平面向量综合测试题

平面向量综合测试题
平面向量综合测试题

《平面向量》综合测试题

班级___________姓名____________学号____________得分____________

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1. 若A (2,-1),B (-1,3),则AB 的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对

2.与a =(4,5)垂直的向量是 ( ) A.(-5k ,4k ) B. (-10,2) C. (54

,k k

-) D.(5k , -4k )

3. △ABC 中,=a , =b ,则等于 ( ) A.a+b B.-(a+b ) C.a -b D.b -a

4.化简

52(a -b )-3

1

(2a +4b )+152(2a +13b )的结果是 ( ) A.5

1a ±

51b B.0 C. 51a +51b D. 51a -5

1

b 5.已知|p |=22,|q |=3, p 与q 的夹角为

4

π

,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( ) A.15 B.15 C. 16 D.14

6.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥AB ,则k 的值为 ( )

A.109-

B.109

C.1019-

D.10

19 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=u u u

r u u u v u u u v u u u v ,则点P 与△

ABC 的关系是 ( ) A. P 在△ABC 的内部 B. P 在△ABC 的外部 C. P 是AB 边上的一个三等分点 D. P 是AC 边上的一个三等分点

8.已知△ABC 的三个顶点,A (1,5),B (-2,4),C (-6,-4),M 是BC 边上一点,且△ABM 的面积是△ABC 面积的

4

1

,则线段AM 的长度是 ( )

A.5 C.

25 9.设e 1,e 2是夹角为450的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+

10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( ) A.300 B.450 C.600 D.750 11.把一个函数的图象按向量a =(

3

π

,-2)平移后,得到的图象对应的函数解析式为y =sin(x +

6

π

)-2,则原函数的解析式为( )

A.y=sin x

B.y=cos x

C.y=sin x+2

D.y= -cos x

12.在△ABC中,AB=c, BC

u u u r

=a, CA

u u u r

=b,则下列推导中错误的是( ) A.若a·b<0,则△ABC为钝角三角形 B.若a·b=0,则△ABC为直角三角形

C.若a·b=b·c,则△ABC为等腰三角形

D.若c·( a+b+c)=0,则△ABC为等腰三角形

二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)

13.在△ABC中,已知,4

=

=AC

AB且,8

=

?AC

AB则这个三角形的形状是. 14.一艘船从A点出发以h

km/

3

2的速度向垂直于对岸的方向行驶,同时河水的流速为h

km/

2,则船实际航行的速度的大小和方向是.

15. 若向量)4

,7(

),1,2

(

),

2

,3(-

=

-

=

-

=c

b

a,现用a、b表示c,则c=.

16.给出下列命题:①若a2+b2=0,则a=b=0;

①已知A),

,

(1

1

y

x B)

,

(2

2

y

x,则);

2

,

2

(

2

12

1

2

1

y

y

x

x

AB

+

+

=

①已知a,b,c是三个非零向量,若a+b=0,则|a·c|=|b·c|

①已知0

,02

1

>

λ,e1,e2是一组基底,a=λ1e1+λ2e2则a与e1不共线,a与e2也不共线;

①若a与b共线,则a·b=|a|·|b|.其中正确命题的序号是.

三、解答题(本大题共6小题,17-21题每小题12分,22题14分,共74分,解答应写出文字说明、证明过程或演算步骤)

17.如图,ABCD是一个梯形,CD

AB

CD

AB2

,

//=, M、N分别是AB

DC,的中点,已知=

AB a, =

AD b,试用a、b表示,

DC BC

u u u r u u u r

和.

MN

u u u u r

18.设两个非零向量e1、e2不共线.如果AB=e1+e2,=

BC2e1+8e2,CD=3(e1-e2)

①求证:A、B、D共线;

①试确定实数k,使k e1+e2和e1+k e2共线.

A B

N

M

D C

19.已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上的高为AD.①求证:AB①AC;①求点D与向量

的坐标.

