最新遗传学考试复习重点+答案汇总

最新遗传学考试复习重点+答案汇总
最新遗传学考试复习重点+答案汇总

2007年遗传学考试复习重点+答案

2007年遗传学考试复习重点:

名词解释英文的

第二章遗传的三大基本定律:哪三大?

应掌握遗传学三大基本定律内容及相关计算方法,有丝分裂和减数分裂的主要区别(三点)ppt里有1

数目2是否有联会3子细胞个数及染色体倍数,,哪些遗传学现象属于孟德尔遗传学的例外?beyond mondel掌握几种

2.T h e F i r s t L a w o f G e n e t i c s-p r i n c i p l e o f s e g r e g a t i o n.

A n i n d i v i d u a l i n h e r i t s a u n i t o f i n f o r m a t i o n(a l l e l e)a b o u t a t r a i t f r o m e a c h p a r e n t D u r i n g g a m e t e f o r m a t i o n,t h e a l l e l e s s e g r e g a t e f r o m e a c h o t h e r

3.T h e S e c o n d L a w o f G e n e t i c s-p r i n c i p l e o f i n d e p e n d e n t a s s o r t m e n t.M e n d e l c o n c l u d e d t h a t t h e t w o“u n i t s”f o r t h e f i r s t t r a i t w e r e t o b e a s s o r t e d i n t o g a m e t e s i n d e p e n d e n t l y o f t h e t w o“u n i t s”f o r t h e o t h e r t r a i t M e m b e r s o f e a c h p a i r o f h o m o l o g o u s c h r o m o s o m e s a r e s o r t e d i n t o g a m e t e s a t r a n d o m d u r i n g m e i o s i s

4.T h e T h i r d l a w o f G e n e t i c s-p r i n c i p l e o f g e n e l i n k a g e a n d c r o s s-o v e r.

The independent separation of different pairs of chromosomes is responsible for independent assortment.

Genes on the same chromosome segregate together (LINKAGE), unless a chromosomal cross-over brings about their recombination.

1.数目

2.联会

3.子细胞个数及染色体倍数

Beyond Mendel:

M e n d e l's R u l e s o f G e n e t i c s D o n o t A l w a y s W o r k

*M e n d e l's r u l e s:

*S e g r e g a t i o n o f a l l e l e s

*I n d e p e n d e n t a s s o r t m e n t o f g e n e s f o r d i f f e r e n t c h a r a c t e r s

*H o l d f o r c h a r a c t e r s:

*W h i c h h a v e d o m i n a n t&r e c e s s i v e t r a i t s

*D e t e r m i n e d b y s i n g l e g e n e s

*G e n e s a r e o n s e p a r a t e c h r o m o s o m e s

*D i f f e r e n t t y p e s o f c h r o m o s o m e s,o r

*D i f f e r e n t h o m o l o g u e s o f s a m e t y p e o f c h r o m o s o m e

*T h e s e c o n d i t i o n s a r e n o t a l w a y s m e t,s o t h e r e a r e m a n y c o m p l i c a t i o n s

X-L i n k e d G e n e s

C o m p l i c a t e M e n d e l's R u l e s

*L i n k a g e w a s f i r s t o b s e r v e d o n s e x c h r o m o s o m e s

*U s u a l l y s e x-l i n k e d g e n e s a r e l o c a t e d o n t h e X c h r o m o s o m e s-Y c h r o m o s o m e i s

d e g e n e r a t e a n d d o e s n o t h a v e a l l o f t h e g e n e s f o u n d o n t h e X

*F e m a l e s,w i t h2X c h r o m o s o m e s,w i l l t e n d t o f o l l o w M e n d e l's d o m i n a n c e/r e c e s s i v e r u l e s(b u t t h e y a r e c o m p l i c a t e d b y X c h r o m o s o m e i n a c t i v a t i o n,s e e b e l o w)

*M a l e s h a v e a s i n g l e X

*R e c e s s i v e s o n t h e X c h r o m o s o m e w i l l b e e x p r e s s e d i n t h e m a l e m o r e t h a n i n t h e f e m a l e;m a l e w i l l n o t h a v e a d o m i n a n t g e n e t o o p p o s e t h e r e c e s s i v e

*I f1/1000o f X c h r o m o s o m e s h a v e a r e c e s s i v e g e n e t h e r e c e s s i v e p h e n o t y p e w i l l a p p e a r i n1o u t o f a t h o u s a n d m a l e s(s i n c e t h e y h a v e o n l y1X)b u t i n o n l y1o u t o f a m i l l i o n f e m a l e s(s i n c e t h e y h a v e2X s)

R e s e a r c h e r s h a v e i d e n t i f i e d o v e r13,000g e n e t i c a l l y i n h e r i t e d h u m a n t r a i t s.M o r e t h a n 5,000o f t h e m a r e d i s e a s e s o r o t h e r a b n o r m a l i t i e s.A s w e l e a r n m o r e a b o u t t h e

i n h e r i t a n c e p a t t e r n s f o r t h e s e t r a i t s,i t i s b e c o m i n g c l e a r t h a t a t l e a s t s o m e o f t h e

t w e l v e e x c e p t i o n s t o t h e s i m p l e M e n d e l i a n r u l e s o f i n h e r i t a n c e d e s c r i b e d h e r e a r e,i n

f a c t,r e l a t i v e l y c o m m o n.G e n e s t h a t f o l l o w s i m p l e r u l e s o f d o m i n a n c e i n c r e a s i n

g l y s e e m t o b e r a r e.I t w o u l d n o t b e s u r p r i s i n g i f o t

h e r"e x c e p t

i o n s"t o M e n d e l i a n g e n e t i c s w e r e d i s c o v e r e d i n t h e f u t u r e.

第三章染色体与遗传

基因型性别决定系统和环境性别决定系统有哪些类型?

?Sex chromosomes: 与性别决定有明显而直接关系的染色体。

?Autosomes:性染色体以外的所有染色体。

?Genoty pic sex determination system:与染色体或基因型有关的性别决定系统。

XY or ZW

?果蝇的性别与Y染色体的存在无关,是由X染色体的数目和常染色体的套数之比例(性指数)决定的,这种方式叫性染色体-常染色体平衡决定系统。(X Chromosome-autosome balance system of sex determination)

?在人类及哺乳动物中,虽然也是XY型性别决定,但与果蝇不同,雌雄性分别是由参与受精的精细胞中是否带有Y染色体决定的,当Y染色体存在时,为男性,而当Y染色体缺少时,则为女性。

巴氏小体:就是失活的X染色体

?这一类型的性别决定方式刚好和XY型相反,在ZW型性别决定中,雌的是异配性别ZW,雄的是同配性别ZZ,所以子代的性别是由卵细胞决定的。这一类型的性别决定方式见于鸟类(包括家禽)、家蚕、两栖类(如青蛙等)、爬行类(蛇、鳄、乌龟)等。对这一类型的性别决定机制还不太清楚,按照一般的推测,W染色体上也可能携带有和雌性发育有关的基因或带有抑制雄性发育的基因。

