4.1根轨迹的基本概念

根轨迹的概念

根轨迹的概念特征方程<见传递函数)的根随某个参数由零变到无穷大时在复数平面上形成的轨迹,称为根轨迹。我们先看下面的例子。设单位反馈系统的开环传递函数为: 当开环放大系数K从零到无穷大变化时,系统的特征根在s平面上 怎样分布? 解系统有两个开环极点 系统的闭环传递函数为 系统的特征方程为 特征方程的根 可见特征根在s平面的位置与K有关。 K=0时,,与开环极点的位置相同。 0

渐增大,和也从开环极点的位置开始逐渐接近。K=1/4时,==-0.5,两个闭环极点重合。K>1/4时,和都成为共轭复数。b5E2RGbCAP 具有相同的负实部,且为常数,而虚部则随K的增加其绝对值也 增加。图3.28给出了系统的特征根在K从零变化到无穷大时,相应位置的变化情况。这种放大系数K从零到无穷大变化时,特征方程的根在s平面上相应变化的轨迹,称为根轨迹。根轨迹完整地反映了特征根随参数变化的情况。根据图3.28的根轨迹图,我们可以知道,在K<1/4时,系统的单位阶跃响应中含有两个指数项函数。在K=1/4时,两个指数项函数合二为一。在K1/4时,根轨迹进入复平面,说明系统的单位阶跃响应由单调变化转变为振荡。从图还可以看出,不论K怎样变化,系统始终是稳定的。因为全部根轨迹都分布在s平面左半边。p1EanqFDPw

图3.28 特征根随K的变化情况 根轨迹的基本条件控制系统的特征方程为 (3.145> 式中为系统前向通道传递函数,H(s>为系统反馈通道传递函数。上式可改写为 (3.146> 将系统的开环传递函数写成零极点形式 (3.147>

水平井井眼轨迹控制

水平井井眼轨迹控制 第一章水平井的分类及特点 (2) 第二章水平井设计 (4) 第三章水平井井眼轨迹控制基础 (8) 第四章水平井井眼轨迹控制要点 (13) 第五章水平井井眼轨迹施工步骤 (21)

第一章水平井的分类及特点 水平井的概念:是最大井斜角保持在90°左右(大于86°),并在目的层中维持一定长度的水平井段的特殊井(通常大于油层厚度的6倍)。 一、水平井分类 二、各类水平井工艺特点及优缺点

三、水平井的优点和应用 1、开发薄油藏油田,提高单井产量。

2、开发低渗透油藏,提高采收率。 3、开发重油稠油油藏,有利于热线均匀推进。 4、开发以垂直裂缝为主的油藏,钻遇垂直裂缝多。 5、开发底水和气顶活跃油藏,减缓水锥、气锥推进速度。 6、利用老井侧钻采出残余油,节约费用。 7、用丛式井扩大控制面积。 8、用水平井注水注气有利于水线气线的均匀推进。 9、可钻穿多层陡峭的产层。 10、有利于更好的了解目的层性质。 11、有利于环境保护。 第二章水平井设计 一、设计思路和基本方法: 简而言之,就是“先地下后地面,自下而上,综合考虑,反复寻优”的过程。

二、水平井靶区参数设计 与定向井不同,水平井的靶区一般是一个包含水平段井眼轨道的长方体或拟柱体。靶区参数主要包括水平段的井径、方位、长度、水平段井斜角、水平段在油藏中的垂向位置、靶区形状和尺寸。 1、水平段长度设计 设计方法:根据油井产量要求,按照所期望的产量比值(即水平井日产量是临近直井日产量的几倍),来求解满足钻井工艺方面的约束条件的最佳水平段长度值。约束条件主要有钻柱摩阻、扭矩,钻机提升能力,井眼稳定周期,油层污染状况等。 2、水平段井斜角的确定 应综合考虑地层倾角、地层走向、油层厚度以及具体的勘探开发要求。 βα±?=90H ,β为地层真倾角 当地层倾角较大而水平段斜穿油层时,则应考虑地层视倾角的影响,[])cos(90H H d tg arctg Φ-Φ-?=βα, d Φ为地层下倾方位角,H Φ为 水平段设计方位角 3、水平段垂向位置确定 油藏性质决定了水平段的设计位置。对于无底水、无气顶的油藏,水平段宜置于油层中部;对于有底水或气顶的油藏,水平段应尽量远离油水或气水边界;对于既有底水又有气顶的油藏,

钻井工程:第五章井眼轨道设计与轨迹控制.

