城市污水处理厂调试方案(活性污泥法)精编版

城市污水处理厂调试方案(活性污泥法)精编版
城市污水处理厂调试方案(活性污泥法)精编版

目录

第一部分启动—污泥的驯化和培养 (1)

第二部分运行—运行工艺指标的控制 (3)

第三部分运行中异常问题的处理 (5)

第四部分停运参考方案 (15)

第一部分启动—污泥的驯化和培养

一、调试启动基本流程

系统启动主要分3个阶段

闷曝培养→连续进水驯化→稳定进水试运行

具体操作方案如下:

1、投加菌种

将曝气池注满有机废水(或用清水混合桔水至COD>300mg/L),按曝气池蓄水量的0.5%~0.8%向曝气池中投加脱水活性污泥,尽量在2天内投加完毕。

2、培菌步骤

当有菌种进入曝气池时,无论菌种是否投加完毕,必须立即开始培菌步骤。

(1)闷曝:所有曝气机的搅拌都开启,各转角的曝气机风机开启,剩余风机暂不开。根据自控仪表显示的溶解氧变化调整曝气机风机的开停数量使溶解氧保持在 1.5~2.5mg/L之间。在污泥量少,供氧有富余时闷曝3~5小时后进入静沉步骤。

(2)静沉:将所有曝气机停止0.5~1小时。需要注意的是开始静沉前,应将溶解氧提高到2.5~3mg/L之间。

(3)间歇补充废水:按(1)→(2)→(1)的顺序不断反复上述步骤,当监测到的COD 值较最初降低了50%时,向曝气池补充设计处理量50%的有机废水。以前2次进水时间间隔为基准安排进水时间,并且每天将此间隔缩短1半。

(4)完成培菌:经过5-7天的培养,曝气池污泥浓度(MLSS)达到1500mg/L左右时,可以进入驯化步骤。

3、驯化步骤:

按设计处理量的30%左右连续进水,溶解氧控制在1.5—3mg/L之间,在系统正常运行前提下每天按现有处理量的10%递增进水,直到达到设计处理量。

4、试运行:控制方法参看运行管理相关章节

二、多系统调试步骤:

如果为多曝气池的并联系统则应该先在其中1个池子中进行培菌,当污泥浓度达到1000mg/L以上时将一半污泥放至另一个池培养,如此反复直到所有池子都达到设计浓度时培菌完成。

三、溶解氧控制方法说明

闷曝期间的溶解氧控制是较为灵活的。在污泥浓度较低的调试阶段设备的充氧效率非常高,设备全开可以在短短1小时内将曝气池溶解氧从0提高到4mg/L。因此,此阶段需要调试人员密切监控溶解氧的变化,建议每30分—1小时测定一次溶解氧值,根据实际变化调整曝气机的开停和开机数量。

四、剩余污泥排放的控制

当污泥的浓度接近或达到正常水平时(理论值2000~4000,实际运行时可适当放宽,最佳控制点由系统处理量及出水水质状况决定),需要进行排泥,以便系统正常运行。在运行初期由于未能掌握系统污泥的繁殖情况,应采取间歇排泥方式,每日排泥量应控制设计日处理水量的1%以内,然后根据污泥浓度变化情况逐步调整。

第二部分运行—运行工艺指标的控制一、运行控制参数表

二、日常运行控制内容及方法

(1)进水负荷:进水负荷的控制包括对进水流量、COD浓度两方面的控制,按公式

进水负荷=COD cr×Q

式中:COD cr—进水COD浓度值(mg/L)

Q—进水流量(L/h)

运行时进水负荷主要通过控制进水流量进行控制,正常情况应以设计进水负荷为基准控制;为应付波动改变负荷时,应控制在设计进水负荷上下浮动30%以内。

(2)pH值:运行中控制pH值主要从调节池入手,当pH值接近5.5时可操作加药设备以最小流量缓慢加入碱液。当发生pH值冲击加药系统不能在短时间中和水质时,应加大现有回流污泥流量1倍,待进水pH值恢复再调整回来。

(3)温度:当调节池温度高于35℃时,需要留意的是溶解氧的变化,若表现出供氧能力下降,溶解氧值降低则应减少30%的进水缓解供氧压力。当调节池高于40℃时,需要考虑引入低温清水降低系统温度。

(4)溶解氧(DO):这里的溶解氧是指,自控仪表安装位置的溶解氧情况。当溶解氧高于2.5mg/L时,应关停一台曝气机的风机,如仍然偏高继续关停,需要注意优先关靠出水一端的机器。当溶解氧低于0.8时,首先确定机器是否故障,若非机器故障减少进水30%。(5)活性污泥浓度(MLSS):MLSS主要通过排除剩余污泥进行控制,理论设计值为:3000mg/L,各处理站应以调试完成阶段的日污排泥量为基准确定小时排泥量并连续排泥。调整方法是:当污泥浓度偏离基准时,增加(减少)小时排泥量15%,仍然偏离就按每次10%逐步改变排泥量,直到找到合适的排泥量保持污泥浓度稳定。

(6)回流比(%):

回流比=回流污泥流量/进水流量

通常控制在30%~80%,应急情况则可能高于100%。正常运行时,回流比设置为50%,则进水的小范围波动情况下均不需要调整。系统出现异常时根据现场情况调整,方法将在异常对策的章节中叙述。

(7)营养投加:对于营养的投加主要是针对氮的补充,磷通常是充足的。调试阶段首次投加营养按COD:N:P=200:5:1,运行时按300:5:1投加并根据实际情况作出调整。

营养投加计算示例:

进水条件COD=500mg/L,流量=20000t/d;选择营养比例:COD:N:P=200:5:1

每日需投加氮量为=20000×500/1000×5/300=167kg

使用尿素作为氮源则,

投加的尿素量为:167/46%=363kg/d

由于进水含有一定量的氨氮,因此需要减去这部分氮才是最终的投药量。

设进水氨氮浓度为:5mg/L,则

进水含氮=20000×5/1000=100kg

实际需要投药量=363-100=263kg

配制5%的尿素溶液进行投加,则每日需要溶液量=263/5%=5260L

污水处理活性污泥运行的异常情况及其对策

污水处理活性污泥运行的异常情况及其对策 生物处理系统在运行时,常常会因进水水质、水量或运行参数的变化而出现异常情况,导致处理效率的降低,甚至损坏处理设备。了解常见的异常现在及其常用对策,有助于及时地发现问题和解决问题,使废水处理厂(站)长期稳定运行。 (1)污泥膨胀正常的活性污泥沉降性能良好,含水率一般在99%左右。当污泥变质时,污泥就不易沉降,含水率上升,体积膨胀,澄清液减少,这种现象叫污泥膨胀。污泥膨胀主要是大量丝状菌(特别是球衣菌)在污泥内的繁殖,使污泥松散、密度降低所致。其次,真菌的繁殖也会一起污泥膨胀,也有可能由于污泥中结合水异常增多导致污泥膨胀。 活性污泥的主体是菌胶团。与菌胶团比较,丝状菌和真菌生长时需较多的碳素,对氮、磷的要求则较低。它们对氧的要求也和菌胶团不同,菌胶团要求较多的氧(至少0.5mg/L)才能很好的生长,真菌和丝状菌(如球衣菌)在低于0.1mg/L 的微氧环境中,才能较好地生长。所以在供氧不足的时,菌胶团将减少,丝状菌、真菌则大量繁殖。对于毒物的抵抗力,丝状细菌和菌胶团也有差别,如对氯的抵抗力,丝状菌不及菌胶团。菌胶团生长适宜的pH值范围在6~8,而真菌则在pH 值等于4.5~6.5之间生长良好,所以pH值稍低时,菌胶团生长受到抑制,而真菌的数量则可能大大增加。根据上海城市污水厂经验,水温也是影响污泥膨胀的重要因素。丝状菌在高温季节(水温在25℃以上)宜于生长繁殖,可引起污泥膨胀。因此,污水如碳水化合物较多,溶解氧不足,缺乏氮、磷等养料,水温高或pH值较低的情况下,均因引起污泥膨胀。此外,超负荷、污泥龄过长或有机物浓度梯度小等,也会引起污泥膨胀。排泥不畅则引起结合水性污泥膨胀。 由此可见,为防止污泥膨胀,可针对一起膨胀的原因采取相应的措施。如缺氧、水温高等可加大曝气量,或降低水温,减轻负荷,或适当降低MLSS值,使需氧量减少等;如污泥负荷过高,可适当提高MLSS值,以调整负荷,必要时好要停止进水,“闷曝”一段时间;如缺氮、磷等养料,可投加硝化污泥或氮、磷等

活性污泥法调试技巧

活性污泥法调试技巧 污水处理中活性污泥调试技巧是每一位从事污水处理人员必修之课,接下来就于各位污师水友聊聊调试那点事,一起交流探讨。活性污泥的调试说白了通过人工强化,控制参数为微生物创造一个合适的生存环境;一般活性污泥的调试包括:直接培养,间接培养。 首先来说说活性污泥的控制参数生存条件: 一是水温、pH值要尽量在最适范围内,且没有大的波动; 二是保证足够的溶解氧和保持营养平衡,对于缺乏某些营养物质的工业废水,要适量多投加一些营养物质; 三是有机负荷要由低而高、循序渐进。有毒有害物质的进入;培养期间,定时要对混合液的污泥浓度、污泥指数、SV:30 ,溶解氧含量等进行分析化验,同时还要检测进出水的BOD5、CODcr及悬浮物SS等指标,根据检测结果及时加以调整。 间歇培养法 间歇培养法是将污水注满曝气池,然后停止进水,开始闷曝(只曝气而不进水)闷曝2~3天后,停止曝气,静沉1~1.5h,然后再进入部分新鲜污水,水量约为曝气池容积的1/5即可。 以后循环进行闷曝、静沉、进水三个过程,但每次进水量应比上次有增加,而每次闷曝的时间应比上次有所减少,即增加进水的次数。当污水的温度在15~20℃时,采用这种方法经过15天左右,就可使曝气池中的污泥浓度超过1g/L以上,混合液的污泥沉降比(SV)达到15%~20%。 此时停止闷曝,连续进水连续曝气,并开始回流污泥。最初的回流比应当小些,可以控制在25%左右,随着污泥浓度的增高,逐渐将回流比提高到设计值。

连续培养法 连续培养法是使污水直接通过活性污泥系统的曝气池和二沉池,连续进水和出水;二沉池不排放剩余污泥,全部回流曝气池,直到混合液的污泥浓度达到设计值为止的方法。 具体做法有以下三种: 1.低负荷连续培养 将曝气池注满污水后,停止进水,闷曝1~2天。然后连续进水连续曝气,进水量控制在设计水量的1/2或更低,不排泥也不回流。等曝气池形成絮体后,开始以低回流比(25%左右)回流污泥。当混合液污泥浓度超过1g/L后,开始以设计回流比回流污泥。当混合液污泥浓度接近设计值时,可根据具体情况适量排放剩余污泥。 2.高负荷连续培养 将曝气池注满污水后,停止进水,闷曝1~2天。然后按设计流量连续进水连续曝气,等曝气池形成污泥絮体后,开始以低回流比(25%左右)回流污泥。当混合液污泥浓度接近设计值时,再可根据具体情况适量排放剩余污泥。 3.接种培养 将曝气池注满污水后,投入大量其他污水处理厂的正常污泥(最好是没有经过消化的新鲜脱水剩余污泥),再按高负荷连续培养法培养。接种培养能大大缩短污泥培养时间,但大型处理场需要的接种量非常大,运输大量污泥往往不太现实,所以此法一般只适用于规模较小的污水处理厂。当污水处理厂改建或扩建时,利用旧曝气池污泥为新曝气池提供接种污泥,是经常见到的做法。当新建污水处理厂有多个系列的曝气池、附近又没有污水处理厂可以提供接种污泥时,可以先在一个系列利用上述方法成功培养污泥后,再向其他系列曝气池提供接种污泥,从而缩短全场的培养时间和降低培养的能耗。