?在植物界,配子体世代可分为雄性或雌性,而与之相交替的孢子体世代是无性的,植物间雌雄的差别比较不明显。

?大多数种子植物,雌雄配子体着生在同一植株(孢子体)上,甚至着生在同一朵花内(雌雄同花植物);在许多情况下,雌蕊和雄蕊着生在同一植株的不同花内,称作雌雄同株(monoecious)雌雄异花植物,如玉米。对于雌雄同花和雌雄同株的植物,它们不存在性别决定的问题,并且在许多情况

下,同一种植物可能有多种不同的性别表现形式,如雌株、雄株、雌雄同株、雌雄同花等,因此大部分植物是没有性染色体的。

?有少数植物存在性染色体,但性别决定方式也有所不同。如女娄菜(Melandrium album)的性别是由X染色体和Y染色体的比例决定的;雌雄同株的酸模(Rumex acefosa)雌株为18A+XX+Y=2:1,雄株为18A+X+YY,X:Y=1:2。

?有些植物的性别明显是由基因控制的,如葫芦科中有一种称为喷瓜的植物,性别是由3个复等位基因a D、a+、a d决定的, a D对a+为显性, a+对a d为显性。 a D是决定雄性的基因, a+是决定雌雄同株的基因, a d基因决定雌性。

?玉米的雌雄性别是由两对非等位基因决定的。Ba基因只控制叶腋是否长花序,而Ts基因则不同,显性时顶端长雄花序,隐性时顶端长雌花序。

??

?Enviromental or phenotype sex determination system: 与环境因素有关的性别决定系统。

最经典的例子是海生蠕虫后螠虫(Bonellia)。自由游泳的幼虫是中性的,没有性别的分化;如果它落入海底,就发育成雌虫;如果幼虫附着在成年雌性的吻部(proboscis)上,它就分化成雄虫,寄居到雌体的子宫内。

蜜蜂的性别决定

?不但与染色体组的倍性有关,而且也与环境有关。蜂皇是可育的雌蜂,蜂皇与雄蜂交配后,雄蜂即死亡,蜂皇得到足够一生的精子。

?蜂皇染色体为2n=32条,经正常减数分裂产生的卵为n=16,在每窝卵中有少数是不受精的,它们发育成雄蜂,故雄蜂的染色体数为n=16,受精卵既可发育成可育的雌蜂(蜂皇)和不育的雌蜂(工蜂)。每群蜜蜂中只有一个蜂皇,工蜂在遗传结构上和蜂皇并无差别,但由于工蜂所吃的蜂皇浆在质和量上都远比蜂皇差,所以发育成不可育的工蜂。

?任何表型都是基因型与环境相互作用的结果,性别也是一种表型,同样也是基因型与环境相互作用的结果。如扬子鳄的卵在不同的温度下可发育为不同的性别,当在30 ℃及以下时发育为雌体,当温度在34 ℃及以上时发育为雄体;乌龟的卵在23-27℃的温度下发育为雄性,在32-

33 ℃时发育为雌性。

性反转(sex reversal)

?是指生物从一种性别转为另一种性别的现象。黄鳝在个体发育过程中产生自然的性反转。2+龄前皆为雌性, 3+龄转变为雌雄间体,卵巢逐渐退化,精巢逐渐形成, 6+龄全部反转为雄性。

?人类中也存在性反转现象,如46XX的男性和46XY的女性,这是由于SRY基因以及相关基因的异常引起的,与自然的性反转是不同的。

?性反转是一个十分复杂而又非常有趣的现象,它既受性染色体的决定,也受外部条件或生理、病理条件改变的影响从而改变基因的调节,该领域也是遗传学研究的热点之一

三种性相关遗传方式有哪些区别?

它包括:伴性遗传,从性遗传和限性遗传

伴性遗传(Sex-linked inheritance)

遗传学上,将位于性染色体上的基因所控制的性状的遗传方式叫伴性遗传。

限性遗传(sex-limited inheritance)

?有些基因并不一定位于性染色体上,但它所影响的特殊性状只在某一种性别中出现,这种遗传方式叫限性遗传。

从性遗传(sex influenced inheritance)

?有些基因虽然位于常染色体上,但由于受到性激素的作用,因而使得它在不同性别中的表达不同,这种遗传现象称为从性遗传。从性遗传性状虽可在两性中表现,但在两性中的发生频率及

杂合子基因型在不同性别中的表型是不同的,这称为从性显性(sex influenced

dominance)。

什么是剂量补偿效应?

?在哺乳动物内,常染色体增加的个体常常是致死的,而性染色体增加的个体则多数只影响个体的发育,因此在哺乳动物中一定存在一种机制可以补偿X染色体的超量。这种机制叫剂量补偿效应。

?所谓剂量补偿效应,指在XY性别决定机制的生物中,使性连锁基因在两种性别中有相等或近乎相等的有效剂量的遗传效应。

染色体结构的改变有哪些种类?其遗传效应各是怎样的?缺失环,易位等

●染色体的结构变异:基因组结构大片段的改变,导致染色体部分增加、缺失、重排等变异。

源于染色体的断裂(breakage)和重接(rejoin),包括:

缺失(Del: deletion, deficiency)

?细胞学效应:

减数分裂时,同源染色体配对出现缺失环(deletion loop, deficiency loop)。

?遗传学效应:

可能造成缺失突变,严重时致死。

有时会出现假显性(又称拟显性,

pseudodominance )现象。

重复(Dp: duplication, repeat)

?细胞学效应:减数分裂时,同源染色体配对时重复的部分形成重复环(duplication loop)。

?遗传学效应:出现突变,严重时死亡。

重复往往可改变基因剂量,可能造成表型的显著改变。

倒位(In: inversion)

?细胞学效应:倒位杂合体在减数分裂同源染色体配对时,形成倒位环(inversion loop)。

?遗传学效应:倒位区内重组,形成不可育配子。被称为“抑制重组” 。

易位(T: translocation)

?细胞学效应:易位杂合体在减数分裂同源染色体配对时,形成十字型结构。

?遗传学效应:形成不可育和可育配子,各占1/2 ,称为“半不育” 。

转座(transposition)

第四章遗传图的制作和基因定位

什么是四分子和四分子分析?

脉孢霉的合子在子囊内进行二次减数分裂所形成的4个子囊孢子叫四分子(tetrad),对四分子进行的遗传分析就叫四分子分析(tetrad analysis)。

什么是体细胞交换?

正常情况下分裂分离和重组都是在减数分裂中发生的,但实验证据表明在有的有机体中交换也可发生在有丝分裂中,这叫做体细胞交换(somatic crossing over)或有丝分裂交换(mitotic crossing over)。

人类基因定位的基本方法有哪些,其具体技术的基本原理是怎样的?

