通用的可靠性设计分析方法

通用的可靠性设计分析方法
通用的可靠性设计分析方法

通用的可靠性设计分析方法

1.识别任务剖面、寿命剖面和环境剖面

在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。

(1)任务剖面“剖面”一词是英语profile 的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。

任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。

对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:

1)产品的工作状态;

2)维修方案;

3)产品工作的时间与程序;

4)产品所处环境(外加有诱发的)时间与程序。

任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。

图1 表示了一个典型的任务剖面。

(2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。

寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。

寿命剖面同样是建立产品技术要求不可缺少的信息。

图2 表示了寿命剖面所经历的事件。

图1任夯剖面示例

图£寿命制面所经历的事件

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响

的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。

产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任

务剖面的一个组成部分。

2?明确可靠性定性定量要求

明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进

行可靠性设计分析的最重要的依据。

可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方

法。

可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定

性设计工作项目见表1。

表?常用的可靠性定性设计分析项目

序号定性设计分析项目名称目的

1謝症和贾佃可靠性设计准则擀同类产品的成熟经验和失败魏训以设计扌首令的形式要求设计人咼贯彻落实进行故障模式戟响(危害度)分检杳系统可能发生的故曄,确定设计污案的可行性,发现设计中潜在的间趣析(施2

(C)A)提出改曲S施

分析造成产品某种蔽障状态的各种原因和条件,确定各种原因或具组合,发现设3故障树分析

计中的漣弱环节,提出改逬措施

在MCA分析的基础上,确宦少数的关腱件和重要件,提出更详尽具体的质壘控常4确定关键件和重要件W

虔求,把有限的邂源用于关键器位

E进行设计评宙在产品研制的各个阶段.对可靠性工作计划和实施情况进行有效地监督和控制

可靠性定量要求是指:选择和确定产品的故障定义和判据、可靠性指标以及验证时机和验证方法,以便在研制过程中用量化的方法来评价和控制产品的可靠性水平。

确定可靠性指标主要考虑下列因素:

1)国内外同类产品的可靠性水平;

2)用户的要求或合同的规定;

3)本企业同类产品的可靠性水平;

4)进度和经费的考虑与权衡。

应该指出,上述各项有关的基础数据并非很容易得到。它有一个逐步积累的过程。当前,多数民用机械产品的用户一般还不会在合同中提出明确的可靠性定量要求。但潜在的要求是的的确确客观存在的,制造方有责任进行必要的市场调研,征求用户的意见,使其所研制开发的产品在可靠性方面有竞争力。可靠性指标不是越高越好,它要和技术可能性、研制开发周期、成本效益等几方面进行综合分析和权衡。

一般情况下,有定量可靠性要求的新产品在研制过程中有一个可靠性增长的过程。此外,还需要考虑数字指标的随机性所带来的置信水平问题。

3?制定和贯彻可靠性设计准则

制定和贯彻靠性设计准则是一项重要的可靠性定性设计方法,它可以在进行产品设计的同时把可靠性设计到产品中去。这种方法的实用性强,效费比高,应予优先采用。

可靠性设计准则一般都是针对某个型号或产品的,但也可以把各个型号或产品的可靠性设计准则的共性内容,综合成某类产品的可靠性设计准则,例如:柴油机设计准则、载货汽车设计准则、拖拉机设计准则等。当然,这些共性的可靠性设计准则经剪裁、补充后又可成为专用产品的可靠性设计准则。

产品主管设计师应组织有关专家编制可靠性设计准则。该准则将同类产品的成熟经验和失败教训以设计指令的形式要求设计人员贯彻落实,使每条设计准则均有相应的设计保证措施。设计准则一般在方案设计开始前制定,经反复征求意见,完善、修改后再正式颁发。在施工设计阶段结束时, 应提出设计准则贯彻实施报告。

和可靠性设计准则相似的一种可靠性设计文件是可靠性设计检查表”。它用向设计人员提问题

的方式促使设计人员考虑产品可靠性要求和消除可能存在的设计隐患。

4.系统可靠性模型的建立和可靠性分配

(1)系统可靠性模型的建立建立可靠性模型是为了定量分配、估算和评估产品的可靠性。

为了建模,要在产品工作原理图的基础上画出产品的可靠性框图。产品的工作原理图是表示产品各单元之间的功能联系,而可靠性框图则是以各种串-并-旁联的方框组合表示系统各组成单元之

间的完成规定功能中的关系。这两者是不能混淆的。

表2是最常见的可靠性框图模型及其数学表达式。其中串联模型是指组成产品的所有单元中的任一单元发生故障都会导致整个产品故障。并联模型亦称作工作储备模型。r/n模型是指组成产品的

所有单元都工作,但至少r个正常,产品才能正常工作。r/n模型亦称表决模型。

在建立产品的可靠性框图模型时,应从系统级向分系统、设备、部件极细化,但不一定细化到零部件,这要视具体情况而定。

注:Rs—系统可靠度;Ri —单元可靠度;入s—系统失效率;入i単元失效率;MTBF s —系统平

均失效平均间隔时间。

(2)可靠性分配工程中常用的可靠性分配方法有比例分配法和加权分配法。

1) 比例分配法。如已知系统各单元的相对失效率比心则可按下式进行可靠性分配:

入i =入s k i

式中入——第i个单元的失效率;

入s统的失效率。

此方法以相似产品的失效率统计数据为基础。

2) 加权分配法。此方法是对各子系统与完成规定任务的有关因素进行评分,得出各子系统的

加权系数,据此进行可靠性分配。

评分时考虑的因素:①复杂程度;②技术水平和成熟程度;③工作时间;④重要程度。

5.故障模式、影响(危害度)分析(Failt Modes ,Effects (and Criticality )Analysis ——(C)

FME A)

FME(C)A 分析是另一个重要的可靠性定性设计分析方法。此方法研究产品的每个组成部分可能存在的故障模式,并确定各个故障模式对产品其他组成部分和产品要求功能的影响。它亦能同时考虑故障发生的概率和危害度的等级。