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势 学院:生命科学与化学工程学院 学号:1111603112 __________ 班级:环境1111 ________ 姓名:_______ 宣锴____________

活性污泥法工艺的现状和发展趋势 1引言 活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。 该方法于 1913年在英国曼彻斯特市试验成功。 80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。 2活性污泥构成简介 活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

浇注料烘炉方案

XXXXXXX电厂XXX机组大修工程 浇注料(烘炉)方案 编制:审核:批准: 施工单位:XXXXXXXX公司 日期:2015年8月27日

木柴烘炉方案 一、烘炉的目的: 由于锅炉主体结构复杂,内衬材料施工面积大,水份含量较多,施工结束后应严格根据材料性能进行烘炉。若烘炉不能按程序进行或缩短烘炉时间,必然会使材料内部蒸汽压过大,造成材料结构剥落或材料内部的热应力损伤,严重影响锅炉本体的安全运行及使用寿命。因此,锅炉在正式投运前,烘炉是至关重要的一个环节。根据我公司耐磨材料性能特点,特提供以下烘炉方案可供参照执行。 二、烘炉前应具备的条件: 1、场地平整,照明良好,烘炉现场应有明显的标志,危险区应有围栏和警告标志。 2、锅炉安装整体完工,各部位保温完工,砌筑浇注完工,养护全部结束。 3、水压试验合格。 4、炉体、烟道的漏风试验合格。 5、引风机、送风机、除尘器等辅助设备检试合格。 6、热工测量、控制和保护系统的调试已符合点火要求,电气各仪表校验完毕。 7、锅炉冷态调试结束。 8、烘炉方案已贯彻到各运行班组,人员配备到位。 9、烘炉所用的木柴及点火油都已备好。 10、烘炉所用的底料(0~5mm流化床炉渣)400mm铺在床面上。 11、最后清理检查空气预热器、省煤器、返料器、过热器等内部杂物,干净

后封闭所有的人孔门及炉门、看火孔、点火装置。 12、检查锅炉本体管道,烟风管道及设备有无妨碍热位移膨胀之处,并妥善处理解决,调整各膨胀指示器恢复零位。 13、准备好有关烘炉方面的各项记录表格。 14、无受热面施工耐火材料的部位应开启排湿孔,每平方米不少于4~6个,汽割割开长度为50~60mm的一条缝隙,烘炉结束后焊牢。 三、烘炉要求: 1、烘炉时测点设置在以下部位:A.炉膛燃烧室两侧;B.返料器两侧;C.省煤器前烟温;D.省煤器两侧。 2、各测温点因位置不同,升温速度值显示会有所差别,以过热器两侧温度显示值为监控调节标准。 四、烘炉程序:[低温烘炉] 1、联系水系统运行班组,自主给水操作平台开启闸门向锅炉本体供水,除盐水自省煤器进入汽包。汽包及蒸汽管道放空气阀门全部开启,并将点火排汽阀打开,以便对空排汽。 2、观察汽包玻璃管水位计,保持汽包水位在正常水位,即锅筒中心线以下±50mm,达到正常水位后,开启汽包再循环管阀门,以便在烘炉过程中汽水再循环。 3、点火排汽阀全开。 4、一切准备就绪后,向炉膛燃烧室内投入木柴,泼上柴油,用火把点燃,开始点火烘炉。随后加入煤碳,煤碳点着后,停止加入木柴,烘炉过程中,煤碳自

《环境工程学》选择题及答案.docx

《环境工程学》选择题题目及答案详解 1、下列说法不正确的是( C ) A.水形成自然循环的外因是太阳辐射和地球引力 B.水在社会循环中取用的是径流水源和渗流水源 C.生活污染源对环境污染最为严重 D.工业污染源属于点源而非面源 2、下列说法不正确的是(超编题目) A. 调节池可以调节废水的流量、浓度、pH值和温度 B对角线出水调节池有自动均和的作用 3、 TOD是指(A) A. 总需氧量B生化需氧量C化学需氧量D 总有机碳含量 4、下列说法不正确的是(D) A.可降解的有机物一部分被微生物氧化,一部分被微生物合成细胞 B.BOD是微生物氧化有机物所消耗的氧量与微生物内源呼吸所消耗的氧量之和 C.可降解的有机物分解过程分碳化阶段和硝化阶段 D.BOD是碳化所需氧量和硝化所需氧量之和 5、下列说法不正确的是(A、C ) A.COD测定通常采用K2Cr 2O7和 KMnO7为氧化剂( KMnO4才对,属于书写错误) B.COD测定不仅氧化有机物,还氧化无机性还原物质 C.COD测定包括了碳化和硝化所需的氧量(描述的是BOD) D.COD测定可用于存在有毒物质的水 6、下列不属于水中杂质存在状态的是( A. 悬浮物B胶体D) C溶解物D 沉淀物 7、下列说法不正确的是(B) A.格栅用以阻截水中粗大的漂浮物和悬浮物 B.格栅的水头损失主要在于自身阻力大 ( 水头损失很小,阻力主要是截留物堵塞造成的 ) C.格栅后的渠底应比格栅前的渠底低10- 15 cm D.格栅倾斜 50- 60o,可增加格栅面积 8、颗粒在沉砂池中的沉淀属于(A)8-11题参见课本 76、77 页 A 自由沉淀B絮凝沉淀C拥挤沉淀D 压缩沉淀 9、颗粒在初沉池初期( A ),在初沉池后期( B ) A 自由沉淀B絮凝沉淀C拥挤沉淀D