第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别? 答: 水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同? 答: 狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5.垂直投影图与垂直剖面图有何区别? 答: 垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办? 答: 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系? 答: 测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角)。

轨道交通主要概念

轨道交通主要概念 1.城市轨道交通运营线路的基本组成 城市轨道交通运营线路由车站和区间两个部分组成。 (1)车站:车站的生产活动及其主要设备城市轨道交通系统车站每天主要的生产活动是办理行车与客运作业。 车站设置的技术设备主要有: 线路:车站线路包括正线、配线、折返线和存车线,是列车在站内到、发及停留,或进行折返作业的线路。 信号与通信设备:为保证行车作业安全和提高行车作业效率,在车站设置信联闭和通信设备。信号是对行车和其他有关作业人员发出的指示,联锁设备是保证车站范围内行车安全的设备,闭塞设备是保证区间内行车安全的设备。 站台:站台主要供列车停靠和乘客候车、上下车使用。站台按型式不同,有岛式站台、侧式站台、混合式站台和纵列式站台等型式。 站厅、通道和升降设备。 售检票设备。 作业或设备用房。 (2)区间:指两个车站进站信号机之间的区段。主要设备包括区间线路、道岔和信号机。 2.RailSys中基础设施管理模块涉及的关键概念 (1)车站线路:车站是设配线的分界点。在车站内除与区间直接连通的正线外,还设有到发线、牵出线、货物线、存车线、检修线和安全线、避难线等。 (2)站界:在铁路线上,为了保证行车安全和分清责任事故,车站和区间的范围都有明确的规定。单线铁路是以车站两端进站信号机机柱中心线为界,内方为车站,外方则为区间。双线铁路站界是按上下行方向分别确定的。一端以进站信号机为界,一端以站界标为界。站界确定后就可以确定车站的范围。 (3)道岔:是列车从一股道转向另一股道的转辙设备。通过将道岔版扳动到不同的位置,确定不同的路径。 (4)信号设备是信号、联锁、闭塞设备的总称。 信号是指示列车运行和调车工作的命令。

井眼轨迹的三维显示

中文摘要 井眼轨迹的三维显示 摘要 本文介绍了国内外井眼轨迹三维显示技术的研究现状,归纳了常规二维定向井轨道设计原则和几种轨道类型的计算方法,以及井眼轨迹测斜计算的相关规定、计算模型假设和轨迹计算方法。从井位、井下测量和计算三个方面对井眼轨迹误差进行了讨论并简要说明了不同的井眼轨迹控制。在此基础之上,利用VB和MATLAB软件编制了井眼轨迹的三维显示软件,并简要介绍了该软件的设计流程、主要功能和难点处理,指出了软件的不足之处,展示了井眼轨迹三维绘图的所有运行界面,并附上软件说明书。最后,对井眼轨迹三维显示开发的研究方向进行了展望。 关键字井眼轨迹三维显示 MATLAB Visual Basic 轨迹计算轨道设计误差分析

重庆科技学院本科生毕业设计英文摘要 Abstract In this paper, at home and abroad well trajectory 3-D display technology of the status quo,Summarized the conventional two-dimensional directional well the track design principles and track several types of calculation method,And the well trajectory inclinometer terms of the relevant provisions, the model assumptions and trajectory calculation. From the wells, underground measurement and calculation of the three aspects of the well trajectory error was discussed and a brief description of the different well trajectory control. On this basis, using VB and MATLAB software produced a hole trajectory of the three-dimensional display software, and gave a briefing on the software design process, and difficulties in dealing with the main function, pointed out the inadequacy of the software, demonstrated the well trajectory 3-D graphics interface all the running, along with software manuals. Finally, the well trajectory 3-D display development direction of the prospect. Keyword:Well trajectory;3-D display;MATLAB ;Visual Basic;trajectory calculation ;trajectory design ;Error Analysis