系统的可靠性指标是多个故障模式综合影响的结果,而要提高系统的可靠性就必须具体分析各组成单元的故障模式对系统的影响和危害程度。

FME(C)A 分析可用于设计的各个阶段,即方案设计、技术设计和施工设计,亦可用于工艺设计和工艺装备设计。

FME(C)A 分析所用的表格见表3。此表可随设计阶段、产品对象、分析要求的不同而作必要的调整,分析者可酌情适当增减栏目。严酷度的等级举例见表4。

表3 FVE (O A 表①

序号

设 SiSfliJ 代号

名称

功能

故障 模式

故障 厦因

故障彫响

最绥影 局部影响

n ; 响

严酷度故陣检测方

等级

故障发主概率

危害度崖议改进负责部 数

值 措施 门

1

2

S

4

E

6

7

S

5

11

12

13

14

坝写说图号或分 明②析识别号 分析的萼

部件或子

系统容称

分析对故陣克

彖功能现形式

设想的对自身和 故障原上一级的 因 彫响 对系统 的影响 见表4 检测方法或按统计数据分:很 按方法难度低、低*中等、高 分极 四类或更多类 参若文 提出的改

給补偿

措施

负责改

进部n

(子)系统名称 ____ 分析人 _____ 负责 _______ 完成日期 _____ Me. _____

① FMEA 分析时不作11、丄两项?

② 各栏埴表说明详见養等文献[冬51.

FME (C)A分析一定要由有经验的设计人员去做,否则会流于形式。企业的可靠性工程师可给予指导和帮助。FME(C)A分析的效果体现在:对影响产品可靠性的设计、工艺等因素有所改进;否则就是无效的分析。

6?故障树分析(Fault Tree Analysis ——FTA)

FTA分析是以故障树的形式进行分析的方法。它用于确定哪些组成部分的故障模式或外界事件或它们的组合可能导致产品的一种已给定的故障模式。它以系统的故障为顶事件,自上而下地逐层查找故障原因,直至找出全部直接原因(基本事件,即硬件和软件故障、人为差错和环境因素等),并根据它们之间的逻辑关系用图表示。这种图的外形像一棵以系统故障为根的树,故称故

障树。

FTA分析既可用于设计阶段作潜在故障发生原因的深入分析,亦可用事中阶段的故障诊断和事后的失效分析。既可用于定性分析,也可用于定量分析。在安全分析和风险评价中也是常用的方法。

7?确定可靠性关键件和重要件

在FMEA分析的基础上,确定少数的关键件和重要件,提出更详细具体的质量控制要求是经济地利用有限资源的管理途径。

确定可靠性关键件和重要件的原则如下:

1)故障会导致人员伤亡、财产严重损失的产品;

2)从寿命周期费用来说是昂贵的产品;

3)只要它发生故障就会引起系统故障的产品;

4)严重影响系统可用性,增加了维修费用和备件数量的产品;

5)难以采购的或用新工艺制造的产品;

6)需进行特殊处理、储存或防护的产品。

要对关键件和重要件的可靠性改进措施和有效性予以特别的重视。

8?设计评审

要在产品研制的各个阶段,设置设计评审点,对可靠性工作计划和实施情况进行有效的监督管理。

设计评审是对可靠性设计分析实施有效管理的主要途径。对设计评审的主要要求是:

1)在评审前要充分做好准备工作,评审主管单位应确定评审组成员,会同设计单位拟定评审

大纲和评审检查清单,并确定应提交评审的所有文件资料;

2)评审组成员应有足够的时间审阅有关的文件和资料,并切实按评审检查清单逐项予以评审,实事求是地给予评价;

3)对评审中提出的问题,产品设计单位应制定相应措施,限期改进。

可靠性设计评审可和一般的设计评审结合进行。注意在不同设计阶段的评审点应对可靠性设计分析文件提出不同的要求。讲求实效,切忌走过场。

9.建立故障报告、分析和纠正措施系统(Failure Reporting ,Analysis and Corrective Action Systems ----- FRACAS )

建立FRACAS系统是实现可靠性增长和获取可靠性信息的重要手段。FRACAS系统的闭环

流程如图3所示。

建立FRACAS系统的要点如下:

1)建立FRACAS系统的组织机构,质量部门和技术部门均应有专责人员负责此项工作。

2) 应制定产品的 FRACAS 系统工作规定,并按规定执行。构成故障报告(信息)的闭环运 行,关键问题

能及时得到纠正。

3) 应有齐全、完整的文档记录。 4) 纠正措施的有效性应经试验确认。

图3 FRACAS 闭环流程图

g

*

旣岸

in

的!ME 畅

枚麻告]