人类基因定位的第一步是将人的基因(或遗传标记)定位在特定的染色体上。目前对人基因进行定位的方法主要有家系分析法、体细胞杂交法、核酸杂交技术等

家系分析法(pedigree method)

?通过分析、统计家系中有关性状的连锁情况和重组率而进行基因定位的方法叫家系分析法,其中连锁分析法(linkage analysis)是最常用的方法之一。

?家系分析法是最古老也是比较成熟的遗传学研究方法,通过这种方法已经把红绿色盲、血友病

A、G6PD等遗传病基因定位在X染色体上。

体细胞杂交定位

?体细胞杂交定位是运用体细胞遗传学(somatic cell genetics)原理和体细胞杂交(somatic cell hybridization)技术,在离体条件下,把基因定位在染色体上及研究基因的分离、基因的连锁与交换从而制作遗传学图的方法。

核酸杂交技术

?用于基因在染色体上的精细定位,主要包括:克隆基因定位法、原位杂交法和原位PCR法等。

细菌的遗传物质传递方式有哪些?它们有何不同之处?各自的特点如何?

细菌之间遗传物质的传递主要有以下三种方式:转化、结合和转导。

?转化(transformation)是指通过外源DNA进行的遗传物质的转移。转化可分为自然转化(natural transformation)(即细菌能自然地吸收DNA及遗传转化)和工程转化

(engineered transformation)(即通过遗传改变使细菌能吸收DNA及进行遗传转化)。

?结合(conjugation)是指由供体菌(donor)和受体菌(recipient)之间的直接接触而导致的遗传物质的单向转移。

?转导(transduction)是指由噬菌体所介导的DNA从供体菌到受体菌的转移。

杂交技术是人类基因定位方法中不可缺少的组成部分,常见的杂交技术有哪些?southern, northern, western……原理和用途方面各有什么不同?

Southern Blot原理与用途

原理:将待检测的DNA分子用/不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上,固定后再与同位素或其它标记物标记的DNA或RNA探针进行反应。如果待检物中含有与探针互补的序列,则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。

用途:检测样品中的DNA及其含量,了解基因的状态, 如外源基因是否整合到宿主的基因组DNA中,目的基因是否有点突变、扩增重排等。

Northern Blot

?原理:在变性条件下将待检的RNA样品进行琼脂糖凝胶电泳,继而按照同Southern Blot相同的原理进行转膜和用探针进行杂交检测。

?用途:检测样品中是否含有基因的转录产物(mRNA)及其含量。

《医学遗传学》期末重点复习题

2.与苯丙酮尿症不符的临床特征是(1)。 A 患者尿液有大量的苯丙氨酸 B 患者尿液有苯丙酮酸 C 患者尿液和汗液有特殊臭味 D 患者智力发育低下 E 患者的毛发和肤色较浅 3.细胞在含BrdU的培养液中经过一个复制周期,制片后经特殊染色的中期染色体()两条姊妹染色单体均深染 4.DNA分子中脱氧核糖核苷酸之间连接的化学键是()磷酸二酯键 5.HbH病患者的可能基因型是(5)。 A ――/―― B -a/-a C ――/aa D -a/aa E aacs/―― 6.下列不符合常染色体隐性遗传特征的是(4)。 A.致病基因的遗传与性别无关,男女发病机会均等 B.系谱中看不到连续遗传现象,常为散发 C.患者的双亲往往是携带者 D.近亲婚配与随机婚配的发病率均等 E.患者的同胞中,是患者的概率为1/4,正常个体的概率约为3/4 7.人类a珠蛋白基因簇定位于(5)。 A 11p13 B 11p15 C 11q15 D 16q15 E 16p13 8.四倍体的形成可能是由于(3)。

A 双雄受精 B 双雌受精 C 核内复制 D 不等交换 E 部分重复9.在蛋白质合成中,mRNA的功能是(3)。 A 串联核糖体 B 激活tRNA C 合成模板 D 识别氨基酸 E 延伸肽链10.在一个群体中,BB为64%,Bb为32%,bb为4%,B基因的频率为(4)。 A B C D E 11.一个个体中含有不同染色体数目的三种细胞系,这种情况称为(3)。 A 多倍体 B 非整倍体 C 嵌合体 D 三倍体 E 三体型 12.某基因表达的多肽中,发现一个氨基酸异常,该基因突变的方式是(5)。 A 移码突变 B 整码突变 C 无义突变 D 同义突变 E 错义突变13.一种多基因遗传病的群体易患性平均值与阈值相距越近(1)。 A 群体易患性平均值越高,群体发病率也越高 B 群体易患性平均值越低,群体发病率也越低 C 群体易患性平均值越高,群体发病率越低 D 群体易患性平均值越低,群体发病率迅速降低 E 群体易患性平均值越低,群体发病率越高 14.染色质和染色体是(4)。

医学遗传学整理复习资料

第四章单基因病 单基因病:由某一等位基因突变所引起的疾病 遗传方式:常染色体显性遗传性染色体:X连锁显性遗传从性遗传限性遗传 隐性遗传X连锁隐性遗传 Y连锁遗传 常染色体显性遗传:某种性状或疾病受显性基因控制,这个基因位于常染色体上,其遗传方式为AD 常染色体显性遗传病的系谱特点: ①患者双亲之一有病,多为杂合子 ②男女发病机会均等 ③连续遗传 完全显性:杂合子的表现型与显性纯合子相同 不完全显性(中间型显性、半显性):杂合子的表现型介于显性纯合子与隐性纯合子之间 共显性:杂合子的一对等位基因彼此间无显、隐之分,两者的作用都同时得以表现。 复等位基因(I A、I B 、i ):在群体中,同一同源染色体上同一位点的两个以上的基因。不规则显性:带致病基因的杂合子在不同的条件下,可以表现正常或表现出不同的表现型。 不外显(钝挫型):具显性致病基因但不发病的个体 外显率:一定基因型个体所形成的相应表现型比率 不同表现度:同一基因型的不同个体性状表现程度的差异 表现度:指在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异 延迟显性:带显性致病基因的杂合子在个体发育的较晚时期,显性基因的作用才表现出来。-------------------------------------------------------------------------------------------------------------------------------- 常染色体隐性遗传:某种性状或疾病受隐性基因控制,这个基因位于常染色体上,其遗传方式为 AR 常染色体隐性遗传病的系谱特点:①患者的双亲无病,为携带者 ②男女发病机会均等 ③散发 X 连锁显性遗传:某种性状或疾病受X染色体上的显性基因所控制,其遗传方式为XD。XD遗传病系谱特点:①患者双亲之一有病,多为女性患者 ②连续遗传 ③交叉遗传(男性患者的女儿全发病) X 连锁隐性遗传:某种性状或疾病受X染色体上的隐性基因所控制,其遗传方式为XR。 交叉遗传:男性X染色体上的致病基因只能来自母亲,也必定传给女儿 XR遗传病系谱特点:①患者双亲无病②多为男性患者。③交叉遗传 从性遗传:位于常染色体上的一类基因,基因的效应随着个体性别的不同而有差异(即杂合子的表型在不同性别个体中表现不同) 限性遗传:常染色体或性染色体上的一类基因,由于性别限制,只在一种性别中表达。 (即男性表达,女性不表达。或反之。)