城市轨道交通工程试运营基本条件

城市轨道交通工程试运营基本条件 GB 30012-2013 1 范围 本标准规定了城市轨道交通试运营的基础条件、限界、土建工程、车辆与车辆基地、运营设备系统、人员、运营组织、应急与演练与系统测试检验等方面应达到的基本要隶。 本标准适用于新建、改建、扩建等城市轨道交通线路投入试运营基本条件的认定。 2 规范性引用文件 下列文件对于本文件的应用就是必不可少的。凡就是注日期的引用文件,仅注日期的版本适用于本文件。凡就是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB7588电梯制造与安装安全规范 GB/T7928地铁车辆通用技术条件 GB/T12758城市轨道交通信号系统通用技术条件 GB/T16275城市轨道交通照明 GB16899自动扶梯与自动人行道的制造与安装安全规范GB/T20907城市轨道交通自动售检票系统技术条件 GB50157地铁设计规范 GB50382城市轨道交通通信工程质量验收规范 GB50490城市轨道交通技术规范 GB50578城市轨道交通信号工程施工质量验收规范

GB/T30012-2013城市轨道交通运营管理规范 3 术语与定义 《城市轨道交通运营管理规范》(GB/T30012-2013)中界定的以及下列术语与定义适用于本文件。 3、1城市轨道交通urbanrailtransit 采用专用轨道导向运行的城市公共客运交通系统,包括地铁系统、轻轨系统、单轨系统、有轨电车、磁浮系统、自动导向轨道系统、市域快逮轨道系统。 3、2试运行trialrunning 城市轨道交通工程冷、热滑试验成功,系统联调结束,通过不载客列车运行,对运营组织管理与设施设备系统的可用性、安全性与可靠性进行检验。 3、3试运营trialoperation 城市轨道交通工程所有设施设备验收合格,整体系统可用性、安全性与可靠性经过试运行检验合格后,在正式运营前所从事的载客运营活动。 3、4运营单位operationcompany 经营城市轨道交通运营业务的企业。 4 基础条件 4、1运营单位资格 城市轨道交通运营单位应按有关规定取得相应的经营许可。 4、2工程基本条件

卫星轨道和TLE数据

卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为“轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图: 1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是0.

这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。 这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指出的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。但是由于完备的描述也只需要6个参数,所以他们之间存在着固定的换算关系。比如轨道周期就可以由半长轴唯一来确定(这在下面讲TLE的时候也会涉及到),反之亦然。上面选取的这组是比较自然的一组。 ---------------------------------------------------------------------------------------------------------------------------- 下面讲讲TLE(Two-Line Element)两行数据。以北斗最近的数据为例 BEIDOU 2A 1 30323U 07003A 07067.68277059 .00069181 13771-5 44016- 2 0 587 2 3032 3 025.0330 358.9828 7594216 197.8808 102.7839 01.92847527 650 真正的数据实际上是下面2行,但是上面有一行关于空间物体其他情况的一些信息(空间物体可以是卫星,可以是末级火箭,可以是碎片。这里简单起见,就叫卫星)。头一个是卫星名称。注意这个是会变的,而且不一定准确。卫星发射后的头几个TLE数据里,往往只叫Object A, B, C... 慢慢的会搞清楚哪个是卫星,哪个是末级火箭,哪个是分离时的碎片,并且给予相应的名称。但是如果这个是其他国家的保密卫星,则这个卫星名字就纯粹是美国的猜测了,比如我们的这个北斗。有些情况下,名称这一行里还包含了一些数字,关于卫星的尺度,亮度等等。 TLE第一行数据 1 30323U 07003A 07067.68277059 .00069181 13771-5 44016- 2 0 587 30323U 30323是北美防空司令部(NORAD)给出的卫星编号。U代表不保密。我们看到的都是U,否则我们就不会看到这组TLE了 07003A 国际编号,07表示2007年(2位数字表示年份在50年以后会出问题,因为1957年人类发射了第一个轨道物体),003表示是这一年的第3次发射。A则表示是这次发射里编号为A的物体,其他还有B,C,D等等。国际编号就是2007-003A. 07067.68277059 这个表示这组轨道数据的时间点。07还是2007年,067表示第67天,也就是3月8日。 68277059表示这一天里的时刻,大约是16时22分左右。

