包括、和三个组成部分。 答:电力电子器件、电力电子电路、控制技术 3、电力电子电路的根本任务是实现电能变换和控制。电能变换的基本形式有:变换、变换、变换、变换四种。 答:AC/DC、DC/AC、DC/DC、 AC/AC 4、硅晶闸管派生器件双向晶闸管常用于交流和电路中。 答:调压、调功 5、光控晶闸管是通过光信号控制晶闸管导通的器件,它具有很强的、良好的和较高的瞬时承受能力,因而被应用于高压直流输电、静止无功功率补偿等领域。 答:光信号、抗干扰能力、高压绝缘性能、过电压

6、第二代电力电子器件以具有自关断能力的全控型器件、和 为代表。 答:GTR、MOSFET、IGBT 7、IGBT器件是一种复合器件。它兼有和的开关速度快、安全工作区宽、驱动功率小、耐高压、载流能力大等优点。 答:功率MOSFET、双极型器件 8、直流电动机变速传动控制是利用或获得可变的直流电源,对直流电动机电枢或励磁绕组供电,实现直流电动机的变速传动控制。 答:整流器、斩波器 9、交流电动机变速传动控制则是利用或对交流电动机供电,通过改变的供电电源的频率和电压等来达到交流电动机的变速传动。 答:逆变器、交-交直接变频器 10、太阳能电池板获得的原始直流电压是与太阳光强度等因素有关的,它需要通过一个变换器来稳定直流电压,再通过变换器变为所要求的交流电供负载使用或将电能馈入市电。 答: DC-DC、DC-AC 二、问答题: 1、什么是电力电子技术?它有几个组成部分?

电力电子技术复习题及答案(3)

电力电子技术复习 一、选择题(每小题10分,共20分) 1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相 差________ A _______ 度。 A180°, B、60°, c、360 °,D、120° 2、a为______ C ______ 度时,三相半波可控整流电路,电阻性负载输出 的电压波形,处于连续和断续的临界状态。 A,0 度, B,60 度, C,30 度, D,120 度, 3、晶闸管触发电路中,若改变_______ B _________ 的大小,则输出脉冲产生相位移动,达到移相控制的目的。 A、同步电压, B、控制电压, C、脉冲变压器变 比。 4、可实现有源逆变的电路为_________ A___________ 。 A、三相半波可控整流电路, B、三相半控桥整流桥电路, C单相全控桥接续流二极管电路,D、单相半控桥整流电路。5、在一般可逆电路中,最小逆变角B min选在下面那一种范围合 理____________ A __________ 。 A、30o-35o, B、10o-15o, C、0o-10o, D、0o。 6、在下面几种电路中,不能实现有源逆变的电路有哪几 种________________ BCD _____________________ 。 A、三相半波可控整流电路。 B、三相半控整流 桥电路。 C、单相全控桥接续流二极管电路。 D、单相半控桥整流电路。 7、在有源逆变电路中,逆变角「的移相范围应 选____________ B ______________ 为最好。 A、’:=90o s 180o, B、” =35o s 90o, C、L

电力电子技术教学大纲

西安交通大学 电力电子技术教学大纲 56学时 3.5学分 西安交通大学电气工程学院

一、课程的性质、目的和任务 1. 本课程是电气工程与自动化专业必修的技术基础课。 2. 本课程的目的和任务是使学生熟悉各种电力电子器件的特性和使用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电力电子装置的应用范围及技术经济指标。同时,为《电力拖动自动控制系统》等后续课程打好基础。 二、使用的教材 王兆安、黄俊主编,电力电子技术,第4版,机械工业出版社,2000年6月。该教材为“九五”国家重点教材,教育部面向21世纪课程教材。 三、课程的基本要求 1. 熟悉和掌握晶闸管、电力MOSFET、IGBT等电力电子器件的结构、原理、特性和使用方法; 2. 熟悉和掌握各种基本的整流电路、直流斩波电路、交流—交流电力变换电路和逆变电路的结构、工作原理、波形分析和控制方法。 3. 掌握PWM技术的工作原理和控制特性,了解软开关技术的基本原理。 4. 了解电力电子技术的应用范围和发展动向。 5. 掌握基本电力电子装置的实验和调试方法。 四、课程内容 绪论 ?电力电子技术的基本概念、学科地位、基本内容和发展历史 ?电力电子技术的应用范围 ?电力电子技术的发展前景 ?本课程的任务与要求