遗传学重点复习内容

请认真复习以下内容: 回复突变 剂量补偿效应 冈崎片段 C值悖论 微卫星DNA 同源染色体 内含子 转化 转导 中心法则 外显子 隔裂基因 复等位基因 伴性遗传 F因子 F'因子 近亲繁殖与杂种优势 转座因子(跳跃基因) (了解专座的发现,经典案例) 细胞质遗传 核外遗传 母性影响 (了解持久母体影响:田螺的遗传)基因工程 共显性 假显性 不完全连锁 完全连锁 基因突变 位置效应 移码突变 重组DNA技术 平衡致死品系 连锁群性导 图距 常染色质 异染色质 世代交替 上位效应 阈性状 遗传漂变 孟德尔群体 适合度 瓶颈效应 生物信息学 连锁图谱 遗传学的分支学科 性染色体与常染色体的异同 真核细胞与原核细胞的区别 DNA复制的方式与基本规律 DNA是遗传物质的直接和间接证据 复等位基因 ABO血型的基因型和表现型 三点测交法 三点测交法的优势 两点测交法 染色体畸变的种类 基因突变产生的原因 Hardy-Weinberg定律 区别基因频率和基因型频率 并发系数 有丝分裂和减数分裂比较 减数分裂 遗传三大定律 性染色体决定性别的类型 环境因子决定性别的类型 果蝇、蜜蜂、鳄鱼、青蛙、后螠的性别决定方式 系谱图常用符号P65 几种遗传学分析图谱的作图 经典的人类遗传病(如血友病、色盲、21三体、多指等) 课后计算习题 遗传学的各种经典案例(需要了解!) Ps:祝大家考试顺利!羊年快乐

回复突变 回复突变(reverse mutation): 突变体(mutant)经过第二次突变又完全地或部分地恢复为原来的基因型和表现型。完全恢复是由于突变的碱基顺序经第二次突变后又变为原来的碱基顺序,故亦称真正的回复突变.部分恢复是由于第二次突变发生在另一部位上,其结果是部分恢复原来的表现型。亦称为第二位点突变(second site mutation)或基因内校正(intragenic suppression)。 突变基因再次发生突变又恢复原来的基因,这类突变称为回复突变。但单是表现型变得和原来一样,并不一定被称为回复突变。与这种回复突变相对应,最初的那种突变被称作正向突变。就一个基因而言,回复突变率通常要比正向突变率低,有的突变基因完全不发生回复突变,这样的基因认为是由于原来的基因发生缺失造成的。 由于它的表现型效应被基因组第2位点的突变抑制,所以回复突变又称抑制突变。 剂量补偿效应 剂量补偿效应,英文名是 dosage compensation 。使细胞核中具有两份或两份以上基因的个体和只有一份基因的个体出现相同表型的遗传效应。一个细胞核中某一基因的数目称为基因剂量。在以性染色体决定性别的动物中,常染色体上的基因剂量并无差别,因为雌雄两性动物的常染色体的形态和数目都相同。但是对于性染色体来讲,包括人类在内的哺乳动物雌性个体的每一体细胞中有两条X染色体,所以在X染色体上的基因剂量有两份,而雄性个体只有一条 X染色体,基因剂量只有一份。 C值悖论编辑 在每一种生物中其单倍体基因组的DNA总量是特异的,被称为C值(C-Value)。 DNA的长度是根据碱基对的多少推算出来的。各门生物存在着一个C值范围,在每一门中随着生物复杂性的增加,其基因组大小的最低程度也随之增加 微卫星DNA 重复单位序列最短,只有2~6bp,串联成簇,长度50~100bp,又称为短串联重复序列(Short Tandem Repeat STR)。广泛分布于基因组中。其中富含A-T碱基对,是在研究DNA多态性标记过程中发现的。1981年Miesfeld等首次发现微卫星DNA,其重复单位长度一般为1~6个核苷酸,双核苷酸重复单位常为(CA)n和(TG)n。同源染色体 是在二倍体生物细胞中,形态、结构基本相同的染色体,并在减数第一次分裂(参考减数分裂)的四分体时期中彼此联会(若是三倍体及其他奇数倍体生物细胞,联会时会发生紊乱),最后分开到不同的生殖细胞(即精子、卵细胞)的一对染色体,在这一对染色体中一个来自母方,另一个来自父方

医学遗传学

题型: 名词解释,6个,30分 填空,1分/空,20分 选择,单选,10分 问答,5题,共40分 1临床上诊断PKU 患儿的首选方法是 A 染色体检查B生化检查 C 系谱分析D基因诊断 2 羊膜穿刺的最佳时间是 A孕7~9周B孕8~12周 C孕16~18周D孕20~24周 3遗传型肾母细胞瘤的临床特点是 A发病早,单侧发病B发病早,双侧发病 C发病晚,单侧发病D发病晚,,双侧发病 4进行产前诊断的指症不包括 A夫妇任一方有染色体异常 B曾生育过染色体病患儿的孕妇 C年龄小于35岁的孕妇 D多发性流产夫妇及其丈夫 填空 5 多基因遗传病遗传中微效基因的累加效果可表现在一个家庭中……….. 6线粒体疾病的遗传方式………… 根据系谱简要回答下列问题 1 判断此病的遗传方式,写出先证者的基因型 2患者的正常同胞是携带者的概率是多少 3如果人群中患者的概率为1/100,问Ⅲ3随机婚配生下患者的概率为多少

二高度近视AR,一对夫妇表型正常,男方的父亲是患者,女方的外祖母是患者,试问这对夫妇婚后子女发病风险(画系谱) 三PKU是AR,发病率0.0001,一个个侄子患本病,他担心自己婚后生育患者,问其随机婚配生育患儿的风险 四某种AR致病基因频率0.01,某女哥哥是患者,问此女随机婚配或与表兄妹婚配风险。

五PKU是一种AR病,人群中携带者频率为1/50,一个人妹妹患病,他担心自己婚后生育患儿,问这名男子随机婚配生育患儿的风险是多大 答案 1B 2C 3B 4C 填空 1患者人数和病情轻重 2母系遗传 大题 一1 常隐aa 2 2/3 3 2/3×1/100×1/4=1/600 二1×1/2×1/8=1/8 三 1/2×1/50×1/4=1/400 四随机婚配:2/3×1/50×1/4=1/300 与表兄: 2/3×1/4×1/4=1/24 五2/3×1/50×1/4=1/300

基因工程期末考试重点知识整理教学文案

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg 及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)

第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ

医学遗传学

多选: 1. 遗传病的特征: A.疾病垂直传递 B.出生时就表现出症状 C.有特定的发病年龄 D.有特定的病程 E.伴有基因突变或染色体畸变 2. 家族性疾病具有的特征: A.有家族聚集现象 B.有相同的环境因素 C.有相同的遗传环境 D.一定是遗传病 3. 哪些疾病属于单基因疾病: A.体细胞遗传病 B.线粒体遗传病 C.X连锁显性遗传病 D.性染色体病 4. 在猫中,基因BB是黑色,Bb是玳瑁色,bb是黄色,这个基因位于X染色体上,一只玳瑁雌猫与一只黑色雄猫的后代可以是: A.雌猫中黑色与玳瑁色各占一半 B.雄猫中黑色与黄色各占一半 C.雌猫只会有玳瑁色 D.雄猫只会有玳瑁色 5. 不完全连锁指的是: A.二对基因位于同一对染色体上 B.由于互换,这二对基因的位置可以有变化 C.这二对基因位置变化的频率决定于它们之间距离的远近 D.由于互换,这二对基因也可以移到另一对染色体上 6. 一个B型血的母亲生了B型血男孩和O型血女孩,父亲的血型是: A. A型 B.B型 C.AB型 D.O型 7. 父亲血型为AB型,母亲为O型,子女中基本不可能出现的血型是: A.AB型 B.B型 C.O型 D.A型