钻井工程井眼轨道设计与轨迹控制

. 第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 方位线位置真方位角与象限角关系 真方位角=象限角第一象限 真方位角=180°第二象限-象限角 真方位角=180°+象限角第三象限 -象限角360°真方位角=第四象限 水平投影长度与水平位移有何区别?视平移与水平位移有何区别.?3 答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 .5 垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.?实际资料中如果超过了怎么办?180 为什么要规定一个测段内方位角变化的绝对值不得超过答: 测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测7.点计算有什么关系?答:坐标增量和井眼曲率;测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E 坐标、视平移)对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、E坐标、N 和两个极坐标(水平位移、平移方位角)。. .

卫星轨道和TLE数据

百度文库-让每个人平等地提升自我 卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和 TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。/ 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道 时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图: a 1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是 0.

这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是 0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张 角称为升交点赤经。 这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道 在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指岀的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。但是由于完备的描述也只需要6个参数,所以他们之间存在着固定的换算关系。 比如轨道周期就可以由半长轴唯一来确定(这在下面讲TLE的时候也会涉及到),反之亦然。上面选取的这 组是比较自然的一组。 下面讲讲TLE(Two-Line Element)两行数据。以北斗最近的数据为例 BEIDOU 2A 1 30323U 07003A 07067. .00069181 13771-5 44016- 2 0 587 2 3032 3 7594216 01. 650 真正的数据实际上是下面2行,但是上面有一行关于空间物体其他情况的一些信息(空间物体可以是卫星,可以是末级火箭,可以是碎片。这里简单起见,就叫卫星)。头一个是卫星名称。注意这个是会变的,而且 不一定准确。卫星发射后的头几个TLE数据里,往往只叫Object A, B, C...慢慢的会搞清楚哪个是卫星, 哪个是末级火箭,哪个是分离时的碎片,并且给予相应的名称。但是如果这个是其他国家的保密卫星,则这个卫星名字就纯粹是美国的猜测了,比如我们的这个北斗。有些情况下,名称这一行里还包含了一些数字,关于卫星的尺度,亮度等等。 TLE第一行数据 1 30323U 07003A 07067. .00069181 13771-5 44016- 2 0 587 30323U 30323是北美防空司令部(NORAD)给出的卫星编号。U代表不保密。我们看到的都是U,否则我 们就不会看到这组TLE 了 07003A国际编号,07表示2007年(2位数字表示年份在50年以后会出问题,因为1957年人类发射了第一个轨道物体),003表示是这一年的第3次发射。A则表示是这次发射里编号为A的物体,其他还有B,C,D等等。国际编号就是2007-003A. 07067.这个表示这组轨道数据的时间点。07还是2007年,067表示第67天,也就是3月8日。 表示这一天里的时刻,大约是16时22分左右。 .000069181平均运动的对时间一阶导数除2。注意这个并不是瞬时角速度

第四章 根轨迹方程

第四章 根轨迹法 4-1 根轨迹的基本概念 一. 根轨迹概念: 闭环系统的动态性能与闭环极点在s 平面上的位置密切相关,系统的闭环极点也就是特征方程式的根. 当系统的某一个或某些参量变化时,特征方程的根在s 平面上运动的轨迹称为根轨迹. 根轨迹法: 直接由开环传递函数求取闭环特征根的方法. 例: 设控制系统如图4-1所示 ()() 15.0+= s s K s G ()() 2220 +=+= s s K s s K , 开环极点: 01=p , 22-=p ()()()0 20 2K s s K s R s C s ++== Φ;式中K K 20= 此系统的特征方程式可写为:()02,1121102K s K s s s -±-=?=++=? 讨论: 200210-===s s K ,时, 111210-=-==s s K ,时, j s j s K --=+-==112210,时, ∞--=∞+-=∞=j s j s K 11210,时, 令k 为0 ∞.可以用解析的方法求出闭环极点的全部数值,将这些数值 图4-1 控制系统的结构图 R (s ) C (s ) K s(0.5s+1)