州于品

Will fin

医疗器械临床前研究中的人因可靠性分析

医疗器械临床前研究中的人因可靠性分析 [摘要] 医疗器械的临床前研究是医疗器械风险控制的重要环节。在进行医疗器械的临床前研究过程中,人因可靠性是影响临床前研究结果有效性的重要因素。作者论述了人因可靠性研究的发展历程和人因可靠性分析方法,并结合医疗器械临床前研究特点,分析在医疗器械临床前研究中影响人因可靠性的相关因素,就如何提高医疗器械临床前研究中的人因可靠性提出建议和措施。 [关键词]医疗器械;医疗器械临床前研究;人因可靠性分析 [Key words]medical devices;preclinical studies of medical devices;human reliability analysis 随着科学技术的发展,医疗器械市场规模不断扩大,新型复杂医疗器械大量涌现,复杂程度不断提高,如药物复合型医疗器械、生物制品复合型医疗器械、使用新型材料的植入类医疗器械和原理复杂的高端医疗器械等等。这些医疗器械的出现使医疗水平大大提高,在给广大患者带来福音的同时,医疗器械的使用风险也随之加大,医疗器械不良事件报告逐年增加。医疗器械的风险存在于医疗器械设计开发、生产、流通、使用等各个环节,每个环节均应进行相应的风险评估和实施风险控制措施。2008年4月,国家食品和药品监督管理局发布了YY/T0316-2008《医疗器械-风险管理对医疗器械的应用》,该标准等同转化自ISO 14971:2007,代替YY/T0316-2003,自2009年6月1日起实施[1]。从医疗器械全生命周期风险示意图(图1)[2]中我们可以看出,医疗器械的上市前研究是一关键的风险控制点。 医疗器械范围广、门类多、构成复杂、原理多样[3]。为了保证医疗器械的安全性,必须在产品上市前对其进行一系列的安全性评价,这是医疗器械上市前研究的重要内容之一,也是医疗器械注册审批过程中的重要科研资料。广义上讲,医疗器械的安全性评价程序为:理化性能评价→生物学评价(包括动物模图1 医疗器械全生命周期风险示意图 型试验)→临床研究。作者在本研究中将临床研究之前的程序视为医疗器械的非临床研究,也称为医疗器械的临床前研究、临床前安全性评价,是以验证医疗器械安全性为主要目的的研究,并且是以医疗器械的注册上市为目的的。和药品的非临床研究类似,医疗器械的非临床研究是医疗器械首次应用到人类的最后一道屏障,研究结果质量的高低直接决定着人类用械风险的大小。因此,良好的医疗器械非临床研究,是保证医疗器械安全性、降低医疗器械使用风险的重要步骤。 医疗器械的非临床研究过程通常在实验室完成,随着实验室技术的飞速发展,实验室设备的先进性日益提高,并有大量辅助测试工具,如自动免疫组化机、自动化检测系统等,大大提高了实验室结果的准确性。但与此同时,高科技复杂医疗器械、使用全新材料产品、药物复合产品、带有硬件及软件的医疗器械产品

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

风险评估技术-人因可靠性分析(HRA)

人因可靠性分析(HRA) 1 概述 人因可靠性分析(Human reliability analysis,简称HRA)关注的是人因对系统绩效的影响,可以用来评估人为错误对系统的影响。 很多过程都有可能出现人为错误,尤其是当操作人员可用的决策时间较短时。问题最终发展到严重地步的可能性或许不大。但是,有时,人的行为是惟一能避免最初的故障演变成事故的防卫。 HRA的重要性在各种事故中都得到了证明。在这些事故中,人为错误导致了一系列灾难性的事项。有些事故向人们敲响警钟,不要一味进行那些只关注系统软硬件的风险评估。它们证明了忽视人为错误这种诱因发生的可能性是多么危险的事情。而且,HRA可用来凸显那些妨碍生产效率的错误并揭示了操作人员及维修人员如何“补救”这些错误和其他故障(硬件和软件)。 2 用途 HRA可进行定性或定量使用。如果定性使用,HRA可识别潜在的人为错误及其原因,从而降低了人为错误发生的可能性;如果定量使用,HRA可以为FTA(故障树)或其它技术的人为故障提供数据。 3 输入 人因可靠性分析方法的输入包括: ●明确人们必须完成的任务的信息; ●实际发生及有可能发生的各类错误的经验; ●有关人为错误及其量化的专业知识。 4 过程 HRA过程如下所示: ●问题界定——计划调查/评估哪种类型的人为参与? ●任务分析——计划怎样执行任务?为了协助任务的执行,需要哪类帮

助? ●人为错误分析——任务执行失败的原因?可能出现什么错误?怎样补救 错误? ●表示——怎样将这些错误或任务执行故障与其他硬件、软件或环境事项 整合起来,从而对整个系统故障的概率进行计算? ●筛查——有不需要细致量化的错误或任务吗? ●量化——任务的单项错误和失败的可能性如何? ●影响评估——哪些错误或任务是最重要的?哪些错误或任务是可靠性或 风险的最大诱因? ●减少错误——如何提高人因可靠性? ●记录——有关HRA的哪些详情应记录在案? 在实践中,HRA会分步骤进行,尽管某些部分(例如任务分析及错误识别)有时会与其他部分同步进行。 5 输出 输出包括: ●可能会发生的错误的清单以及减少损失的方法——最好通过系统改造; ●错误模式、错误类型、原因及结果; ●错误所造成风险的定性或定量评估。 6 优点及局限 HRA的优点包括: ●H RA提供了一种正式机制,对于人在系统中扮演着重要角色的情况,可以将人为错误置于系统相关风险的分析中; ●对人为错误的模式和机制的正式分析有利于降低错误所致故障的可能性。 局限包括: ●人的复杂性及多变性使我们很难确定那些简单的失效模式及概率; ●很多人为活动缺乏简单的通过/失败模式。HRA较难处理由于质量或决策不当造成的局部故障或失效。

质量和可靠性报告

×密 产品名称(产品代号) 质量和可靠性报告 编制:日期: 校对:日期: 审核:日期: 标审:日期: 会签:日期: 批准:日期: 第 1 页共 15 页

目次 1 概述 (3) 1.1 产品概况 (3) 1.2 工作概述 (3) 2 质量要求 (3) 2.1 质量目标 (3) 2.2 质量保证原则 (3) 2.3 产品质量保证相关文件 (3) 3 质量保证控制 (3) 3.1 质量管理体系控制 (4) 3.2 研制过程质量控制 (4) 4 可靠性、维修性、测试性、保障性、安全性情况 (9) 4.1 可靠性 (9) 4.2 维修性 (10) 4.3 测试性 (10) 4.4 保障性 (11) 4.5 安全性 (11) 5 质量问题分析与处理 (12) 5.1 重大和严重质量问题分析与处理 (12) 5.2 质量数据分析 (12) 5.3 遗留质量问题及解决情况 (13) 5.4 售后服务保证质量风险分析 (13) 6 质量改进措施及建议 (13) 7 结论意见 (13) 第 2 页共 15 页