8. 父亲血型是AB型,母亲是O型,子代中的血型可能是: A.A型 B.O型 C.B型 D.AB型 9. 父亲血型是B型,母亲血型是A型,他们生了一个A型血的女儿,这种婚配型是: A.IBIB×IAIA B.IBi×IAIA C.IBIB×IAi D.IBi×IAi 10. 父亲血型为AB型,母亲血型为AB型,子女中可能有的血型是: A.A型 B.AB型 C.B型 D.O型 11. 常染色体隐性遗传病系谱的特点是: A.患者双亲一定是无病的 B.患者同胞中可能有患病的 C.患者的其他亲属中不可能有患病的 D.患者双亲可能是近亲 12. 常染色体隐性遗传病系谱的特点是: A.患者双亲常无病,但有时为近亲婚配 B.患者同胞中可能有同病患者 C.不连续传递 D.女性患者多于男性患者 13. 常染色体显性遗传病系谱的特征是: A.患者双亲中常常有一方是同病患者 B.双亲常为近亲婚配 C.同胞中的发病比例约为1/2 D.患者子女必然发病 14. X连锁隐性遗传病系谱的特点是: A.男性患者多于女性患者 B.男性患者病重,女性患者病轻 C.交叉遗传 D.男性患者的外祖父一定患病

遗传学复习考试思考题重点汇总及答案

1、医学遗传学概念 答:是研究人类疾病与遗传关系的一门学科,是人类遗传学的一个组成部分。 2、遗传病的概念与特点 答:概念:人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。 特点:遗传性,遗传物质的改变发生在生殖细胞或受精卵细胞中,包括染色体畸变和基因突变,终生性,先天性,家族性。 3、等位基因、修饰基因 答:等位基因:是位于同源染色体上的相同位置上,控制相对性状的两个基因。 修饰基因:即次要基因,是指位于主要基因所在的基因环境中,对主要基因的表达起调控作用的基因,分为加强基因和减弱基因。 4、单基因遗传病分哪五种?分类依据? 答:根据致病基因的性质(显性或隐性)和位置(在染色体上的),将单基因遗传病分为 5 种遗传方式。常染色体显性遗传病,常染色体隐性遗传病,X连锁隐性遗传病,X连锁显性 遗传病,Y 连锁遗传病。 5、什么是系谱分析?什么是系谱? 答:指系谱绘好后,依据单基因遗传病的系谱特点,对该系谱进行观察、分析和诊断遗传方式,进而预测发病风险,这种分析技术或方法称为系谱分析。 6、为什么AD病多为杂合子? 答: 1 遗传:患者双亲均为患者的可能性很小,所以生出纯合子的概率就很小 2 突变:一个位点发生突变的概率很小,两个位点都突变的概率更小 7、AD病分为哪六种?其分类依据?试举例。 答:①完全显性遗传:杂合子(Aa)表现型与患病纯合子(AA)完全一样。例:家族性多发性结肠息肉,短指 ②不完全显性遗传:杂合子(Aa)表现型介与患病纯合子(AA)和正常纯合子(aa) 之间。例:先天性软骨发育不全(侏儒) ③共显性遗传:一对等位基因之间,无显性和隐性的区别,在杂合子时,两种基因的 作用都表现出来。例:人类ABO血型,MN血型和组织相容性抗原 ④条件显性遗传:杂合子在不同条件下,表型反应不同,可能显性(发病),也可隐性(不发病),这种遗传方式叫显性遗传,这种遗传现象叫不完全外显或外显不全。例:多指(趾) ⑤延迟显性遗传: 基因型为杂合子的个体在出生时并不发病,一定年龄后开始发病。 例:遗传性小脑性运动共济失调综合征,遗传性舞蹈病 ⑥从(伴)性显性遗传:位于常染色体上的致病基因,由于性别差异而出现男女分布比例或基因表达程度上的差异。例:遗传性斑秃 8、试述不完全显性遗传和不完全外显的异同。 相同点:1、都属于AD,具有AD的共同特点; 2 、患者主要为杂合子; 不同点:1、不完全显性遗传是一种遗产方式; 不完全外显是一种遗传现像; 2 、不完全显性遗传中杂合子全部都发病,但病情轻于患病纯合子; 不完全外显中杂合子部分发病,只要发病,病情与患病纯合子一样; 9、试述AR病的特点 答:1、患者多为Aa 婚配所出生的子女,患者的正常同胞中2/3 为携带者; 2 、病的发病率虽不高,但携带者却有相当数量;

医学遗传学

医学遗传学 绪论 1、医学遗传学:就是用人类遗传学的理论和方法来研究这些“遗传病”从亲代传递至子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系(包括诊断、治疗和预防)的一门综合性学科 2、遗传病:按经典的概念,遗传病或遗传性疾病的发生需要有一定的遗传基础,并通过这种遗传基础按一定的方式传于后代发育形成的疾病。在现代医学中,遗传病的概念有所扩大,遗传因素不仅仅是一些疾病的病因,也与环境因素一起在疾病的发生、发展及转归中起关键性作用。 3、人类遗传病划分为5类:单基因病(白化病)多基因病(唇裂)染色体病(早期流产儿21三体综合症猫叫综合症)体细胞遗传病(恶性肿瘤)线粒体遗传病 第一章人类基因和基因组 1、基因的概念:是具有遗传效应的DNA片段 2、基因的结构:增强子上游启动子启动子(TATA盒)转录起始点外显子内含子转录终止点 3、基因的分类:单一基因基因家族假基因串联重复基因 4、基因的自我复制具有互补性半保留性反向平行性不对称性不连续性 5、基因表达:转录翻译 第二章基因突变 1、基因突变的形式:静态突变【点突变(碱基替换:转换颠换,同义突变无义突变错义突变终止密码突变;移码突变)片段突变】动态突变 2、静态突变:是生物各世代中基因突变的发生,总是以相对稳定的一定频率发生,分为点突变和片段突变 3、碱基替换:是DNA分子多核苷酸链中原有的某一特定碱基或碱基对被其他碱基或碱基对替换、替代的突变形式。其具体表现为同类碱基或碱基对之间的替换及不同类碱基或碱基对之间的相互替换。同类之间的替换,又被称为转换,即一种嘌呤碱或相应的嘌呤-嘧啶碱基对被另外一种嘌呤碱或相应的嘌呤-嘧啶碱基对所替代。如果某种嘌呤碱或其相应的嘌呤-嘧啶碱基对被另外一种嘧啶碱或其相应的嘧啶-嘌呤碱基对所置换,则称之为颠换。 4、同义突变:由于存在遗传密码子的兼并现象,因此,替换的发生,尽管改变了原有三联遗传密码子的碱基组成,但是新、旧密码子所编码的氨基酸种类却依然保持不变。 5、无义突变:由于碱基替换而使得编码某一种氨基酸的三联体遗传密码子,变成不编码任何氨基酸的终止密码子UAA UAG UGA的突变形式被称为无义突变。造成多肽链的组成结构残缺及蛋白质功能的异常或丧失,最终会产生导致遗传表型改变的致病效应。 6、错义突变:是指编码某种氨基酸的棉帽子经碱基替换后变成了另外一种氨基酸的密码子,从而在翻译时改变了多肽链中氨基酸种类的序列组成,会导致蛋白质多肽链原有功能的异常或丧失 7、终止密码突变:如果因为碱基替换的发生而使得DNA分子中某一终止密码变成了具有氨基酸编码功能的遗传密码子,即称为终止密码突变。必然形成功能异常的蛋白质结构分子。 8、移码突变:是一种由于基因组DNA多核苷酸链中碱基对的插入或缺失,以致自插入或缺失点之后部分的、或所有的三联体遗传密码子组合发生改变的基因突变形式。 9、动态突变:三核甘酸的重复次数可随着世代交替的传递而呈现逐代递增的累加突变效应,故而被称之为动态突变。 10、紫外线照射引起的DNA损失与修复:光复活修复、切除修复、重组修复