标住在S 平面上,并连成光滑的粗实线,如图4-2所示。图上,粗实线就称为系统的根轨迹。 分析: 1.0K 变化时,根轨迹均位于左半s 平面,系统恒稳定. 2.根轨迹有两条,两个起点2,021-==s s 3.100<K 时,闭环特征根为共轭复根,响应为衰减振荡. 6.开环增益K 可有根轨迹上对应的0K 值求得. 0K 为可变参量绘制的根轨迹,称为常规根轨迹. 二、根轨迹的幅值条件和相角条件 设单闭环控制系统框图如图: 通常有两种表示形式: A .时间常数形式: ∏∏==++= n i i m j j s T s K s H s G 1 1) 1() 1()()(τ 图4-3 控制系统的结构图 R (s ) C (s ) H(S) G(S)

水平井井眼轨迹控制

水平井井眼轨道控制 班级:采油60901 学号:200962276 序号:4 姓名:蒋凯 指导老师:卢林祝

在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。 一、水平井的中靶概念 地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。 二、水平井增斜井段井眼轨迹控制的特点及影响因素 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。 水平井钻井工程设计中所给定的钻具组合是在一定的理论计算

和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中或滞后。 实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是: ①实钻轨迹点的位置超前,相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。 ②轨迹点位置适中,若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。 ③轨迹点的位置滞后,相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。 实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。 在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新

卫星轨道基本概念

卫星轨道 本节中将简单说明人造卫星轨道的特性。为方便起见,假设卫星轨道是圆形的,这样也可得到许多有用的信息。 以地心为中心可画出一个半径无穷大的圆球,这个球面称为天球(celestial sphere)。天空中的太阳、月亮以及星星和地心的联机会和天球相交于一点,因此天体的运动可用它们在天球上的轨迹来表示(图1)。地球赤道面和天球的交线称为天球赤道。地球实际上是绕日运行的,但以固定在地球上的坐标系来看,太阳会绕地球运行,这就是太阳的视运动(apparent motion)。太阳在天球上的轨迹称为黄道,黄道面和赤道面的交线称为二分线,二分线和天球的交点称为二分点,即 图1 天球及太阳的视运动。

图2 地心赤道面坐标系。 春分点和秋分点。黄道面和赤道面的夹角约为23o27′。黄道面上有 两点距赤道面最远,位于北半球的称为夏至点,位于南半球的称为冬至点。当太阳在夏至点时,它直射北回归线;当太阳在冬至点时,它直射南回归线。 地心赤道面坐标系 以地心为原点可以建立一个坐标系,X 和Y 轴在赤道面上,X 轴指向春分点,Z 轴为地球自转轴,指向北极。这个坐标系不随地球自转而转动,称为地心赤道面坐标系,如图2 所示。由于岁差(precession)的缘故,春分点会往西移动,故地心赤道面坐标也不是惯性坐标系。不过由于卫星绕地运动的周期远小于岁差的周期,因此讨论卫星轨道时,可将地心赤道面坐标系当做惯性坐标,在实用上可令X 轴指向某一年(如1950 年)的春分方向。 近地点坐标系 描述卫星在轨道面上运动最方便的坐标系是近地点坐标系xω ,

yω ,zω ,如图3 所示。这个坐标系原点在地心(即焦点)上,xω和yω 轴在轨道面上,xω轴指向近地点,将xω轴沿卫星运动方向转动90°就得到 图3 卫星的椭圆轨道,υ为真近点角。 yω 轴,zω轴则和xω , yω轴形成右手坐标系。因为卫星在轨道面上运动,故其zω坐标等于零。 经典轨道要素 要完全描述卫星在轨道上的运动,除了初始时间外,需要6 个参数,这些称为经典轨道要素(classical orbital elements)。这些是椭圆轨道的半长轴a , 偏心率(eccentricity)e,真近点角(true anomaly)υ ,升交点赤经(right ascension of ascending node)Ω,轨道倾角(orbitalinclination)i以及近地点辐角(argument of perigee)ω。最后三个角度称为经典定向角。半长轴a和偏心率e可以完全决定椭圆形的大小;真近点角υ可决定卫星在椭圆轨道上的位置,一般说来通常都用平近点角(mean anomaly)代替真近点角。至于经典定位角Ω , i ,