20.已知△ABC的三个顶点为A(1,2),B(4,1),C(3,4).①求AB边上的中线CM的长;①在AB上取

的面积分成4:5两部分,求P点的坐标.一点P,使过P且平行与BC的直线PQ把ABC

21.已知a、b是两个非零向量,证明:当b与a+λb(λ∈R)垂直时,a+λb的模取得最小值.

22.已知二次函数f (x ) 对任意x ①R ,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2), b =(2sin x ,2

1), c =(cos2x ,1),d =(1,2)。

(1)分别求a ·b 和c ·d 的取值范围;

(2)当x ①[0,π]时,求不等式f (a ·b )>f (c ·d )的解集。

一、BCDBA ;DDADB ;BD

二、13.等边三角形;14.大小是4km/h ,方向与水流方向的夹角为600 ; 15.a -2b ; 16.①①① 三、17.①||=2|CD |①DC AB 2=①21

21==

a ,=

b -21a , MN =4

1a -b 18.①①BD BC CD =+=u u u r u u u r u u u r

5e 1+5e 2=AB 5 , ①BD AB //又有公共点B,①A 、B 、D 共线

①设存在实数λ使k e 1+e 2=λ(e 1+k e 2) ① k =λ且k λ=1 ①k =1± 19.①由0=?可知⊥即AB ①AC

①设D (x,y ),①)2,1(),5,5(),4,2(++==--=y x y x ①⊥ ①5(x -2)+5(y -4)=0

①BC BD // ①5(x +1)-5(y +2)=0 ①???

????==2

527

y x ①D(25,

27))2

3

,23(-=AD

20.①2

26

||),25,21()23,25(=--=∴M Θ

①设P (x,y )44||22,59||33

APQ APQ BPQC

ABC S S AP AP AB S S AB ???=∴=∴=∴=u u u

r u u u r Q

)1,3(32)2,1(-=

--∴y x )3

4,3(P ∴ 21. 当b 与a +λb (λ∈R)垂直时,b ·(a +λb )=0,∴λ= -2g a b

b

| a +λb

当λ= -2g a b

b

时,| a +λb |取得最小值. ①当b 与a +λb (λ∈R)垂直时,a +λb 的模取得最小值.

22. (1)a ·b =2sin 2x +1≥1 c ·d =2cos 2x +1≥1

(2)①f (1-x )=f (1+x ) ①f (x )图象关于x =1对称

当二次项系数m >0时, f (x )在(1,+∞)内单调递增, 由f (a ·b )>f (c ·d )? a ·b > c ·d , 即2sin 2x +1>2cos 2x +1

又①x ∈[0,π] ①x ∈3(,)4

4

ππ

当二次项系数m <0时,f (x )在(1,+∞)内单调递减, 由f (a ·b )>f (c ·d )? a ·b > c ·d , 即2sin 2x +1<2cos 2x +1 又①x ∈[0,π] ①x ∈3[0,)(,]4

4

ππ

πU 、

故当m >0时不等式的解集为3(,)4

4

ππ;当m <0时不等式的解集为3[0,)(,]4

4

ππ

πU 、

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

平面向量部分常见的考试题型

平面向量部分常见的题型练习 类型(一):向量的夹角问题 1.平面向量, 4==且满足2.=,则与的夹角为 2.已知非零向量, (2-⊥=,则与的夹角为 类型(二):向量共线问题 1. 已知平面向量),(x 32=,平面向量),,(182--=b 若a ∥b ,则实数x 2. 设向量),(,(3212==若向量b a +λ与向量)74(--=,共线,则=λ 3.已知向量) ,(,(x 211==若24-+与平行,则实数x 的值是( ) A .-2 B .0 C .1 D .2 类型(三): 向量的垂直问题 1.已知向量b a b x a ⊥==且),()6,3(,1,则实数x 的值为 2 .已知向量=--==b b a n b n a 与),若,(),,(211 3.已知=(1,2),=(-3,2)若k +2与2-4垂直,求实数k 的值 4. 42==,且b a 与的夹角为 3 π ,若的值垂直,求与k b a k b a k 22-+。 类型(四)投影问题 1. ,45==,与的夹角3 2π θ=,则向量在向量上的投影为 2. 在Rt △ABC 中,===∠AC C .,4,2 则π 类型(四)求向量的模的问题 1. 已知零向量====b a a ,则),(2510.,12 2. 已知向量, ====221 3. 已知向量a )3,1(= ,=+-=)0,2( 4. 设向量, 1== 及34=- ,求3+的值 类型(五)平面向量基本定理的应用问题 1.若=(1,1),=(1,-1),=(-1,-2),则等于 ( ) (A) 2321+- (B)2321-- (C)b a 2123- (D)b a 2 123+-