活性污泥的培养

第一章厌氧污泥与好氧污泥的接种培养与驯化 一、厌氧颗粒污泥的接种培养与驯化 (一)、接种污泥 有颗粒污泥时,接种污泥数量大小 10-15%.当没有现成的污泥时,应用最多的是污水处理厂污泥池的消化污泥.稠的消化污泥有利于颗粒污泥形成。没有消化污泥和颗粒污泥时,化粪池污泥、新鲜牛粪、猪粪及其它家畜粪便都可利用作菌种,,也可用腐败污泥和鱼塘底泥作接种污泥,但启动周期较长。污泥接种浓度至少不低10Kg?VSS/m3 反应器容积,但接种污泥填充量不大于反应器容积60%。污泥接种中应防止无机污泥、砂以及不可消化的其它物进入厌氧反应器内。(二)、接种污泥启动 启动分以下三个阶段进行: 1、起始阶段——反应池负荷从0.5-1.0kgCOD/m3d或污泥负荷0.05-0.1kgCOD/kgVSS?d开始。进入厌氧池消化降解废水的混合液浓度不大于COD5000mg/L,并按要求控制进水,最低的COD负荷为1000mg/L。进液浓度不符合应进行稀释。进液时不要刻意严格控制所有工艺参数,但应特别注意乙酸浓度,应保持在1000mg/L以下。进液采用间断冲击形式,即每3~4小时一次,每次5-10min,之后逐步减断间隔时间至1小时,每次进液时间逐步增长20~30min。起始阶段,进水间隔时间过长时,则应每隔1小时开动泵对污泥搅拌一次,每次3~5min。 2、启动第二阶段——当反应器容积负荷上升到2-5kgCOD/m3d时,这一阶段洗出污泥量增大,颗粒污泥开始产生。一般讲,从第一段到第二段要40d时间,此时容积负荷大约为设计负荷的 50%。 3、启动的第三阶段——从容积负荷50%上升到100%,采用逐步增加进料数量和缩短进料间断时间来实现。衡量能否获进料量和缩短进料时间的化验指标定控制发挥性脂肪酸VFA不大于500mg/L,当VFA超过500-1000mg/L,厌氧反应器呈现酸化状态,超过1000mg/L则表明已经酸化,需立即采取措施停止进料,进行菌种驯化。一般来讲第二段到第三段也需30-40d时间。 (三)、启动的要点 原水CODcr超过过5000mg/L,应进行出水循环和加水稀释至要求。

活性污泥法运行中的常见问题及对策

活性污泥法运行中的常见问题及对策 活性污泥法是常用的好氧法,所以能够做好其运营管理非常重要,本文总结了活性污泥法运行过程中的5大常见问题以及对策,具有很强的实用价值。 01污泥膨胀的概念及其解决办法有哪些? 污泥膨胀的原因: ①丝状菌膨胀 活性污泥絮体中的丝状菌过度繁殖,导致膨胀,促成条件包括进水有机物少,F/M太低,微生物食料不足;进水氮、磷不足;pH值低;混合液溶解氧太低,不能满足需要;进水波动太大,对微生物造成冲击。 ②非丝状菌膨胀 由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的N、P,或者DO(溶氧)不足。细菌很快把大量有机物吸入体内,又不能代谢分解,向外分泌出过量的多糖类物质。这些物质分子中含羟基而具有较强的亲水性,使活性污泥的结合水高达400%(正常为100%左右),呈黏性的凝胶状,无法在二沉池分离。另一种非丝状菌膨胀是进水中含有较多毒物,导致细菌中毒,不能分泌出足够量的黏性物质,形不成絮体,也无法分离。 解决办法: 组成废水的各种成分由于比例失调,也可引起污泥膨胀,如废水中C/N 比失调,若由于碳水化合物的含量过高,可适当的投加尿素、碳酸铵或氯化铵。如系统进水浓度太高,可减低进水量。至于曝气池的环境(如pH、温度溶解氧等)对活性污泥的性质也有一定的影响。其他如废水中含有大量的有机物或石油,以及含有大量的腐败物质都可以引起膨胀。在曝气池中过多或过少地充氧或搅动不充分,都可引起膨胀。由此可知,为防止污

泥膨胀,首先应加强管理操作,经常检测污水水质、曝气池内溶解氧、污泥沉降比、污泥指数和进行显微镜观察,如发现异常情况应及时采取措施,如加大空气量、及时排泥、在有可能时采取分段进水,以减轻二沉池的负荷。 02污泥上浮的概念及其解决办法有哪些? 污泥上浮:主要是指污泥脱氮上浮。污水在二沉池中经过长时间停留会造成缺氧(DO在0.5mg/L以下),则反硝化菌会使硝酸盐转化成氨和氮气,在氨和氮气逸出时,污泥吸附氨和氮气而上浮使污泥沉降性降低。 解决办法: 污泥上浮现象和活性污泥的性质无关,只因污泥中产生气泡,使污泥密度低于水,因此污泥上浮不应与污泥膨胀混为一谈。具体解决办法有: ①降低进水盐浓度,控制高负荷COD的冲击。 ②准确地控制曝气池内的COD负荷。因此,在运行操作上要控制曝气池进水量。通过准确地控制MLSS(建议6~8g/L)和曝气池进水量,将COD负荷控制在0.2~0.4kg/(m3·d)的适当范围,以减少污水的冲击,如果该污水经过均质池后的COD浓度仍然超过设计标准,应将该股污水引入事故池以待日后处理。 ③完善新建污水预处理工艺,控制污水厌氧与兼氧酸化水解池是保障后续曝气池正常运转的关键步骤,污水中的难降解有机物在此得到降解后,可以保证曝气池污水的出水要求,也改善了二沉池的沉降性能。应采取以下措施:完成潜水搅拌机配电系统的改造,尽快泵污泥至酸化池,进行酸化池的调试和酸化污泥的驯化。一次投加剩余污泥约为池容的1/5,投加量约为100m3,使池内混合液浓度在4~6g/L。 ④控制氧曝池的溶解氧浓度,适当降低氧曝池MLSS,基本控制在10g/L以内,与之相应的溶解氧浓度控制应根据进水有机负荷及时调整。⑤增加污泥回流量,及时排除剩余污泥,降低混合液污泥浓度,缩短污泥龄,降低溶解氧浓度,但不能进入消化阶段。

气化炉烘炉方案

60万吨/年醋酸项目一期工程20万吨/年醋酸项目(第一阶段30万吨/年甲醇) 气化炉烘炉方案 气化炉原始烘炉方案 1、编制目的: 1)规烘炉操作,保证气化炉的正常投运;