卫星轨道种类

简单的说:所有的地球卫星都是靠万有引力(或者可以叫做重力)充当向心力,所以,万有引力指向地心,而向心力的“心”也是地心,一句话:所有的地球卫星都是围绕地心做圆周运动的(无论是极地卫星、同步卫星还是一般卫星)。 下面有一篇文章对卫星有比较详细的论述,你看看。 人造地球卫星原理2008-06-10 下午08:24“人造卫星”就是我们人类“人工制造的卫星”。科学家用火箭把它发射到预定的轨道,使它环绕着地球或其他行星运转,以便进行探测或科学研究。围绕哪一颗行星运转的人造卫星,我们就叫它哪一颗行星的人造卫星,比如最常用于观测、通讯等方面的人造地球卫星。 地球对周围的物体有引力的作用,因而抛出的物体要落回地面。但是,抛出的初速度越大,物体就会飞得越远。牛顿在思考万有引力定律时就曾设想过,从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也就一次比一次离山脚远。如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。 人造卫星是发射数量最多,用途最广,发展最快的航天器。1957年10月4日苏联发射了世界上第一颗人造卫星。之后,美国、法国、日本也相继发射了人造卫星。中国于1970年4月24日发射了东方红1号人造卫星,截止1992年底中国共成功发射33颗不同类型的人造卫星。 人造卫星一般由专用系统和保障系统组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统。主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。 人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所遥感的面积可达几万平方千米。

卫星通信第2章 卫星轨道、星座和系统概念

第二章 卫星轨道、星座和系统概念 本书的这一部分讲述卫星轨道机制这一主题,讨论卫星与地面终端之间的一些几何关系。同时介绍几种用于建立起区域或全球卫星系统的不同卫星星座。 §2.1卫星轨道 在17世纪早期,Johannes Kepler 发现一些重要的行星运动特性,这些特性被总称为Kepler 定律。 —第一定律(1602):行星在一个平面内运动;轨道为环绕太阳的椭圆,且太阳在该椭圆的一个焦点上; —第二定律(1605):太阳与行星之间的线在相同的时间间隔内扫出相同的面积。 —第三定律(1618):轨道周期T 的平方和轨道椭圆主半轴a 的立方之比值,对所有行星而言,是相等的。 这些定律适应于受引力作用的任意二体系统,因此也能够用来描述卫星环绕地球的运行。轨道力学机制的广泛处理详见教材书[BMW71,MB93,Dav85]。 2.1.1 椭圆和圆周轨道 图2.1表示了遵循Kepler 第一定律的椭圆卫星轨道的几何体制。卫星轨道呈椭圆形,其中地球位于它的一个焦点上。这个椭圆由两个参数确定:长半轴a 和短半轴b 。椭圆的形状也可以由数字离心率来描述 a apogee ——远地点 perigee ——近地点 由这一参数:焦点到椭圆中心的距离可以被表示为e ·a 。卫星到地球中心的距离定义为半径r 。轨道的半径最小点定义为近地点p r r =。轨道的半径最大点定义为远地点a r r =。 由Kepler 第二定律可以推理出卫星在近地点附近运行快,在远地点附近运行慢。由图 2.1以及公式(2.1)我们可以建立起下面的关系式:

2 a p r r a += a p a p r r e r r -=+ (1)a r a e =+ (1)p r a e =- (2.2) 卫星与地球中心和近地点的连线所成夹角θ通常被称为“真近点角”。这一夹角能够被用来确定卫星沿椭圆轨道的半径r : 2(1)1cos a e r e θ -=+ (2.3) 卫星与椭圆中心和近地点的连线所成夹角E 定义为“偏近点角”,其与θ的关系式可以如下表示: cos cos (cos )1cos a E e E e r e E θ-= -=- (2.4) 时刻t 与过近地点的时刻p t 之间的时间间隔和偏近点角E 的关系式可以如下表示: 2()sin p t t E e E T π-=- (2.5) 其中T 是卫星的轨道周期,2()/p t t T π-称为平近点角。用公式(2.4)和(2.5)时间可以导出为角度θ的函数()t θ。但是,由于公式(2.5)的反函数不能够解出,()t θ随时间的变换必须由数字确定。 卫星距地球表面的高度h 如下式所示 e h r R =- (2.6) 其中e R 为地球的半径。因此,在远地点的轨道高度为a a e h r R =-;在近地点的轨道高度为p p e h r R =-。事实上,地球并非一个理想的球体,而是在两极存在一定的扁率。在本书的以下章节中,我们将用6378e R =km 来表示平均赤道半径1。(两极处的地球半径为6357km ,而地球表面的平均半径为6371km 。) 圆形卫星轨道 圆形卫星轨道是椭圆轨道在离心率为0的一种特殊情形,即0e =。因此,a p a b r r r ====。此时,地球位于圆形轨道的中心,卫星高度e h r R =-为常数。而且,时间t 与真近点角遵循如下的关系式 2()t t T πθ= (2.7) 2.1.2卫星速度与轨道周期 Isaac Newton 拓展了Kepler 的研究并于1667年发现了万有引力定律。这一定律规定具有质量m 和M 的两个物体在距离为r 时,相互之间具有如下的万有引力 2 g mM F G r = (2.8) 此处,11226.673210/G Nm kg -= ,为万有引力常数。 对于环绕地球的卫星轨道而言,m 表示卫星质量,245.973310e M M kg == 为地球本身的质量。由势能和动能组成的整个机械能为恒量: 222m m m r a υμμ-=- (2.9)

根轨迹的概念

根轨迹的概念 特征方程(见传递函数)的根随某个参数由零变到无穷大时在复数平面上形成的轨迹,称为根轨迹。我们先看下面的例子。 设单位反馈系统的开环传递函数为: 当开环放大系数K从零到无穷大变化时,系统的特征根在s平面上怎样分布?解系统有两个开环极点 系统的闭环传递函数为 系统的特征方程为 特征方程的根 可见特征根在s平面的位置与K有关。 K=0时,,与开环极点的位置相同。 0

K>1/4时,和都成为共轭复数。 具有相同的负实部,且为常数,而虚部则随K的增加其绝对值也增加。图3.28 给出了系统的特征根在K从零变化到无穷大时,相应位置的变化情况。 这种放大系数K从零到无穷大变化时,特征方程的根在s平面上相应变化的轨迹,称为根轨迹。根轨迹完整地反映了特征根随参数变化的情况。根据图3.28的根轨迹图,我们可以知道,在K<1/4时,系统的单位阶跃响应中含有两个指数项函数。在K=1/4时,两个指数项函数合二为一。在K1/4时,根轨迹进入复平面,说明系统的单位阶跃响应由单调变化转变为振荡。从图还可以看出,不论K怎样变化,系统始终是稳定的。因为全部根轨迹都分布在s平面左半边。 图3.28 特征根随K的变化情况 根轨迹的基本条件 控制系统的特征方程为 (3.145) 式中为系统前向通道传递函数,H(s)为系统反馈通道传递函数。上式可改写为 (3.146) 将系统的开环传递函数写成零极点形式

(3.147) 式中K称为根轨迹放大系数或根轨迹增益。称为开环零点,称为开环 极点。 将(3.147)式代入(3.146)式得 (3.148) 式(3.148)是一个复数方程,可以用复数的幅值和幅角分别表示为 (3.149) , (3.150) 式中是矢量与实轴正方向的夹角,是矢量与实轴正方向的夹角。 我们称式(3.149)为根轨迹的幅值条件,式(3.150)为根轨迹的幅角条件。凡在根轨迹上的点都是系统特征方程的根,都必须同时满足根轨迹的幅值条件和幅角条件。这两个条件统称为根轨迹的基本条件。 根轨迹的绘制规则 根轨迹法是分析控制系统的一种图解方法,正确地绘制出根轨迹图是进行根轨迹分析的基础。根轨迹图的绘制,并不要求求解特征方程,而是根据根轨迹的基本条件,导出一些简单实用的法则,画出根轨迹图形。 绘制根轨迹的规则有: 1.根轨迹的分支 n阶系统的特征方程是关于s的n次代数方程,方程有n个解,所以系统的根轨

相关文档
最新文档