平面向量题型归纳总结

平面向量题型归纳 一。向量有关概念:【任何时候写向量时都要带箭头】 1。向量得概念:既有大小又有方向得量,记作:或。注意向量与数量得区别.向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。 例:已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到得向量就是 2、向量得模:向量得大小(或长度),记作:或. 3。零向量:长度为0得向量叫零向量,记作:,注意零向量得方向就是任意得; 4.单位向量:单位向量:长度为1得向量。若就是单位向量,则。(与共线得单位向量就是); 5。相等向量:长度相等且方向相同得两个向量叫相等向量,相等向量有传递性; 6。平行向量(也叫共线向量):方向相同或相反得非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。 提醒:①相等向量一定就是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行就是不同得两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有); ④三点共线共线; 如图,在平行四边形中,下列结论中正确得就是( ) A、B、 C、D、 7.相反向量:长度相等方向相反得向量叫做相反向量.得相反向量就是-、。例:下列命题:(1)若,则。(2)若,则。(6)若,则。(3)若,则就是平行四边形。(4)若就是平行四边形,则。其中正确得就是_______ 题型1、基本概念 1:给出下列命题: ①若||=||,则=;②向量可以比较大小;③方向不相同得两个向量一定不平行; ④若=,=,则=;⑤若//,//,则//;⑥;⑦; 其中正确得序号就是。 2、基本概念判断正误:(1)共线向量就就是在同一条直线上得向量。 (2)若两个向量不相等,则它们得终点不可能就是同一点. (3)与已知向量共线得单位向量就是唯一得。 (4)四边形ABCD就是平行四边形得条件就是。

平面向量部分常见的考试题型总结

平面向量部分常见的题型练习 类型(一):向量的夹角问题 1?平面向量a,b,满足a =1,b =4且满足a.b = 2,则a与b的夹角为 _________ 2?已知非零向量a,b满足a = b,b丄(b—2a),则a与b的夹角为___________ 3?已知平面向量a,b满足(a -b).(2a - b) —4且*2,” 以且,则a与b的夹角为_________________ 4?设非零向量a、b、c满足| a |=| b |=| c |,a ■ b = c,则:::a, b = ____ 5?已知a =2」b| =3, a +b = J7,求a与b的夹角。 6?若非零向量a,b满足a = b ,(2a+b).b=0,则a与b的夹角为____________ 类型(二):向量共线问题 1. 已知平面向量a =(2,3x),平面向量b =( 一2,18),若a // b,则实数x ____________ 2. 设向量a = (2,1),b = (2,3)若向量,a - b与向量c = (- 4, - 7)共线,则,- 3?已知向量a (1,1),b (2, x)若a b与4b - 2a平行,则实数x的值是( ) A. -2 B. 0 C. 1 D. 2 4已知向量OA =(k,12),0B =(4,5),OC =(-k,10),且A, B, C三点共线, 则k = ___ 5. 已知A (1,3), B (—2,—3), C (x,7),设AB =a , BC = b 且a // b,则x 的值为() (A) 0 (B) 3 (C) 15 (D) 18 6. 已知a= (1, 2), b= (-3 —2)若k a+2b与2a-4b共线,求实数k的值; 7. 已知a —c是同一平面内的两个向量,其中 a = (1 —2)若|^ = 2. 5,且a // c,求c的坐标 —I- 8. n为何值时,向量a ( n ,1)与b = (4, n)共线且方向相同? 9. 已知a = 3,b = (1,2),且a // b,求a的坐标。 10. 已知向量a (2, -1),b ( -1, m),c =(-1,2),若(a b)// c,则m= ________________ 11. 已知a,b不共线,c =ka ? b,d =a -b,如果c // d,那么k= _________ ,c与d的方向关系