2)防止烘炉过程中出现意外,导致耐火砖受损而影响耐火砖使用寿命。 2、编写依据: 1)天辰的PID图,以及现场设备、管道实际施工情况; 2)《化学工业大、中型装置试车工作规》; 2)预热烧嘴使用说明书; 4)耐火砖厂家提供的烘炉曲线图。 3、职责分工: 1)工艺人员负责管线、阀门的确认; 2)设备人员负责检查气化炉炉砖的砌筑质量; 3)仪表人员负责阀门、联锁的调试。 4、烘炉的要求: 1)气化炉的升温及恒温严格按厂家提供的速率进行; 2)严格控制气化炉液位及抽引器的抽负力,防止回火和温度大幅波动。 5、烘炉前应具备的条件: 1)所有相关设备和管线都已做过强度,气密性试验,并经过清洗和吹 扫合格。 2)所有相关的控制阀,止逆阀安装正确,动作准确。

3)相关仪表、电气检查合格,DCS具备烘炉条件。 4)相关单体试车进行完毕。 5)用于开车用的通讯器材、工具、消防、气防器材已经准备就绪。 6)对现场做清理工作,特别是易燃、易爆品不得留在现场。 7)检查盲板情况,凡是临时盲板已拆除,操作盲板已就位。 8)确认气化炉表面温度计、烘炉热偶经调校合格,误差不大于10℃, 并能投入使用。 9)再次核查各记录档案,证实各项工作准确无误,具备烘炉条件。 10)气化炉砌筑结束,已经办理中间交接手续。 11)烘炉方案已经审批,操作人员已经掌握操作步骤及注意事项。 12)烘炉用的水、电、1.3MPa(G)蒸汽、仪表空气已经具备条件。 13)记录报表齐全,升温曲线绘制完毕。 14)气化炉炉口闷炉用炉盖已制好(密封性能好,安装方便)。 15)做水分布实验,使下降管布水均匀。 6、烘炉步骤与方法: 6.1烘炉前的准备工作: 开车前,联系调度,引来外界区的新鲜水、循环水、电、蒸汽、燃料气等到气化工段各线总阀前。具体如下: 1)联系调度送工业循环水、新鲜水、消防水至气化岗位。 2)联系调度通知电气,给气化框架送照明电源,渣池泵送电。 3)联系调度通知电厂送1.3MPa(G)低压蒸汽至气化岗位手阀前。

活性污泥培养方法

活性污泥培养方法 通过工程实例总结,就如何缩短污水生化调试所需时间,从调试前期准备到污水全负荷投入运行,分3个阶段予以解剖分析。介绍了前期准备工作的内容和所需物料的种类及数量;调试各阶段物料投加量及所需控制的条件;调试过程所需注意的事项。文中所述内容尤其适用于以鼓风机曝气为主的生化处理设施。 污水处理设施在正式投入使用时,其生化处理装置均需进行污泥接种、驯化(俗称调试)。对于规模较大的污水处理设施尽量缩短调试时间,使处理主体尽快投入正常运行,在实际操作过程中有着重要的意义。我们通过多个日处理万吨的污水处理设施的生化调试发现,在生化调试过程中,如果准备充分,正常气温下一般7~10d即可完成生化设施的培菌接种工作;10d后就可以对污水进行驯化,20d左右便可进入正常运行。 本文将分三方面对生化调试工作中需注意的问题进行简要分析。为方便起见,文中所列数据均以生化池体积5000m3为基准。 1. 前期准备阶段 1.1. 物料准备 ①污泥准备 对于万立方米级污水处理装置而言,其生化池体积较大,为了保证生化池初始污泥浓度,需要准备投加的原始污泥量很大。理论上讲,投加后生化池的污泥的质量浓度最好控制在2 500mg/L左右。实际运行

时,为了节约成本,调试期间初始污泥的质量浓度可控制在1 500mg/L 左右,一日处理1×104m3污水生化时间为12h的污水处理装置为例,调试前需准备含水率在80%的活性污泥约40m3。污泥品种最好是同类或相似的活性污泥。如有困难,其它活性较强的污泥也可使用。污泥在使用前为保证一定的活性,对待用的污泥需进行喷水保湿处理,在保湿条件下污泥的活性至少可保持15d以上。 ②碳源培养寄的准备 生化调试过程中理想的碳源是大粪及淀粉。一般来说调试前期以加入大粪为主,中后期以加入淀粉为主,为接生成本,淀粉可用地脚面粉替代。由于大粪无法事先储存,因此,事前需和有关部门确定好调试期间需要的数量。调试期间碳源准备量一般按如下原则进行估算。每天投加到生化池的COD量按混合后生化池COD的质量浓度在200~300mg/L水平计,其中地脚面粉COD的质量折算量约为1t[COD]/t[面粉]。大粪的COD折算比较困难,根据经验,在整个调试期间需100~150 m3的大粪。加入大粪的目的除补充碳源外,还可增加生化池菌种的引入。地脚面粉可准备10~15t。 ③磷源、氮源的准备 补充碳源一般以普钙Ca(H2PO4)2为主,补充的氮源以尿素CO(NH2)2为主。生化池COD的质量浓度在300mg/L时估计BOD5值一般以100mg/L计,补充量按m(BOD5):m(N):m(P)=100:5:1折算,每天需补充淀粉2000-3000kg,尿素100kg,补普钙200kg,质量比按照淀粉:尿素:普钙=20-30:1:2补给。调试期间需准备尿素