医学遗传学复习题

一、名词解释 1、遗传病:人体生殖细胞或受精卵细胞内遗传物质改变而导致的疾病。 2、基因:是决定一定功能产物的DNA序列。 3、断裂基因:分为①编码区:外显子(exon):几段编码序列内含子(intron):无编码功能的序列②非编码区(侧翼序列):调控基因的表达(转录的起始和终止)。 4、外显子与内含子:外显子(exon):几段编码序列;内含子(intron):无编码功能的序列。 5、半保留复制:DNA复制结束后,两条模板链本身就分别成为DNA分子双链中的一条链,即在每个子代DNA分子的双链中,总是保留一条亲链的复制方式。 6、冈崎片段:以5’→3’亲链做模板时,首先在引发体的起始引发下,合成数以千计的DNA小片段,称为。 7、核小体:是由4种组蛋白(H2A\H2B\H3\H4各2个分子)组成的八聚体核心表面围以长约146bp 的DNA双螺旋所构成,此时DNA分子被压缩了6倍。 8、突变:遗传物质的变化及其所引起的表型改变称为突变 9、基因突变:基因组DNA分子在结构上发生碱基对组成或序列的改变称为基因突变 10、碱基替换:DNA分子中碱基之间互换,导致被替换部位的三联体密码意义发生改变 11、转换与颠换:嘧啶之间或嘌呤之间互换(最常见);颠换:嘧啶与嘌呤间互换 12、动态突变:串联重复的三核苷酸序列随着世代的传递而拷贝数逐代累加的突变方式称为动态突变 13、核型与核型分析:核型:一个细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图象称为核型;核型分析:对构成核型的图象进行染色体数目、形态结构特征的分析称为核型分析14、单基因遗传病:如果一种遗传病的发病仅仅涉及到一对等位基因,其导致的疾病称为单基因遗传病。其遗传方式称为单基因遗传 15、携带者:带有隐性基因致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代 16、复等位基因:在同一基因座位上,有两个以上不同的成员,其相互间称为复等位基因。 17、交叉遗传:男性的X染色体及其连锁的基因只能从母亲传来,又只能传给女儿,不存在男性→男性的传递 18、半合子:虽然具有二组相同的染色体组,但有一个或多个基因是单价的,没有与之相对应的等位基因,这种合子称为半合子。 19、系谱:是从先证者或索引病例开始,追溯调查其家族各个成员的亲缘关系和某种遗传病的发病(或某种性状的分布)情况等资料,用特定的系谱符号按一定方式绘制而成的图解 20、先证者:该家族中第一个就诊或被发现的患病(或具有某种性状的)成员 21、数量性状(quantitative character):受多对等位基因控制,相对性状之间变异呈连续的正态分布,受环境因素影响。Ex: 人的身高、各种多基因病 22、质量性状(qualitative character):受一对等位基因控制,相对性状之间变异是不连续的不受环境因素影响。Ex: 抗原的有无、各种单基因病 22、易患性变异:在遗传和环境两个因素的共同作用下,一个体患某种多基因病的可能性。 23、发病阈值:由易患性所导致的多基因遗传病的最低限度。 24、遗传度:是在多基因疾病形成过程中,遗传因素的贡献大小 25、群体:广义:同一物种的所有个体,狭义:生活在某一地区同一物种的所有个体 26、医学群体遗传学:研究与疾病有关的遗传结构及其变化规律 27、染色体组:指配子中所包含的染色体或基因的总和。 28、嵌合体:指体内同时存在染色体数目不同的两种或两种以上细胞系的个体,分为同源嵌合体和异源嵌合体。 29、同源嵌合体:体内不同chr数目(核型)的细胞群起源于同一合子。 30、平衡易位:仅有位置的改变而无明显的染色体片段的增减,通常不会引起明显的遗传学效应,也叫原发易位。 31、平衡易位携带者:具有平衡易位染色体但表现正常的个体。

《医学遗传学》作业

西南医科大学成教《医学遗传学》作业姓名年级专业层次 学号成绩: 第一章绪论 一、名词解释 1.遗传病 二、简答题 1.简述遗传性疾病的特征和类型。 第二章遗传的分子基础 一、名词解释 1.多基因家族 2.假基因 二、简答题 1.基因突变的特征是什么?简述其分类及特点。 第三章遗传的细胞基础

一、名词解释 1.Lyon假说 一、简答题 1.简述人类的正常核型(Denver体制)的主要特点。 2.命名以下带型:1q21;Xp22;10p12.1;10p12.11 第四章染色体畸变与染色体病 一、名词解释 1. 相互易位和罗伯逊易位 2.嵌合体 二、简答题 1.简述染色体畸变的主要类型及发生机理。 2.Down综合征的核型有哪些?主要的产生原因是什么?

第五章单基因遗传病 一、名词解释 1.不完全显性和不规则显性 2.交叉遗传 3.遗传异质性 4.基因组印记迹 5.遗传早现 二、简答题 1.请简述AD、AR、XD及XR遗传病的系谱特征。 第六章多基因遗传病 一、名词解释 1.易患性和阈值

2.遗传率 二、简答题 1.多基因假说的主要内容是什么? 2.估计多基因遗传病发病风险时,应综合考虑哪几方面的情况? 第七章线粒体遗传病 一、名词解释 1.mtDNA的半自主性 2.母系遗传 二、简答题 1.线粒体基因组的遗传特征有哪些? 第八章遗传病诊断

一、名词解释 1.基因诊断 二、简答题 1.基因诊断的主要方法有哪些?其与传统的疾病诊断方法相比,具有哪些优势? 第九章遗传病治疗 一、名词解释 1.基因治疗 二、简答题 1.简述基因治疗的主要策略和途径。 2.简述基因治疗的主要步骤。 第十章遗传病预防 一、名词解释