高中数学平面向量知识点总结及常见题型范文

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与 终点的大写字母表示,如:几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行a = ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共 线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同 一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的 平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大小相等,方向相同),(),(2211y x y x =???==?21 2 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量

专题七:平面向量常考题型的解题技巧

平面向量专题讲解 向量是数学中的重要概念,以向量为工具可以把几何问题(平面、空间)转化为简单的向量运算,变抽象的逻辑推理为具体的向量运算,实现形与数的结合. 题型一:考查与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“a >b ”错了,而|a |>|b |才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(力和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示). ⑸零向量0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. 题型二:与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量(对应坐标相加). ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+|b |; ②当两个向量和共线且同向时,+、、的方向都相同,且=+||||||+; ③当向量和反向时,若||>||,+与 方向相同 , 且|+|=||-||;

若|a |<|b |时,b a +与b 方向相同,且|a +b |=|b |-|a |. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. ⑶围成一周首尾相接的向量(有向线段表示)的和为零向量. 如,+AB +BC 0=CA ,(在△ABC 中) +++=.(□ABCD 中) ⑷判定两向量共线的注意事项 如果两个非零向量,,使=λb (λ∈R ),那么∥; 反之,如∥,且≠0,那么=λ. 这里在“反之”中,没有指出是非零向量,其原因为=0时,与λ的方向规定为平行. ⑸数量积的8个重要性质 ①两向量的夹角为0≤θ≤π.由于向量数量积的几何意义是一个向量的长度乘以另一向量在其上的射影值,其射影值可正、可负、可以为零,故向量的数量积是一个实数. ②设、都是非零向量,是单位向量,θ是与的夹角,则 ③?⊥)1|.(cos ||==?=?e a θ0=?(∵θ=90°,)0cos =θ ④在实数运算中ab =0a ?=0或b=0.而在向量运算中b a ?=0a ?=0或b =0是错误的,故0=a 或0=b 是b a ?=0的充分而不必要条件. ⑤当a 与b 同向时b a ?=||||b a ?(θ=0,cos θ=1); 当a 与b 反向时,b a ?=-||||b a ?(θ=π,cos θ=-1),即a ∥b 的另一个充要条件是||||b a ?=?. 特殊情况有2=?=2 |a .

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a 是以点A (3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a 的终点坐标是 . 例2:已知| a |=1,| b |=1,a 与b 的夹角为60°, x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦是多少? 题型二:向量共线与垂直条件的考查 例1(1),a b r r 为非零向量。“a b ⊥r r ”是“函数()()()f x xa b xb a =+?-r r r r 为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在所在平面内,且,且,则点O ,N ,P 依次是的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 23).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(21,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α-3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的取值范围. 例4:已知向量)1,2(),2,1(-==,若正数k 和t 使得向量

b t a k y b t a x 1)1(2+-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-3π,3π],求x ;(2)若函数y =2sin2x 的图象按向量c =(m , n) (m ﹤2 π)平移后得到函数y =f(x )的图象,求实数m 、n 的值. 例8:已知a =(cosα,sin α),b =(cosβ,sinβ)(0<α<β<π),(1)求证: a +b 与a -b 互相垂直; (2)若k a +b 与a -k b 的模大小相等(k ∈R 且k ≠0),求β-α 巩固练习 1.函数的图象按向量a r 平移到,的函数解析式为当为奇函数时,向量a r 可以等于 1. 2.给定两个长度为1的平面向量和,它们的夹角为. 如图所示,点C 在以O 为圆心的圆弧上变动.若其中,则的最大值是________. 3给出下列命题 ① 非零向量、满足||=||=|-|,则与+的夹角为30°; ② ·>0是、的夹角为锐角的充要条件; ③ 将函数y =|x -1|的图象按向量=(-1,0)平移,得到的图像对应的函数为y =|x |; ④若()·()=0,则△ABC 为等腰三角形 以上命题正确的是 。(注:把你认为正确的命题的序号都填上)