活性污泥的培养驯化步骤

活性污泥的培养驯化步骤 一、步骤 1、氧化沟连续进水,使内沟污泥浓度达到500mg/l以上,然后启动曝气机闷曝(不进水,不取水); 2.2-3天后,停止曝气,静止半个小时。排出上清液1/2左右,充满新鲜污水后(添加营养源),继续闷曝1-2天后,再排走氧化沟,二沉池1/2左右上清液(往后每天多次,MLSS上升,需要营养源多)。添加污水,闷曝以后,要反复多次添加污水做营养源。直到形成絮状体。SV30在百分之30左右,活性污泥镜检结果,菌胶团已形成,可见到漫游虫,草履虫,钟虫,轮虫等。这段时间大约为10-15天。3.改间接进水或者为连续进水。改闷曝为持续曝气(使曝气中有足够氧气),微生物将二沉池的污泥及时全部回流到曝气池。(如不及时,微生物长久,积累,缺氧气死亡,有机物腐烂发酵会发臭。)此阶段10天左右,使氧化沟污泥浓度达到2000-4000mg/l,SV30达到百分之十到二十。 4. 通过镜检及测定沉降比、污泥浓度,注意观察活性污泥的增长情况。并注意观察在线PH值、DO的数值变化,及时对工艺进行调整。 5. 测定初期水质及排水阶段上清液的水质,根据进出水NH3-N、BOD、COD、NO3-、NO2-等浓度数值的变化,判断出活性污泥的活性及优势

菌种的情况,并由此调节进水量、置换量、粪水、NH4Cl、H3PO4、CH3OH 的投加量及周期内时间分布情况。 6. 注意观察活性污泥增长情况,当通过镜检观察到菌胶团大量密实出现,并能观察到原生动物(如钟虫),且数量由少迅速增多时,说明污泥培养成熟,可以进生产废水,进行驯化。 二、调试期间的监测和控制 在调试及运行过程有许多影响处理效果的因素,主要有进水CODcr 浓度、pH值、温度、溶解氧等,所以对整个系统通过感官判断和化学分析方法进行监测是必不可少的。根据监测分析的结果对影响因素进行调整,使处理达到最佳效果。 1、温度 温度是影响整个工艺处理的主要环境因素,各种微生物都在特定范围的温度内生长。生化处理的温度范围在10~40℃,最佳温度在20~30℃。任何微生物只能在一定温度范围内生存,在适宜的温度范围内可大量生长繁殖。在污泥培养时,要将它们置于最适宜温度条件下,使微生物以最快的生长速率生长,过低或过高的温度会使代谢速率缓慢、生长速率也缓慢,过高的温度对微生物有致死作用。 2、pH值

活性污泥的培养与驯化

转载:环境技术论坛的一片文章 查询 活性污泥的培养与驯化 1、活性污泥的培养(1)引生活污水调节BOD5至200~300mg/L,在曝气池内进行连续曝气,一般在15~20℃下经一周,出现活性污泥絮体,掌握换水和排放剩余污泥,以补充营养和排除代谢产物。当出现大量絮体时停止曝气,静止沉淀1~,排放约占总体积60~70%,调节生活污水进水量,继续曝气,当沉降比接近30%时,说明池中混合液污泥浓度已满足要求。从引水—暴气—暴气—污泥成熟—具良好凝聚和沉降性。一般7~10天为周期,BOD5去除率达95%左右。(2)扩大培养。连续换水—暴气—投入使用,回流50%,两周成熟,投入正常运行。 2、活性污泥的驯化 如果进行工业废水处理,则在培养成熟的活性污泥中逐渐增加工业废水的比例,直到满负荷,活性污泥正常运行为正。 活性污泥洛运行中常见的问题 1、污泥膨胀 正常的活性污泥沉降性能好,其SVI约为50—150之间为正常。 SVI=活性污泥体积/MLSS,当SVI>200并继续上升时,称为污泥膨胀 (1)丝状菌繁殖引起的膨胀 原因:污泥中丝状菌过渡增长繁殖的结果,丝状菌作为菌胶团的骨架,细菌分泌的外酶通过丝状菌的架桥作用将千万个细菌凝结成菌胶团吸附有机物形成活性污泥的生态系统。但当丝状菌大量生长繁殖,活性菌胶团结构受到破坏,形成大量絮体而漂浮于水面,难于沉降。这种现象称为丝状菌繁殖膨胀。 丝状菌增长过快的原因: a、溶解氧过低,<—l b、冲击负荷——有机物超出正常负荷,引起污泥膨胀 c、进水化学条件变化:

一是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。 二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一般是加5~10mL/L 氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。 三是碳水化合物过多会造成膨胀。 四是pH值和水温的影响,pH过低,温度高于35度易引起丝状菌生长。 解决办法: a、保持一定的活性污泥浓度,控制每天排除污泥的净增量,控制回流比。 b、控制F/M(污泥负荷) 调节进水和回流污泥 c、保持污泥龄不变 Lo——进水有机物浓度;X——MLSS浓度; Sr——回流污泥浓度;Qw——回流污泥量 d、污泥膨胀严重时投加铁盐絮凝剂或有机阳离子凝聚剂。 (2)非丝状菌膨胀 非丝状菌膨胀原因是污泥含有大量表面附着水,水质含有很高的碳水化合物而含N量低,当这些碳水化合物被细菌降解时形成多糖类物质,使代谢产物表面吸附表面水,说明C/N比失调或水温过低。 解决办法:增加N的比例,引进生活污水以增加蛋白质的成分,调节水温不低于5度。 2、污泥上浮 (1)污泥脱氮上浮 污水在二沉池中经过长时间造成缺氧(DO在/L以下),则反硝化菌会使硝酸盐转