产品名称(产品代号) 质量和可靠性报告 1 概述 1.1 产品概况 主要包括: a)产品用途; b)产品组成。 1.2 工作概述 主要包括: a) 研制过程(研制节点); b) 研制技术特点; c) 产品质量保证特点; d) 产品质量保证概况; e) 试验验证情况; f) 配套情况; g) 可靠性维修性测试性保障性安全性工作组织机构及运行管理情况; h) 可靠性维修性测试性保障性安全性文件的制定与执行情况。 i) 其它情况。 2 质量要求 2.1 质量目标 说明通过产品质量工作策划对实现顾客产品的要求,承制方需要满足期望的质量并能持续保持该质量的能力。 2.2 质量保证原则 简要通过产品质量工作策划对实现顾客产品的要求的原则。如:用户至上,持续改进,过程控制,激励创新,一次成功等。 2.3 产品质量保证相关文件 简要说明产品质量保证大纲的要求及质量保证相关文件。 3 质量保证控制 第 3 页共 15 页

第4章典型系统的可靠性分析

第四章典型系统的可靠性分析 4.1 系统及系统可靠性框图 4.1.1概述 所谓系统是指为了完成某一特定功能,由若干个彼此有联系的而且又能相互协调工作的单元组成的综合体。 在可靠性研究中,按系统是否可以维修可以将系统分为不可修复系统和可修复系统。不可修复系统是指系统一但失效,不进行任何维修或更换的系统,例如日光灯管、导弹以及卫星推进器等一次性使用的系统。不可修复是指技术上不能修复、经济上不值得修复,或者一次性使用不必要再修复。可修复系统是指通过修复而恢复功能的系统。机械电子产品大多数都是可修复系统,但不可修复系统相对可修复系统来说简单得多,而且对不可修复系统的研究方法与结论也适用于可修复系统,同时是研究可修复系统的基础。 4.1.2系统可靠性框图 系统是由若干个彼此有联系的而且又能相互协调工作的单元组成的综合体,因此各个单元之间必然存在一定的关系,为了分析系统的可靠性,就必须分析系统各单元之间的关系,首先要将所要分析的系统简化为合理的物理模型,然后在由物理模型进一步得到参数和设计变量的数学模型。 对于复杂产品,用方框表示的各组成部分的故障或它们的组合如何导致产品故障的逻辑图,称为可靠性框图。可靠性框图可以用来评价产品或系统的设计布置以及确定子系统或元件的可靠性水平;可靠性框图和数学模型是可靠性预测和可靠性分配的基础。 下面通过实例来说明如何建立可靠性框图。 例4.1 如图4.1所示是一个流体系统工程图,表示控制管中的流体的两个阀门通过管道串联而成。试确定系统类型。 图4.1两阀门串联流体系统示意图

解要确定系统类型,要从分析系统的功能及其失效模式入手。 1.如果其功能是为了使液体通过,那么系统失效就是液体不能流过,也就是阀门不能打开。若阀门1和阀门2这两个单元是相互独立的,只有这两个单元都打开,系统才能完成功能,因此,该系统的可靠性框图如图3.2a)所示。 2.如果该系统的功能是截流,那么系统失效就是不能截流,也就是阀门泄漏。那么可以看到,要是系统完成预定功能,要求两个阀门至少有一个正常,因此,该系统的可靠性框图如图 3.2b)所示。 a)功能是流体流通时的串联系统可靠性框图b)功能是截流时的并联系统可靠性框图 图4.2 系统可靠性框图 从上面的例子中可以看到:对于同样一个系统,如果它所完成的功能不同,或者定义它的失效状态不同时,其可靠性框图的形式可能时不同的。 例4.2 如图4.3所示是电路中经常使用的并联电容器电路图。从可靠性角度讨论该系统的类型。 图4.3 并联电容器系统图 解:如果所设计的系统在电容器短路时失效,显然,任何一个电容器的失效均会导致该电路的失效,因此,从功能关系来看,该电容器系统的可靠性框图是一个串联系统。如图4.4a)所示。 如果所设计的系统在电路开路时失效,显然,只有全部电容器均失效才会导致该电路的失效,因此,从功能关系来看,该电容器系统的可靠性框图是一个并联系统。如图4.4b)所示。 图4.4 电容系统可靠性框图 讨论题:一个系统由完全相同的三台设备组成,在工作期间系统的负载水平(功能)不同。可以将这项任务分为3个阶段,各个阶段的负载情况是第一阶段必须至少有一阀门阀门 输输 阀门 输 阀门 输 1 2 n a) 串联模型b) 并联模型 1 2 n

人因可靠性分析实用版

YF-ED-J3347 可按资料类型定义编号 人因可靠性分析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

人因可靠性分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 第一节人因可靠性研究 一、人因可靠性分析的研究背景 随着科技发展,系统及设备自身的安全与 效益得到不断提高,人-机系统的可靠性和安全 性愈来愈取决于人的可靠性。核电厂操纵员可 靠性研究是“核电厂人因工程安全”的主要组 成部分。在核电厂发生的重大事件和事故中, 由人因引起的已占到一半以上,震惊世界的三 里岛和切尔诺贝利核电厂事故清楚地表明,人 因是导致严重事故发生的主要原因。 据统计,(20~90)%的系统失效与人有关,

其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如: l 印度Bhopal化工厂毒气泄漏 l 切尔诺贝利核电站事故 l 三里岛核电站事故 l 挑战者航天飞机失事 因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。而这些都以详尽和准确的人因可靠性分析(Human Reliability Analysis,HRA)为基础。对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成