高中数学-平面向量及常见题型

高中数学-平面向量及常见题型 向量知识点 ☆零向量:长度为o 的向量,记为0 ,其方向是任意的, 0与任意向量平行 ☆单位向量:模为1个单位长度的向量 向量a 0为单位向量 I a 0 I = 1 ☆平行向量(共线向量) :方向相同或相反的非零向量 平行向量也称为共线向量 uuu uuu uuu ☆向量加法AB BC = AC 向量加法有“三角形法则”与“平行四边形法则”: uuu LUUT uuur uuu uuu uuu AB BC CD L PQ QR AR ,但这时必须“首尾相连”. ☆实数与向量的积: ①实数入与向量a 的积是一个向量,记作入a ,它的长度与方向规定如下: (】)a a ; (n )当 0时,入a 的方向与a 的方向相同;当 0时,入a 的方向与a 的方向相反;当 0时,a 0, 方向是任意的 ☆两个向量共线定理: 向量b 与非零向量a 共线 有且只有一个实数 ,使得b = a ☆平面向量的基本定理: 如果e i ,e 2是一个平面内的两个不共线向量,那么对这一平面内的任一向量 a ,有且只有一对实数 i , 2使: a i0 2e 2,其中不共线的向量 e n e 2叫做表示这一平面内所有向量的一组基底 ☆平面向量的坐标运算: uun ⑵若 A X i , 2i , B X 2, 22 ,则 AB X 2 X i ,y 2 y ⑶若 a =(x,y ),贝u a =( x, y) ☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质 ra 若 r b y2 r b ra 则 y2 X y2 % X2 X r b ra x i y 2 X 2 y i r X>, y 2,则 a//b r b y1 ra 若 o 2 y 卷 ^1 X ra 则 y2 X2, r b y2 ra 若 5)

(完整版)平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 uuu uuu unr (1 )化简:① AB BC CD uuu uur uuir uur uuir uuu uur :② AB AD DC③(AB CD)(AC BD) uuu r uuur r uuur r r r r AB a, BC b, AC c,则|a b c|匚= .uuu uur uuu uuur uu 且满足OB OC OB OC2OA则VABC的形状为 (2)若正方形ABCD的边长为1, (3)若0是VABC所在平面内一点, () 9 .与向量a =(12, 5) 平行的单位向量为 12 A. - 13 12 13 13 13 C.空 13 2或 13 12 12 13 13 13 A或 13 12 13,13 unr ①FD uur DA uur AF0 uuu ②FD unr DE unr EF0 unr unr unr unr unr uujr ③DE DA BE④AD BE AF uuu uuu uuu 11.设P是厶ABC所在平面内的一 点, BC BA2BP uuu A. PA uuu PB r 0 B. uur PC uur PA r 0 C. uuu PB uuu PC ABC边 AB BC CA上的 则( 12.已知点?设 0 D. 10 .如图,D E、F分别是中 点,则下列等式中成立的有 uur uuu uur PA PB PC A.2 A( 3,1), B. 13.设向量 则向量d为() A.(2,6) B.( B(0,0),C( ..3,0) BAC的平分线 uuu AE与BC相交于E,那么有BC uuu CE,其中等于 C.-3 D. 2 a=(1, —3), b=( —2,4), c=( —1, —2),若表示向量 3 4a,4b —2c,2( a—c), d的有向线段首尾相接能构成四边 形, —2,6) C.(2, —6) uur AD D.( uuu xAB —2, —6) uuu yAC,贝U x _ 14.如图2,两块斜边长相等的直角三角板拼在一起,若 图2 uur 15、已知O是厶ABC所在平面内一点?D为BC边中点.且2OA uur uur uur uur A. AO OD B. AO 2OD uu ur OB C. UU IT AO uiur r OC 0.那么( uuur 3OD ) unr D. 2AO uuu r 0D