遗传学期末考试重点

遗传学 问答和计算: 1、二项展开和通项公式的运用 2、单倍体高度不育的机制 3、X2的运用 4、三点测交的运用 5、雄性不育的机制和运用 6、谱系中近交系数的计算 7、遗传平衡定律的运用 8、F-,F-和F,的区别,HfrxF-,F-x F-的过程 9、狭义和广义遗传率的推算 知识点: 一、性别决定的种类 (一)性染色体决定性别 1、性染色体本身决定性别 (1)XY型(2)ZW型 2、性染色体的数目决定性别 如(1)蝗虫:雌性2n=24(xx);雄性2n=23(xo){xo}型 (2)鳞翅目昆虫雄性zz雌性zo称作zo型 3、染色体的倍性决定性别(蜜蜂) 4、性指数决定性别 5、取决于x染色体是否杂合 6、取决于x与y的比 (二)基因决定性别 1、由复等位基因决定性别 2、由二对基因决定 (三)环境决定性别 考题推测:人类的性别决定属于 xy 型,鸡的性别决定属于 zw 型,蝗虫的性别决定属于 xo 型。 二、一因多效和多因一效 一个单位性状的遗传并不都是受一对基因的控制,而经常受到许多对基因的影响。许多基因影响同一单位性状的现象称为“多因一效”,另一方面,一个基因也可以影响许多性状的发育,称为“一因多效”。 三、细菌交换特点 四、细胞质基因特点 1、概念: 广义地讲,染色体外遗传包括染色体以外的其他任何细胞成分所引起的遗传现象,例如,质体叶绿体,线粒体等细胞器,以及共生体和细菌粒等所引起的遗传现象,由于存在细胞核和细胞抽的严格界限,并且染色体外的遗传物质又存在于细胞质中,因此在习惯上把核外遗传物质所引起的遗传现象又称为细胞质遗传(cytoplasmic inheritance)或核外遗传(extra-nuclear inheritance)。 2、细胞质遗传的特点 ①.正交和反交的遗传表现不同。

2018医学遗传学_考试重点整理知识点复习考点归纳总结

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。上下代传递遵循孟德尔遗传定律。分为核基因遗传和线粒体基因遗传。 常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。 常染色体完全显性遗传的特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即 男女患病的机会均等 ⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲 无病时,子女一般不会患病(除非发生新的基因突变) ⑶患者的同胞和后代有1/2的发病可能 ⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象 一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。 带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。 常染色体隐性遗传的遗传特征 ⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关, 即男女患病的机会均等 ⑵患者的双亲表型往往正常,但都是致病基因的携带者 ⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能 为携带者;患者的子女一般不发病,但肯定都是携带者 ⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时 在整个系谱中甚至只有先证者一个患者 ⑸近亲婚配时,后代的发病风险比随机婚配明显增高。这是由于他们 有共同的祖先,可能会携带某种共同的基因 由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病 男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。 男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。 X连锁显性遗传的遗传特征 ⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻 ⑵患者双亲中一方患病;如果双亲无病,则来源于新生突变 ⑶由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女 性杂合子患者的子女中各有50%的可能性发病 ⑷系谱中常可看到连续传递现象,这点与常染色体显性遗传一致 如果决定一种遗传病的致病基因位于X染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR)遗传病。(血友病A)X连锁隐性遗传的遗传特征 ⑴人群中男性患者远较女性患者多,在一些罕见的XR遗传病中,往往

协和医学遗传学基础考试总结(个人整理)

1.医学遗传学(Medical Genetics):是遗传学与医学相结合而产生的一门研究人类病理性状的遗传规 律和物质基础的一门学科。其研究对象为人类遗传病,研究遗传病发生机理、传递方式、诊断、治疗、预后、再发风险和预防方法,从而控制遗传病在一个家庭中的再发,降低它在人群中的危害,提高人口素质。 2.遗传病(inherited disease):由于遗传物质改变导致的人类疾病 3.基因(Gene):是位于染色体上具有遗传效应的DNA片段 4.基因型(Genotype):个体一定基因位点上等位基因的组成 5.表现型(phenotype):一定基因型的生物体所表现的形态、机能、行为和生化等表现 6.遗传病的分类: 根据在疾病形成过程中遗传因素和环境因素所起作用的大小,将人类疾病分为四大类: 1.遗传因素决定发病,看不到特定环境因素的作用,如短指(趾) 2.基本由遗传因素决定发病,但需要一定的环境因素诱发,如苯丙酮尿症等 3.遗传因素和环境因素都起作用 4.基本上是环境因素决定发病,与遗传因素无关。 7.遗传病的特征: (1)家族聚集性:遗传病往往表现为家族聚集性,但家族聚集的疾病并非都为遗传病,如坏血病等。 (2)先天性:遗传病多数为先天性疾病,但先天疾病并非都为遗传病,如由于母亲感染风疹病毒引起的胎儿白内障。 (3)遗传物质突变。 (4)垂直传递。 (5)终生性。 细胞分裂周期:连续分裂的细胞,从一次细胞分裂结束开始,到下次细胞分裂结束为止所经历的全过程,叫做一个细胞分裂周期,一个细胞分裂周期所需要的时间叫做细胞周期时间。细胞周期可分为间期和有丝分裂期。 突变Mutation致病突变Disease-causing mutation Exon外显子Intron内含子 核型:一个体细胞中全部染色体系统排列所构成的图像 核型分析:将一个细胞的全部染色体按照染色体的大小、着丝粒位置及其他特征配对、排列,以确认其是否具有正常的核型组成的过程。 染色体组(chromosome set):人类等二倍体生物的每一个正常的精子或卵子的全部染色体。 亚二倍体(hypodiploid): 染色体数目少于二倍体数。缺失一条染色体的那对染色体将构成单体型(monosomy)。典型病例为45,X的女性性腺发育不全(Turner综合征)。 相互易位(平衡易位)(reciprocal translocation):两条染色体发生断裂后形成的两个断片,相互交换连接而形成两条衍生的染色体。 罗伯逊易位(robertsonian translocation):近端着丝粒染色体着丝粒处发生断裂,在着丝粒处重接,也称着丝粒融合(centric fusion)。 1. 三倍体形成的原因? 1)双雄受精(dindry):受精时同时有两个精子入卵受精,可形成69,XXX;69,XXY;69XYY。 2)双雌受精(digyny):卵子发生第二次减数分裂时,次级卵母细胞由于某种原因,其第二极体的那一染色体组没有排出卵外,而仍留在卵内这样的与一个正常的精子受精后,即可形成核型为69,XXX或69,XXY 的受精卵。 2. 四倍体形成的原因? 1)核内复制(endoreduplication): 在一次细胞分裂时,染色体不是复制一次,而是复制两次。每个染色体形成4条,染色体两两平行排列在一起,经过正常的分裂中期、后期和末期后,形成的两个子细胞均为四倍体细胞。 核内复制与四倍体形成是癌细胞较常见的染色体异常特征之一。 2)核内有丝分裂(endomitosis): 是在进行细胞分裂时,染色体正常地复制一次,但至分裂中期时,核膜仍未破裂、消失,也无纺锤丝