可靠性数据分析的计算方法

可靠性数据分析的计算方法

PROCEEDINGS,Annual RELIABILITY and MAINTAINABILITY Symposium(1996) 可靠性数据分析的计算方法 Gordon Johnston, SAS Institute Inc., Cary 关键词:寿命数据分析加速试验修复数据分析软件工具 摘要&结论 许多从事组件和系统可靠度研究的专业人员并没有意识到,通过廉价的台式电脑的普及使用,很多用于可靠度分析的功能强大的统计工具已经用于实践中。软件的计算功能还可以将复杂的计算统计和图形技术应用于可靠度分析问题。这大大的便利了工业统计学家和可靠性工程师,他们可以将这些灵活精确的方法应用于在可靠度分析时所遇到的许多不同类型的数据。 在本文中,我们在SAS@系统中将一些最有用的统计数据和图形技术应用到例子的当中,这些例子主要包涵了寿命数据,加速试验数据,以及可修复系统中的数据。随着越来越多的人意识到创新性软件在可靠性数据分析中解决问题的需要,毫无疑问,计算密集型技术在可靠性数据分析中的应用的趋势将会继续扩大。 1.介绍 本文探讨了人们在可靠性数据分析普遍遇到的三个方面: 寿命数据分析 试验加速数据分析 可修复系统数据的分析 在上述各领域,图形和分析的统计方法已被开发用于探索性数据分析,可靠性预测,并用于比较不同的设计系统,供应商等的可靠性性能。 为了体现将现代统计方法用于结合使用高分辨率图形的使用价值,在下面的章节中图形和统计方法将被应用于含有上述三个方面的可靠性数据的例子中。2.寿命数据分析 概率统计图的寿命数据分析中使用的最常见的图形工具之一。Weibull 图是最常见的使用可靠性的概率图的类型,但是当Weibull概率分布并不符合实际数据的时候,类似于对数正态分布和指数分布这一类的概率图在寿命数据分析中也能够起到帮助。 在许多情况下,可用的数据不仅包含故障时间,但也包含在分析时没有发生故障的单位的运行时间。在某些情况下,只能够知道两次故障发生之间的时间间隔。例如,在测试大量的电子元件时,如果记录每一个发生故障的元件的故障时间,那么这可能不经济。相反,在固定的时间间隔内

可靠性分析报告..

可靠性工程结课论文 题目:混频器组件可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201100384216 学生姓名:郭守鑫 指导教师:尚会超 2014年6月

目录 摘要 (3) 关键词 (3) 1. 元器件清单 (3) 2. 可靠性预测 (4) 3. 可靠性分析 (6) 3.1可靠性数据分析 (7) 3.2故障模式影响 (7) 3.3 危害性分析 (8) 4. 结论和建议 (10) 参考文献 (10)

混频器组件可靠性分析 郭守鑫 (中原工学院机电学院河南郑州 451191) 【摘要】变频,是将信号频率由一个量值变换为另一个量值的过程。具有这种功能的电路称为变频器(或混频器)。输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。混频器通常由非线性元件和选频回路构成。 【关键词】混频器,变频,组件 【Abstract】frequency conversion, is to signal frequency by a value transform into another process of the value. Which has the function of the circuit is called inverter (or mixers). The output signal frequency is equal to the sum of two input signal frequency, or for both other combination of the circuit. Mixer is usually composed of nonlinear components and frequency selective circuit. 【keywords】mixer, frequency conversion, components

可靠度分析方法的一般概念

精心整理基于性能的设计过程为分为三个步骤: ①按照建筑物的用途以及用户对建筑物的需求来确定性能的要求,从而建立一个目标性能; ②根据建立好的目标性能选用一种合适的结构设计方法; ③对各项性能指标进行综合评定,判断所设计的建筑物能否满足目标性能的要求。一般采用风险率 (1 (2 (3 (4 在实际工程中,极限状态函数往往是很难用显式表达出来,响应面法是在设计验算点附近用多项式来拟合复杂的极限状态函数,然后用一般的可靠度计算方法计算结构可靠度,因此响应面法在实际工程的计算当中得到广泛应用。 蒙特卡洛法的原理是: 对所研究的问题建立相似的概率模型,根据其统计特征值(如均值、方差等),采用某种特定方法

产生随机数和随机变量来模拟随机事件,然后对所得的结果进行统计处理,从而得到问题的解。(1)根据待求的问题构造一个合适的随机模型,所求问题的解应该对应于该 模型中随机变量的均值和方差等统计特征值;在主要特征参数方面,所构造的模 型也应该与实际问题相一致。 (2)根据模型中各个随机变量的统计参数和概率分布,随机产生一定数量的 随机数。通常我们先产生服从均匀分布的随机数,然后通过某种变换转化为服从 (3 (4 (5 1 2 3 4、重复2、3过程过程N次(N=600)。 5、统计分析上述过程产生的组抗力,得到偏压柱在偏心距为时的抗力 平均值和标准差。 6、给出一组偏心距值,重复以上步骤,便可得到混凝土偏心受压柱截面抗 力—曲线,平均值及标准差。

验算点法(JC): 洛赫摩和汉拉斯在研究荷载组合时提出了按当量正态化条件,将非正态随机变量当量为正态随机变量进行可靠度计算的新方法。该方法较为直观、易于理解,是国际安全度联合会推荐(JCSS)推荐使用的方法,又称为JC法。 需要已知验算点的坐标值,但对于非正态随机变量和非线性极限状态方程,其坐标值不能预先求得,所以需进行迭代计算。 JC (2)BP 1957 则应对边界条件具 有“最小偏见”的,这实际上是个优化问题,即最大熵原理的定义。 随机有限元法 采用有限元法分析具有确定性物理模型的结构可靠度,可先确定极限状态函数中每项参数如作用效应和结构抗力等的统计参数和概率分布;再通过有限元分析求出结构的随机反应,如结构反应的平

人因可靠性分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.人因可靠性分析正式版

人因可靠性分析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 第一节人因可靠性研究 一、人因可靠性分析的研究背景 随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。 据统计,(20~90)%的系统失效与人有

关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如: l 印度Bhopal化工厂毒气泄漏 l 切尔诺贝利核电站事故 l 三里岛核电站事故 l 挑战者航天飞机失事 因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。而这些都以详尽和准确的人因可靠性分析(Human Reliability Analysis,HRA)为基础。对人因加以研