平面向量部分常见考试题型总结

平面向量部分常见得题型练习类型(一):向量得夹角问题 1、平面向量,满足且满足,则得夹角为 2、已知非零向量满足,则得夹角为 3、已知平面向量满足且,则得夹角为 4、设非零向量、、满足,则 5、已知 6、若非零向量满足则得夹角为 类型(二):向量共线问题 1.已知平面向量,平面向量若∥,则实数 2.设向量若向量与向量共线,则 3、已知向量若平行,则实数得值就是( ) A.-2??B.0 ?C.1?D.2 _____ ) 10 , ( ), 5 4( ), 12 , ( .4 = - = = = k C B A k k 则 三点共线, , , ,且 , 已知向量 5.已知,设,且∥,则x得值为() (A)0 (B)3 (C)15(D) 18 6.已知=(1,2),=(-3,2)若k+2与2-4共线,求实数k得值; 7.已知,就是同一平面内得两个向量,其中=(1,2)若,且∥,求得坐标 8、n为何值时,向量与共线且方向相同? 9、已知∥,求得坐标。 10、已知向量,若()∥,则m= 11、已知不共线,,如果∥,那么k=,与得方向关系就是 12、已知向量∥,则 类型(三): 向量得垂直问题 1.已知向量,则实数得值为 2.已知向量 3.已知=(1,2),=(-3,2)若k+2与2-4垂直,求实数k得值 4.已知,且得夹角为,若。 5、已知求当为何值时,垂直? 6、已知单位向量 7、已知求与垂直得单位向量得坐标。

8、 已知向量的值为垂直,则实数与且向量),(λλb a b a b a 2)0,1(,23-+-=-= 9、 10、 ∥, 类型(四)投影问题 1. 已知,得夹角,则向量在向量上得投影为 2. 在△中, 3.关于且,有下列几种说法: ① ; ② ;③ ④在方向上得投影等于在 方向上得投影 ;⑤;⑥ 其中正确得个数就是 ( ) (A)4个 (B)3个 (C)2个 (D)1个 类型(四)求向量得模得问题 1. 已知零向量 2. 已知向量满足 3. 已知向量, 4.已知向量得最大值为 5、 设点M 就是线段B C得中点,点A 在直线BC 外, (A) 8 (B ) 4 (C) 2 (D ) 1 6、 设向量,满足及,求得值 7、 已知向量满足求 8、 设向量,满足 类型(五)平面向量基本定理得应用问题 1.若=(1,1),=(1,-1),=(-1,-2),则等于 ( ) (A) (B) (C) (D) 2、已知b a c c b a μλμλ+=-===的值,使和),求,(),,(),,(011101 3、设就是平面向量得一组基底,则当时, 4、下列各组向量中,可以作为基底得就是( ) (A ) (B) (C) (D) 5、 (A) (B) (C) (D) d c d c m R m m +⊥∈-=+===平行与若为何值时)当( ) 与,)2?(,1623,23.6π 类型(六)平面向量与三角函数结合题

高中数学基础题型(平面向量)

平面向量 1、向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重 合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若A B D C =,则A B C D 是平行四边形。(4)若A B C D 是平行四边形,则AB DC =。(5)若,a bb c ==,则a c =。(6)若/,/a bb c ,则//a c 。 其中正确的是_______(答:(4)(5)) 2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如 a , b , c 等; (3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。如 (1)若(1,1),a b == (1,1),(1,2)c -=-,则c =______(答:1322 a b -);(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213(2,3),(,)24e e =-=-(答:B );(3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____