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

25个活性污泥法运行中的常见问题及故障解答

25个活性污泥法运行中的常见问题及故障解答 (一)氧化沟泥少,微生物因为天气寒冷,难培养,怎么办? 答:1.如果是在系统刚刚启动时的培养,污泥量少是正常的,随着培养的进行,污泥量会增多。培养时,曝气过度是很不利于污泥培养的。 2.当然微生物的量是和你的源水中的碳氢含量有关,碳氢不足自然无法使微生物数量上升。还请检查。 3.如果你的系统早就启动了,想要提高微生物数量。我觉得没有太大必要的。达到平衡就行了,重要的是处理出水的情况。 4.特意地提高微生物数量将使污泥老化,反而不利于出水水质的。 5.温度的问题,我觉得出水水温不低于10度,微生物活性是没有太大问题的。 6.根据F/M值的大小,可以知道你的微生物数量是否太低,该值不大于0.25,就说明你的微生物数量不是太低。 (二) 在CASS工艺设计时应注意些什麽,同时出水堰如何设计(负荷取多大比较合适)?同时,在该工艺中,所用到的设备,都有那些,我初次接触该工艺,对所涉及到的设备不太了解,请你多多指教!同时活性污泥如何进行培养驯化,整个工程在调试运行适应注意些什麽?如何能实现很高的自控技术。在曝气过程中,哪种曝气装置比较好? 答: 1.CASS工艺有点像我们比较了解的SBR工艺,属批次处理范畴。为了提高脱氮除磷的效果并抑制丝状菌的增生。曝气池前又加设了厌氧和缺氧段。 2.设计中应该根据水量和负荷来确定各池的大小及比例。 3.出水堰大多由泌水器代替的,保证排水时液面均匀下降。排水量可根据设定的排水时间来确定选择。 4.所用到的设备与SBR工艺接近,泌水器和厌缺氧段的潜水式搅拌机要设置的。当然还要一套自动控制装置。 5.污泥培养也没有太大的特殊之处,首先接种污泥,24小时闷曝,而后正常曝气(不要过度)先少量排水少量进水,然后逐渐提高进水即可。 6.调试和运行过程中要自己总结合理的操控参数,如进水、反应、沉淀、泌水的时间;回流污泥量等。 7.曝气装置选择,对曝气头选择应保证沉淀时不堵塞,也可选射流曝气器,搅拌和充氧都比较好,也很少发生堵塞。 (三)如何降低污水厂的能耗?政府拨的经费可怜,希望您能介绍一下运营管理方面的经验。 答: 污水厂运行费用最大的应该是电费,如果污泥委托处理其费用也很高的。针对以上问题: 1.降低曝气量,以减少电费。我的经验是,理论上的曝气池溶解氧控制在3ppm,不利于节能降耗,通常,我认为,若生物系统是低负荷运行(F/M小于0.15),溶解氧控制在 1.5ppm已经足够了。由此可产生节电效果。 2.系统有调节池、中段提升泵站的,可发挥其储水能力,以进行间隙运行来降低运行费用。 3.污泥费用如有产生,可根据情况用于厂内花木堆肥。由此只需增加点工费用即可。 (四)溶解氧控制在1.5ppm,在北方的冬季会不会影响一些高效的微生物繁殖(氧化沟工艺),降低出水水质?

水污染控制工程试题库

一、名词解释题(每题3分): 1.生化需氧量:表示在有氧的情况下,由于微生物的活动,可降解的有机物稳定化所需的氧量 2.化学需氧量:表示利用化学氧化剂氧化有机物所需的氧量。 3.沉淀:是固液分离或液液分离的过程,在重力作用下,依靠悬浮颗粒或液滴与水的密度差进行分离。 4.化学沉淀法:是往水中投加某种化学药剂,使与水中的溶解物质发生互换反应,生成难溶于水的盐类, 形成沉渣,从而降低水中溶解物质的含量。 5.电解法:是应用电解的基本原理,使废水中有害物质,通过电解过程,在阳、阴极上分别发生氧化和 还原反应转化成为无害物质以实现废水净化的方法。 6.吸附:是一种物质附着在另一种物质表面上的过程,它可发生在气-液、气-固、液-固两相之间。 7.物理吸附:是吸附质与吸附剂之间的分子引力产生的吸附。 8.化学吸附:是吸附质与吸附剂之间由于化学键力发生了化学作用,使得化学性质改变。 9.膜分离法:是把一种特殊的半透膜将溶液隔开,使溶液中的某种溶质或者溶剂渗透出来,从而达到分 离溶质的目的。 10.污泥龄:是指每日新增的污泥平均停留在曝气池中的天数,也就是曝气池全部活性污泥平均更新一次 所需的时间,或工作着的活性污泥总量同每日排放的剩余污泥量的比值。 11.氧化沟:是一个具有封闭沟渠的活性污泥曝气池。 12.总充氧量:稳定条件下,单位时间内转移到曝气池的总氧量。 13.悬浮生长:在活性污泥法中,微生物形成絮状,悬浮在混合液中不停地与废水混合和接触。 14.生物膜反应器:利用生物膜净化废水的装置。 15.面积负荷率法:即单位面积每日能去除废水中的有机物等量。 16.活性污泥法:是以活性污泥来净化废水的生物处理方法。 17.活性污泥:充满微生物的絮状泥粒。 18.污泥负荷率:指的是单位活性污泥(微生物)量在单位时间内所能承受的有机物量。 19.污泥浓度:指曝气池中单位体积混合液所含悬浮固体的重量,常用表示。 20.污泥沉降比:指曝气池中混合液沉淀30后,沉淀污泥体积占混合液总体积的百分数。 21.污泥体积指数:简称污泥指数,是曝气池混合液经30沉淀后1g干污泥所占的湿污泥体积(以计)。 22.生物接触氧化法:是一个介于活性污泥法和生物滤池之间的处理方法,它兼具有这两种方法的优点。 23.厌氧流化床:当床内载体的膨胀率达到40~50%以上,载体处于流化状态。 24.厌氧生物法:在无分子氧条件下,通过兼性菌和厌氧菌的代谢作用降解污泥和废水中的有机污染物, 分解的最终产物主要是沼气,可作为能源。 25.重力浓缩法:利用重力将污泥中的固体与水分离而使污泥的含水率降低的方法。 26.扩散:污染物由高浓度处向低浓度处转移,称为扩散。 二、水污染控制工程选择题(每题2分): 2、下列不属于水中杂质存在状态的是( D ) A.悬浮物B胶体C溶解物D沉淀物 3、是指( A ) A.总需氧量 4、下列说法不正确的是( D ) A.可降解的有机物一部分被微生物氧化,一部分被微生物合成细胞 是微生物氧化有机物所消耗的氧量与微生物内源呼吸所消耗的氧量之和 C.可降解的有机物分解过程分碳化阶段和硝化阶段 是碳化所需氧量和硝化所需氧量之和 5、下列说法不正确的是( C ) 测定通常采用K22O7和7为氧化剂