可靠性报告

基于可靠性和控制性能对电机类型的选择 无刷直流电动机是随着电动机控制技术、电力电子技术和微电子技术发展而出现的一种新型电动机,它的最大特点就是以电子换向线路替代了由换向器和电刷组成的机械式换向结构,同时保持了调速方便的特点,有着功率密度高、特性好、无换向火花及无线电干扰等优点。近年来,DSP在其控制电路中的应用使得无刷直流控制系统的综合性能大为提高,其强大的数据处理能力使得复杂算法数字化得以实现,其单周期乘、加运算能力,可以优化与缩短反馈回路,控制策略得到优化,且它的面向电动机控制的片内外设,使控制系统硬件结构得到简化,有助于实现闭环控制,整个系统的抗负载扰动能力强、频响高、动态性能、稳态精度得到显著提高。 正是考虑到无刷直流电机既具有直流电机效率高、调速性能好等优点,又具有交流电机的结构简单、运行可靠、寿命长、维护方便等优点,其转子惯量小,响应快,同时无刷电动机绕组在定子上,容易散热,也容易做成隔槽嵌放式双余度绕组,并且其以电子换相代替直流电机的机械换相,易做到大容量、高转速,高可靠性的快响应伺服控制系统,因此,舵机系统采用无刷直流电动机作为驱动电机。 采用多余度技术是当前高性能高可靠性要求系统为了提高安全可靠性和任务可靠性的一种重要的工程设计方法。于余度技术是提高系统安全性与可靠性的一种手段,因而在需要高可靠性或超高可靠性的系统,如航空航天飞行控制、通信系统的计算机管理等工程应用领域得到广泛应用。舵机作为飞控系统的执行部件, 它的故障将直接影响飞行器系统的正常工作, 因此多余度舵机是改进飞行控制系统性能, 提高飞行器可靠性、安全性的关键技术。 对于舵机系统,电机绕组、功率逆变器、转子位置传感器在当今技术条件下仍为系统的薄弱环节,在航空航天等高可靠性领域,采用单通道设计往往不能满足要求。因此,在电机定子中隔槽嵌放两套独立绕组,采用两套独立的功率逆变器和两套独立的转子位置传感器构成双余度无刷直流电动机控制系统可以提高整机可靠性。双余度系统通常工作在热备份方式,当一个电气通道发生故障,另一个通道仍能继续工作,系统可靠性大为提高。

地铁供电系统可靠性和安全性分析方法研究(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁供电系统可靠性和安全性分析方法研究(通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

地铁供电系统可靠性和安全性分析方法研 究(通用版) 摘要:随着社会的快速发展,地铁也渐渐的融入了人们的生活,为人们提供了便利的出行条件。地铁的供电系统是否安全和可靠运行直接影响到地铁的安全运行和稳定性能。随着地铁线路不断增设,地铁的供电系统也越来越复杂化,出现故障的可能性也在不断提高。如果地铁的供电系统出现故障,会直接导致城市地铁运输功能的失灵,可能会危及乘客的生命和安全。因此,本文重点对地铁供电系统的可靠性和安全性进行分析,旨在提高地铁的运行效率和安全性能。 关键词:地铁供电系统;可靠性;安全性;分析方法;研究 一、地铁供电系统的概述 随着社会和经济的迅速发展,我国的城市人口密度也在不断增

加,人们对地铁的需求也随之不断增强,地铁已经成为人们生活中不可或缺的交通工具,由于地铁具有运行速度快、旅客运送量大、车次多、方便舒适等优点,所以被众多国家所使用,缓解了城市大部分的交通压力。因此,我们对地铁可靠性、安全性的要求也越来越高。地铁供电系统的安全可靠运行,对地铁列车的安全可靠运行起着至关重要的作用。供电系统是地铁运行的重要组成部分,供电系统的安全可靠是地铁正常运行的前提和重要保障。 二、地铁供电系统的组成部分 地铁供电系统是为地铁车辆提供电能运行动力的系统。地铁供电系统是由两部分内容组成。第一部分是高压的供电系统,高压供电的系统的供电方式有三种:集中式供电、分散式供电和混合式供电。集中式供电具有可靠性高、便于统一调度管理、施工方便、维护简单、计费便捷等优点,但投资比较大。分散式供电方式一般会受外部电网影响,可靠性相对差一些。混合供电方式集中了前两者共同的优点,但是增大了复杂性。所以,三种供电方式各有其自身的优点和缺点,需要根据地铁运行及管理的实际情况进行选择;而

典型认知模型及其在人因可靠性分析中的应用评述[1]