高三高考平面向量题型总结,经典

平面向量 一、平面向量的基本概念: 1.向量:既有大小又有方向的量叫做________.我们这里的向量是自由向量,即不改变大小和方向可以平行移动。 向量可以用_________来表示.向量的符号表示____________________. 2.向量的长度:向量的大小也是向量的长度(或_____),记作_________. 3.零向量:长度为0的向量叫做零向量,记作________. 4.单位向量:__________________________. 5.平行向量和共线向量:如果向量的基线平行或重合,则向量平行或共线;两个非零向量方向相同或相反.记作________规定:___________________. 注意:理解好共线(平行)向量。 6.相等向量:_______________________. 例:下列说法正确的是_____ ①有向线段就是向量,向量就是有向线段; ②,,c b b a ==ρ则c a =ρ;③ ,//,//c b b a ρc a //ρ ④若CD AB =,则A ,B ,C ,D 四点是平行四边形的四个顶点; ⑤所有的单位向量都相等; 二、向量的线性运算: (一)向量的加法: 1.向量的加法的运算法则:____________、_________和___________. (1)向量求和的三角形法则:适用于任何两个向量的加法,不共线向量或共线向量;模长之间的不等式关系_______________________;“首是首,尾是尾,首尾相连” 例1.已知AB=8,AC=5,则BC 的取值范围__________ 例2.化简下列向量 (1)PM QP MN NQ +++ (2))()()(MB PM AB CQ BC BP +++++ (2)平行四边形法则:适用不共线的两个向量,当两个向量是同一始点时,用平行四边形法则; a +ρ是以a ρ, b ρ 为邻边的平行四边形的一条对角线,如图: 例1.(09 山东)设P 是三角形ABC 所在平面内一点,2=+,则 A.0=+ B.0=+ C.0=+ D.0=++ 例2.(13四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AO AD AB λ=+ ,则.______=λ (3)多边形法则 2.向量的加法运算律:交换律与结合律 (二)向量的减法: 减法是加法的逆运算,A.-=-= (终点向量减始点向量)

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

(精心整理)高中数学平面向量知识点总结及常见题型

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的 起点与终点的大写字母表示,如:AB AB ,a ;坐标表示法 ,(y x yj xi a =+= 向量的大小即向量的模(长度) ,记作|AB |即向量的大小,记作|a |向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行量a =0 ? |a |=0由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平 行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可 以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:相等向量经过平移后总可以重合,记 为b a =大小相等,方向相同),(),(2211y x y x =???==?2 121y y x x 2向量加法 求两个向量和的运算叫做向量的加法

设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR +++ ++=,但这时必须“首尾相连”. 3向量的减法 ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 记作a -,零向量的相反向量仍是零向量 关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0 ; (iii)若a 、b 是互为相反向量,则a =b -,b =a -,a +b =0 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, 记作:(b a b a -+=-求两个向量差的运算,叫做向量的减法 ③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) 4实数与向量的积: ①实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:

平面向量知识点归纳及常考题型分析

平面向量知识点归纳及常考题型分析 【知识点回顾】 1、实数与向量的积的运算律:设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ) a ; (2)第一分配律:(λ+μ) a =λa +μa ; (3)第二分配律:λ(a +b )=λa +λb 2、向量的数量积的运算律: (1) a ·b = b ·a (交换律); (2)(λa )·b = λ(a ·b )=λa ·b =a ·(λb ); (3)(a +b )·c = a ·c +b ·c 3、平面向量基本定理 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e . 不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底. 4、向量共线(平行)的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b (b ≠0)1221x y x y ?-= 5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ 6、a ·b 的几何意义: 数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 7、平面向量的坐标运算 (1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++ (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y -- (3)设A 11(,)x y ,B 22(,)x y ,则2121(,AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa =(,x y λλ (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212(x x y y +

高中数学经典解题技巧和方法_平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考容之一。因此,马博士教育网数学频道编辑部特意针对这部分的容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。 好了,搞清楚平面向量的上述容之后,下面我们就看下针对这方面容的具体的

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的 运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b == ()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=- 3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面 内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作基底, 则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a 的 坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA =___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标. 4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有: OM =________________,M 点的坐标为_____________. 5.两个向量平行的充要条件是:向量形式:_____________)0(//?≠ b b a ; 坐标形式: _____________)0(//?≠ b b a . 6. a =(x,y ), 则a =___________.与a 共线的单位向量是:a a e ±=

相关文档
最新文档