污水处理厂及实验室活性污泥培养方法

污水处理厂及实验室活性污泥培养方法 一、污水处理厂活性污泥培养方法 污水处理厂建成以后,要进行单机试车和清水联动试车,如无问题,就应进行活性污泥培养,使处理厂尽早发挥污水处理功能。另外,曝气池泄空检修完毕之后,也有一个活性污泥培养问题。城市污水处理厂的污泥培养问题一般较简单,但当工业废水含量非常高时,会有一些困难,应视具体情况进行专门的污泥驯化。这里仅介绍城市污水处理厂污泥培养的一般方法及程序。 1.培养方法及种类 活性污泥从无到有,从不正常到正常的培养过程,有很多途径可以实现,因而也就有很多培养方法。对于一般城市污水来说,采用任一方法都可将活性污泥培养正常,但不同的方法所要求的培养时间不同,操作量及培养费用也不同。实践中,应根据处理广的具体情况,选择一种方法培养或几种方法并用。 1)间歇培养。将曝气池注满水,然后停止进水,开始曝气。只曝气而不进水称为“闷曝”。闷曝2~3d后,停止曝气,静沉1h,然后进入部分新鲜污水,这部分污水约占池容的1/5即可。以后循环进行闷曝、静沉和进水三个过程,但每次进水量应比上次有所增加,每次闷曝时间应比上次缩短,即进水次数增加。当污水的温度为15~20℃时,采用该种方法,经过15d左右即可使曝气池中的MLSS超过l 000mg/L。此时可停止闷曝,连续进水连续曝气,并开始污泥回流。最初的回流比不要太大,可取25%,随着MLSS的升高,逐渐将回流

比增至设计值。 2)低负荷连续培养。将曝气池注满污水,停止进水,闷曝1d。然后连续进水连续曝气,进水量控制在设计水量的1/2或更低。待污泥絮体出现时,开始回流,取回流比25%。至MLSS超过1 000mg/L 时,开始按设计流量进水,MLSS至设计值时,开始以设计回流比回流,并开始排放剩余污泥。 3)满负荷连续培养。将曝气池注满污水,停止进水,闷曝一天。然后按设计流量连续进水,连续曝气,待污泥絮体形成后,开始回流,MLSS至设计值时,开始排放剩余污泥。 4)接种培养。将曝气池注满污水,然后大量投入其它处理厂的正常污泥,开始满负荷连续培养。该种方法能大大缩短污泥培养时间,但受实际情况例如其它处理厂离该厂的距离、运输工具等的制约。该法一般仅适于小处理厂,大型处理厂需要的接种量非常大,运输费用高,经济上不合算。在同一处理厂内,当一个系列或一条池子的污泥培养正常以后,可以大量为其它系列接种,从而缩短全厂总的污泥培养时间。 2.污泥培养的其它问题 1)为提高培养速度,缩短培养时间,应在进水中增加营养。小型处理厂可投入足量的粪便,大型处理厂可让污水跨越初沉池,直接进入曝气池。 2)温度对培养速度影响很大。温度越高,培养越快,因此,污水处理厂一般应避免在冬季培养污泥,但实际中也应视具体情况。如污

活性污泥运行管理

技术次资料 活性污泥系统的运行管理 (参考) 第一节活性污泥的培养与驯化 根据废水水量、水质和废水处理厂的条件、可采用的活性污泥培养法有下列几种: 一. 全流量边续直接培养法 全部流量通过活性污泥系统按设计水量边续进水和出水。不排放剩余污泥,全部保留在曝气池,直到MLSS和SV达到适宜数值为止。 为了加快培养速度,减少培养时间,可以大量供气,以保证向混合液提供足够的溶解氧,并使其充分混合外,也可以从同类的正在运行的废水处理厂提取一定数量的污泥进行接种。 在活性污泥的培养驯化期间,必须考虑满足微生物的营养物质保持平衡,即BOD:N:P=100:5:1,对城市废水和生活污水来说,这个条件具备的,但是对某些工业废水,就要考虑投加某些营养物质了,此外,在这个期间还要进行废水、混合液、处理水以及活性污泥的分析测定,项目有:SV、MLSS、SVI,溶解氧含量,处理水的透明度,原废水及处理水的BOD、COD以及SS等。 二. 流量分段直接培养法 方法与前同,不同的地方是废水投配流量随形成的污泥量的增加而增加。即将培养期分为几个阶段、最后达到设计流量和MLSS达到适宜浓度。

三.间歇培养法 本法适用于生活污水所占比例较小的城市水厂,将废水引入曝气池,水量约为曝气池容积50~70%,曝气一段时间(约4~6小时),再静置1~1.5h。排放上清液,排放量约占总水量的50%左右,此后再注入废水,重复上述操作,每天1~3次,直到混合液中的污泥量达到15~20%进为止。 水温在15℃以上的条件下,使用一般营养比较平衡的城市废水,经7~15日的培养即可以达到上述情况,为了缩短培养时间,可以考虑用同类废水处理厂的剩余污泥进行接种向混合液中投加适量的粪便稀释液,也能够加快培养过程. 四.活性污泥的驯化 对工业废水,除培养外,还应对活性污泥加以驯化,使其适应于所处理的废水,驯化方法可分为异步驯化法和同步驯化法二种.异步驯化法是先培养后驯化,即先用生活污水或粪便稀释水将活性污泥培养成熟,此后再逐步增加工业废水在混合中的比例,以逐步驯化污泥,同步驯化法则是在用生活污水掊养活性污泥的开始,就投加少量的工业废水,以后则逐步提高工业废水在混合液中的比例,逐步使污泥适应工业废水的特性,二者的驯化阶段都是以全部使用工业废水而告终. 第二節对活性污泥系统重要运行参数的调节与观测 一.对活性污泥状况的镜检观察 正常发育的活性污泥,呈茶褐色,个体大小适宜,菌胶絮体发育讔好,稍具泥土气味. 二对曝气时间(活性污泥反应时间)的调节 曝气时间主要以处理水达标为准,根据原废水水量、水质及曝气池容积等因

相关文档
最新文档