万方数据

万方数据

万方数据

万方数据

万方数据

典型认知模型及其在人因可靠性分析中的应用评述 作者:蒋英杰, 孙志强, 李龙, 宫二玲, 谢红卫, JIANG Ying-jie, SUN Zhi-qiang, LI Long, GONG Er-ling, XIE Hong-wei 作者单位:国防科学技术大学机电工程与自动化学院,长沙,410073 刊名: 安全与环境学报 英文刊名:JOURNAL OF SAFETY AND ENVIRONMENT 年,卷(期):2011,11(1) 被引用次数:1次 参考文献(41条) 1.冯述虎;侯运炳Human reliability qualitative and quantitative analysis in coal production 1999(45) 2.周前祥载人航天过程中人的可靠性研究[期刊论文]-上海航天 2001(4) 3.黄曙东,张力核电站人因可靠分析与应用[期刊论文]-南华大学学报(理工版) 2002(1) 4.DHILLON B S Human reliability and error in medical system 2003 5.苏畅,张恒喜飞机作战效能评估中人的可靠性的引入方法[期刊论文]-航空学报 2006(2) 6.隋东,韩明良,董襄宁,王世锦空中交通管制员认知可靠性研究[期刊论文]-南京航空航天大学学报 2007(3) 7.刘维平,曹伟国,杨立强,金丽亚装甲装备中人的可靠性统计与分析[期刊论文]-兵工学报 2007(1) 8.王以群,李鹏程,张力网络信息安全中的人因失误分析[期刊论文]-情报科学 2007(11) 9.SWAIN A D;GUTTMANN H E Handbook of human reliability analysis with emphasis on nuclear power plant applications,NUREG/CR-1278 1983 10.HANAMAN G W;SPURGIN A J;LUKIC Y Human cognitive reliability model for PRA analysis,NUS-4531 1984 11.EMBREY D E SLIM-MAUD:an approach to assessing human error probabilities using structured expert judgment,NUREG/CR-3518 1983 12.谢红卫,孙志强,李欣欣,李政仪,张明,史秀建,李龙典型人因可靠性分析方法评述[期刊论文]-国防科技大学学报 2007(2) 13.FORESTER J;KOLACZKOWSKI A;COOPER S E ATHEANA user's guide 2007 14.HOLLNAGEL E Cognitive reliability and error analysis method(CREAM) 1998 15.CGANG Y H J;MOSLEH A Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents,Part 1-5 2007(08) 16.高佳,沈祖培,何旭洪第二代人的可靠性分析方法的进展[期刊论文]-中国安全科学学报 2004(2) 17.王遥,沈祖培CREAM--第二代人因可靠性分析方法[期刊论文]-工业工程与管理 2005(3) 18.高文宇;张力Second general HRA method-CREAM and its applied research 2002(04) 19.FUKUDA M;UCHIDA T;HIRANO M Trial application of ATHEANA to SGTR in level 1 for a Japanese PWR 2004 20.DOUGHERTY E Context and human reliability analysis 1993(01) 21.GARETH W P Suggestions for an improved HRA method for use in probabilistic safety assessment 1995(01) 22.KONTOGIANNIS T A framework for the analysis of cognitive reliability in complex systems:a recovery centered approach 1997(02) 23.HANNAMANN G;SPURGIN A Systematic human action reliability procedure(SHARP) 1984

汽车发动机可靠性分析研究报告

可靠性工程结课论文 题目:汽车发动机可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201800384216 学生姓名:郭守鑫 指导教师:尚会超 2018年6月1日

目录 摘 要 (3) 关键词 (3) 前 言 (3) 1. 可靠性及可靠性技术的概念 (4) 2. 可靠性分析方式 (5) 2.1 指数分布 (5) 2.2 正态分布 (5)

2.3 威布尔分布 (6) 3. 汽车发动机可靠性评定指标 (6) 4. 当前汽车发动机可靠性方面存在的主要问题 (7) 4.1 设计、工艺质量问题 (7) 4.2 常见的共性问题 (8) 5. 可靠性综合评估认定 (8) 6. 如何提高汽车发动机的可靠性 (9) 参考文献 (9)

汽车发动机可靠性分析 郭守鑫 <中原工学院机电学院河南郑州 451191) 摘要:发动机是汽车的的核心部分,其技术性能的好坏是决定汽车行驶性能的关键因素。而其中汽车发动机的可靠性是关系到主要技术性能“何时失效”的问题,这是汽车发动机至关重要的技术指标。本文针对汽车发动机可靠性及其相关问题进行分析研究,主要论述了发动机可靠性分析方法、评定指标、实验方法以及国内外发展状况、当前汽车发动机可靠性方面存在的问题和提高汽车发动机可靠性的一些意见。 【关键词】汽车发动机;可靠性;分析方法;评定指标 Abstract:The core part of the car engine, and its technical performance quality is a key factor in determining performance cars. Automotive engine reliability which is related to the main technical performance "when failure" problem, which is crucial to the car engine specifications. This paper for automotive engine reliability analysis and related issues,discusses the reliability analysis methods engines, evaluation indicators, testing methods and the development of domestic and international situation, the current existing car engine reliability problems and improve the reliability of the car engine some comments. 【Keywords】automobile engine。 reliability。 analysis。 assessment index 前言 众所周知,当前汽车行业总体火爆,人们对汽车的需求量在日益增长。然而由于发动机质量问题而引发的汽车整体质量问题也是数见不鲜,甚至导致一些事故的发生,它所引发的一连串问题却硬生生的摆在消费者和制造厂商之间。在如何保证汽车整体质量的问题上,保证汽车发动机的质量至关重要,其

可靠性失效解析总结计划常见方法总结计划.docx

可靠性失效分析常见思路 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措 施要切实可行。 1失效分析思路的内涵 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律( 即宏观表象特征和微观过程机理 ) 为理论依据,把通过调查、观察和实验获得的失效信息( 失效对象、失效现象、失效 环境统称为失效信息 ) 分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事 实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思 路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、 程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序; 机械的失效往往是多种原因造成的,即一 果多因,常常需要正确的失效分析思路的指导; 对于复杂的机械失效,涉及面广,任务艰巨,更需要正 确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路, 才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工 作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵 魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析 可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如“顺藤摸瓜”,即以失效过 程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果“; 顺藤找根”,即以失 效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因“; 顺瓜摸 藤”,即从过程中的终点结果出发,不断由过程的结果推断其原因“顺; 根摸藤”,即从过程起始状态 的原因出发,不断由过程的原因推断其结果。再如“顺瓜摸藤+顺藤找根”、“顺根摸藤+顺藤摸瓜”、“顺藤摸瓜 +顺藤找根”等。 2失效分析的主要思路 常用的失效分析思路很多,笔者介绍几种主要思路。 “撒大网”逐个因素排除的思路 一桩失效事件不论是属于大事故还是小故障,其原因总是包括操作人员、机械设备系统、材料、 制造工艺、环境和管理 6 个方面。根据失效现场的调查和对背景资料( 规划、设计、制造说明书和蓝图)

人因可靠性分析(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 人因可靠性分析(最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