医学遗传学名词解释

医学遗传学名词解释 1.遗传病(genetic disease):通过一定的遗传基础,并按一定的方式传于后代发育形成的疾病。 2.基因家族(gene family):由一个祖先基因发生发展而来的一系列结构相似、功能相同的基因。 3.割裂基因(split gene):真核生物基因的编码序列往往被非编码序列所割裂,呈现断裂状的结构。 4.移码突变(frame-shift mutation):一种由于基因组DNA多核苷酸链中碱基对的插入或缺失,以致自插入或缺失点之后部分的或所有的三联体遗传密码子组合发生改变的基因突变形式。 5.遗传印记(genetic imprinting):一个个体来自双亲的某些同源染色体或等位基因存在功能差异,当它们发生相同的改变时形成不同表型的现象称为遗传印记。 6.基因突变(gene mutation):在一定内外环境因素的作用和影响下,遗传物质可能发生变化,这种遗传物质的变化及其所引起的表型改变称为基因突变。 7.动态突变(dynamic mutation):三核苷酸的重复次数可随着世代交替的传递而呈现逐代递增的累加突变效应。 8.单基因遗传病(monogenic disease):指由一对等位基因控制而发生的遗传性疾病,其传递方式遵循孟德尔遗传律。 9.不完全显性(incomplete dominance):杂合子Aa的表型介于显性纯合子AA和隐性纯合子aa表型之间的一种遗传方式,即在杂合子Aa中显性基因A和隐性基因a的作用均得到一定程度的表现。 10.易患性(liability):在多基因遗传病发生中,遗传因素和环境因素共同作用决定一个个体患某种遗传病的可能性。 11.母系遗传(maternal inheritance):母亲将mtDNA传递给她的儿子和女儿,但只有女儿能将其mtDNA传递给下一代。 12.分子病(molecular disease):由遗传性基因突变或获得性基因突变使蛋白质的分子结构或合成的量异常直接引起机体功能障碍的一类疾病。 13.先天性代谢缺陷(inborn errors of metabolism):由于遗传上的原因而造成的酶蛋白质分子结构或数量的异常所引起的疾病。 14.多基因遗传(polygenic inheritance):一些性状或疾病由多对基因共同决定,性状的遗传不受孟德尔遗传规律所制约,且环境因素对性状的表现程度产生较大影响,该遗传方式成为多基因遗传。 15.近婚系数(inbreeding coefficient):由于近亲婚配,子女在等位基因上得到一对相同基因的概率,称为近婚系数。 16.遗传负荷(genetic load):在一个群体中由于致死基因或有害基因的存在使群体适合度降低的现象,主要有突变负荷和分离负荷,受近亲婚配和环境因素的影响。 17. X染色质(X chromatin):在间期细胞核中显示出来的一种特殊结构,正常女性的间期细胞核中有1个X染色质,正常男性则没有X染色质。 18.核型(karyotype):一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图像。 19.异染色质(heterochromatin):在细胞间期螺旋化程度较高,呈凝集状态,且染色较深,多分布在核膜内表面,DNA复制较晚,含有重复DNA序列,很少进行转录或无转录活性的染色质,是间期核中不活跃的染色质,分为结构异染色质和功能异染色质。 20.罗伯逊易位(Robertsonian translocation):两个近端着丝粒染色体在着丝粒部位或着丝粒附近部位发生断裂后,

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选) 第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。

如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ 6、几个基本概念 粘性末端:两条多聚核苷酸链上磷酸二酯键断开的位置是交错的,对称地分布在识别序列中心位置两侧,这样形成的DNA片段末端称为~。 平末端:两条多聚核苷酸链上磷酸二酯键断开的位置处在识别序列的对称结构中心,这样切割的结果产生的DNA片段末端是平齐的,称之为~。 同裂酶:一些来源不同的限制性核酸内切酶具有相同的识别序列。如:BamHI和BstI均可识别GGATCC。 同尾酶:有些限制性内切酶虽然识别序列不同,但是切割DNA分子产生相同的DNA末端。如:TaqI:TCGA;ClaI:A TCGA T;AccI:GTCGAC 星星活性:某些限制性核酸内切酶在特定条件下,可以在不是原来的识别序列处切割DNA,这种现象称为Star活性。 DNA物理图谱:(多为质粒图谱)

分子生物学期末考试重点

1.定义重组DNA技术 将不同的DNA片段按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 2.说出分子生物学的主要研究内容 1.DNA重组技术 2.基因表达研究调控 3.生物大分子的结构功能研究 4.基因组、功能基因组与生物信息学研究 3.简述DNA的一、二、三级结构 一级:4种核苷酸的连接及排列顺序,表示了该DNA分子的化学成分 二级:2条多核苷酸连反向平行盘绕所形成的双螺旋结构 三级:DNA双螺旋进一步扭曲盘绕所形成的特定的空间结构 4.原核生物DNA具有哪些不同于真核生物DNA的特征? ①DNA双螺旋是由2条互相平行的脱氧核苷酸长链盘绕而成,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5---3,另一条是3---5②DNA双螺旋中脱氧核糖和磷酸交替连接,排在外侧构成基本骨架,碱基排在内侧③两条链上的碱基通过氢键相结合,形成碱基对 5.DNA双螺旋结构模型是由谁提出的?沃森和克里克 6.DNA以何种方式进行复制,如何保证DNA复制的准确性? 线性DNA的双链复制:将线性复制子转变为环状或者多聚分子,在DNA末端形成发卡式结构,使分子没有游离末端,在某种蛋白质的介入下在真正的末端上启动复制。环状DNA 复制:θ型、滚环型、D型 ①以亲代DNA分子为模板进行半保留复制,复制时严格按照碱基配对原则 ②DNA聚合酶I 非主要聚合酶,可确保DNA合成的准确性

③DNA修复系统:错配修复、切除修复、重组修复、DNA直接修复、SOS系统 7.简述原核生物DNA复制特点 只有一个复制起点,复制起始点上可以连续开始新的DNA复制,变现为虽只有一个复制单元,但可以有多个复制叉 8.真核生物DNA的复制在哪些水平上受到调控? 细胞生活周期水平调控;染色体水平调控;复制子水平调控 9.细胞通过哪几种修复系统对DNA损伤进行修复? 错配修复,恢复错配;切除修复,切除突变的碱基和核苷酸片段;重组修复,复制后的修复;DNA直接修复,修复嘧啶二聚体;SOS系统,DNA的修复,导致变异 10.什么是转座子?分为哪些种类? 是存在于染色体DNA上可自主复制和移动的基本单位。可分为插入序列和复合型转座子11.什么是编码链?什么是模板链? 与mRNA序列相同的那条DNA链称为编码链,另一条根据碱基互补配对原则指导mRNA 合成DNA链称为模板链 12.简述RNA的种类及其生物学作用 mRNA:编码了一个或多个多肽链序列。 tRNA:把mRNA上的遗传信息变为多肽中的氨基酸信息。 rRNA:是核糖体中的主要成分。 hnRNA:由DNA转录生成的原始转录产物。 snRNA:核小RNA,在前体mRNA加工中,参与去除内含子。 snoRNA:核仁小RNA,主要参与rRNA及其它RNA的修饰、加工、成熟等过程。scRNA:细胞质小RNA在蛋白质合成过程起作用。

相关文档
最新文档