电力电子器件 ?各种二极管 ?半控型器件:晶闸管 ?典型全控型器件:GTO、电力MOSFET、IGBT、BJT ?IGCT、MCT、SIT、STIH等其他电力电子器件 ?功率集成电路和智能功率模块 ?电力电子器件的串并联 ?电力电子器件的保护 ?电力电子器件的驱动电路 整流电路 ?单相可控整流电路 ?三相可控整流电路 ?变压器漏抗对整流电路的影响 ?电容滤波的二极管整流电路 ?整流电路的谐波和功率因数 ?大功率整流电路 ?整流电路的有源逆变工作状态 ?相位控制电路 直流斩波电路 ?降压斩波电路 ?升压斩波电路 ?升降压斩波电路 ?复合斩波电路 交流电力控制电路和交交变频电路 ?单相相控式交流调压电路 ?三相相控式交流调压电路 ?交流调功电路 ?交流电子开关 ?单相输出交—交变频电路 ?三相输出交—交变频电路 ?矩阵式变频电路

电力电子技术应用实例MATLAB仿真

目录 摘要 (1) 关键词 (1) 1.引言 (1) 2.单相半波可控整流电路 (1) 2.1实验目的 (1) 2.2实验原理 (1) 2.3实验仿真 (2) 3.单相桥式全控整流电路 (8) 3.1实验目的 (8) 3.2实验原理 (8) 3.3实验仿真 (9) 4.三相半波可控整流电路 (10) 4.1实验目的 (10) 4.2实验原理 (11) 4.3实验仿真 (12) 5. 三相半波有源逆变电路 (14) 5.1实验目的 (14) 5.2实验原理 (14) 5.3实验仿真 (15) 6.三相桥式半控整流电路 (17) 6.1 实验目的 (17) 6.2实验原理 (17) `6.3 实验仿真 (17) 7.小结 (19) 致谢 (19)

电力电子技术应用实例的MATLAB 仿真 摘 要 本文是用MATLAB/SIMULINK 实现电力电子有关电路的计算机仿真的毕业设计。论文给出了单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相半波有源逆变电路、三相桥式全控整流电路的实验原理图、 MATLAB 系统模型图、及仿真结果图。实验过程和结果都表明:MATLAB 在电力电子有关电路计算机仿真上的应用是十分广泛的。尤其是电力系统工具箱-Power System Blockset (PSB )使得电力系统的仿真更加方便。 关键词 MATLAB SIMULINK PSB 电力电子相关电路 1.引言 MATLAB 是由Math Works 公司出版发行的数学计算软件,为了准确建立系统模型和进行仿真分析,Math Works 在MATLAB 中提供了系统模型图形输入与仿真工具一SIMULINK 。其有两个明显功能:仿真与连接,即通过鼠标在模型窗口画出所系统的模型,然后可直接对系统仿真。这种做法使一个复杂系统模型建立和仿真变得十分容易。[4][2] 在1998年,MathWoIks 推出了电力系统仿真的电力系统工具箱-Power System Blockset (PSB )。其中包括了电路仿真所需的各种元件模型,包括有电源模块、基础电路模块、电力电子模块、电机模块、连线器模块、检测模块以及附加功率模块等七种模块库。每个模块库中包含各种基本元件模型,如电源模块中有直流电压、电流源,交流电压源、电流源,受控电压源、电流源等五种电源模型。电力电子模块库包含了理想开关元件、晶闸管、功率场效应管、可关断晶闸管等多种功率开关元件模型;电机模块库中包含了各种电机模型。如异步电动机、同步电动机、永磁同步电动机等。只需将模块中的元件拖到SIMULINK 窗口中,通过参数设置对话框设置参数就可以实现电路和电力系统的仿真了。[4][5] 由于本文是对基本电路一个个进行仿真,采用实验报告的方式会比较简单,明了,所以格式会和一般的论文有所不同。 2.单相半波可控整流电路 2.1实验目的:掌握单相半波可控整流电路MATLAB 仿真方法,会设置各模块的参数。 2.2实验原理:图为单相半波可控整流器原理图及接电阻性负载和电感性负载时的原理图。电阻性负载的特点是电压和电流成正比,波形相同并且同相位,电流可以突变。 负载端电压d U =0.452U (1+cos α)/2.[1] 式中,2U 为变压器二次侧相电压,α为晶闸管出发控制角。

相关文档
最新文档