人因可靠性分析(最新版) 第一节人因可靠性研究 一、人因可靠性分析的研究背景 随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。 据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l印度Bhopal化工厂毒气泄漏 l切尔诺贝利核电站事故

l三里岛核电站事故 l挑战者航天飞机失事 因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。而这些都以详尽和准确的人因可靠性分析(HumanReliabilityAnalysis,HRA)为基础。对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成为国际上核电事业发展所面临的重大课题。 目前,我国核电厂操纵员的可靠性研究还处于起步阶段。在理论方面,以往的研究主要停留在利用国外较成熟的理论模型阶段,对理论模型的深入研究较为缺乏;在实际方面,所进行的研究还未能与我国的核电厂实际运行紧密配合。 因此,对我国核电厂操纵员进行可靠性研究有着重要的意义:第一,填补在高风险情况下人对事故响应的可靠性数据的空白; 第二,了解操纵员或其他电厂人员如何对事故进行响应,改进核电厂的操作规程;

基于混合法的监控系统可靠性分析

基于混合法的监控系统可靠性分析 于 敏a ,何正友b ,钱清泉b (西南交通大学 a. 信息科学与技术学院;b. 电气工程学院,成都 610031) 摘 要:针对复杂监控系统规模庞大及关键设备为双机冗余结构的特点,提出以动态故障树(DFT)为基础并结合蒙特卡罗方法对监控系统进行可靠性分析的混合方法。利用DFT 建立系统可靠性模型,通过蒙特卡罗仿真算法对模型进行仿真计算,得到系统的可靠性指标。通过对地铁车站级监控系统的可靠性分析,证明了该模型的可行性和算法的有效性。 关键词:监控系统;动态故障树;蒙特卡罗方法;可靠性分析 Reliability Analysis of Monitor System Based on Hybrid Method YU Min a , HE Zheng-you b , QIAN Qing-quan b (a. School of Information Science & Technology; b. School of Electric Engineering, Southwest Jiaotong University, Chengdu 610031, China) 【Abstract 】For dealing with the large scale characteristic of complex monitor system as well as redundant structures of critical components, a hybrid method of reliability analysis for monitor system is presented on basis of dynamic fault tree and in combination with Monte Carlo simulation algorithm. Dynamic Fault Tree(DFT) is used to establish the reliability model of monitor systems. Reliability indices can be obtained by Monte Carlo method, which is used to solve the reliability model. A special reliability analysis case of the subway station-level monitor system is proposed, it demonstrates the feasibility of the model and the effectiveness of the algorithm. 【Key words 】monitor system; Dynamic Fault Tree(DFT); Monte Carlo method; reliability analysis 计 算 机 工 程 Computer Engineering 第36卷 第19期 Vol.36 No.19 2010年10月 October 2010 ·博士论文· 文章编号:1000—3428(2010)19—0014—04 文献标识码:A 中图分类号:TP391 1 概述 监控系统是实现监视控制与数据采集功能的系统,完成远方现场运行参数与开关状态的采集和监视、远方开关的操作、远方参数的调节等任务,并为采集到的数据提供共享的途径[1-2]。监控系统作为一种保证复杂系统正常工作与提高其运行可靠性的重要手段已经被广泛应用[3]。 对系统进行可靠性分析时,经常采用静态(传统)故障树模型及其相应的处理方法。但在工程中,监控系统的关键设备诸如服务器、网络设备等多采用双机冗余结构,而传统故障树方法用于描述冗余部件之间的顺序失效以及动态冗余管理机制时存在局限。因此,可引入动态故障树(Dynamic Fault Tree, DFT)对其进行可靠性分析。DFT 是在传统故障树基础上引入新的逻辑门来表征动态系统故障行为,常利用Markov 状态转移过程进行计算,但它的计算量将随着系统规模的增 大呈指数增长[4], 且Markov 过程仅适用于失效与维修时间变量服从指数分布的情况。文献[5]提出利用基于梯形公式的顶事件概率计算法,但仍然存在组合爆炸的问题,并不适用于大型监控系统分析。而蒙特卡罗方法作为一种以概率统计理论为基础的数值计算方法,其计算量不受系统规模的制约[6]。结合DFT 具有建模物理概念清楚的特点,本文提出利用混合法对监控系统可靠性进行分析。 2 监控系统可靠性模型 2.1 动态逻辑门 DFT 指至少包含一个专用动态逻辑门的故障树,具有顺序相关性、容错性以及冗余等特性[3],本文对监控系统可靠性分析可引入如图1所示的4个动态逻辑门。图1(a)~图1(c)为双机储备门,用于描述双机冗余子系统的状态与其主、备用设备状态之间的关系。其中,输入事件A 、B 分别用于描述主、备用设备的状态,输出事件C 则用于描述双机冗余子系统的状态。若主设备的失效率为λ,备用设备的失效率一般为αλ,01α≤≤。当冷储备时备用设备故障率为0,则 0=α;温储备时备用设备故障率小于主设备故障率,则10<<α;热储备时主、备用设备的故障率相同,即有1=α。图1(d)为顺序与门,当且仅当事件按从A 到B 的顺序发生时,输出事件C 才会发生。 (a)双机冷备门 (b)双机温备门 (c)双机热备门 (d)顺序与门 图1 动态逻辑门 2.2 DFT 预处理 当使用混合法对监控系统可靠性进行分析时,根据系统的失效原因建立DFT ,DFT 的顶事件为系统的故障事件,底事件为设备的故障事件。但蒙特卡罗方法是依据静态故障树的结构函数作为仿真的逻辑关系,因此,仿真之前需对DFT 进行预处理,将DFT 转换成静态故障树的方法如下: 基金项目:国家自然科学基金资助项目(50878188) 作者简介:于 敏(1982-),女,博士研究生,主研方向:大型监控系统可靠性分析;何正友,教授、博士生导师;钱清泉,教授、 中国工程院院士 收稿日期:2010-04-18 E-mail :yugnm@https://www.360docs.net/doc/b0551462.html,

相关文档
最新文档