高中数学 双曲线课后习题(带答案)

高中数学 双曲线课后习题(带答案)
高中数学 双曲线课后习题(带答案)

x y o x y o x y o x y

o 双曲线课后习题

一、选择题(本大题共10小题,每小题5分,共50分)

1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )

A .椭圆

B .线段

C .双曲线

D .两条射线

2.方程11122=-++k

y

k x 表示双曲线,则k 的取值范围是

( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

3. 双曲线14122

2

22=--+m y m x 的焦距是

( ) A .4 B .22 C .8 D .与m 有关

4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的曲线可

能是 (

A B C D 5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( ) A .

2

3

B .3

C .

3

4 D . 3

6.焦点为()6,0,且与双曲线12

22

=-y x 有相同的渐近线的双曲线方程是

( )

A .1241222=-y x

B .1241222=-x y

C .1122422=-x y

D .112

242

2=-y x

7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线122

22=-b

y a x 有

( )

A .相同的虚轴

B .相同的实轴

C .相同的渐近线

D . 相同的焦点

8.过双曲线19

162

2=-y x 左焦点F 1的弦AB 长为6,则2ABF ?(F 2为右焦点)的周长是( )

A .28

B .22

C .14

D .12

9.已知双曲线方程为14

2

2=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L

条数共有 ( ) A .4条 B .3条 C .2条 D .1条

10.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③122

2=+y x ④12

22=-y x ,其中与直线

y=-2x -3有交点的所有曲线是 ( ) A .①③ B .②④ C .①②③ D .②③④ 二、填空题(本题共4小题,每小题6分,共24分)

11.双曲线17

92

2=-y x 的右焦点到右准线的距离为__________________________.

12.与椭圆125

162

2=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为

____________.

13.直线1+=x y 与双曲线13

22

2=-y x 相交于B A ,两点,则AB =__________________.

4.过点)1,3(-M 且被点M 平分的双曲线14

22

=-y x 的弦所在直线方程为 .

三、解答题(本大题共6题,共76分)

15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线

的离心率.(12分)

16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:

2

1PF PO PF 、、成等比数列(O 为坐标原点).(12分)

17.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2

的最小值为-1

3

.

(1)求动点P 的轨迹方程;

(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.(12分)

18.已知不论b 取何实数,直线y=k x +b 与双曲线122

2

=-y x 总有公共点,试求实数k

的取值范围.(12分)

19.设双曲线C 1的方程为)0,0(122

22>>=-b a b

y a x ,A 、B 为其左、右两个顶点,P 是

双曲线C 1上的任意一点,引QB ⊥PB ,QA ⊥PA ,AQ 与BQ 交于点Q.

(1)求Q 点的轨迹方程;

(2)设(1)中所求轨迹为C 2,C 1、C 2

的离心率分别为e 1、e 2,当21≥e 时,e 2的取值范围(14分)

参考答案

一、选择题(本大题共10小题,每小题5分,共50分)

① ②

题号 1 2 3 4 5 6 7 8 9 10 答案

D

D

C

C

B

B

D

A

B

D

二、填空题(本大题共4小题,每小题6分,共24分)

11.4

7

12.14522=-x y 13.64 14.0543=-+y x

三、解答题(本大题共6题,共76分)

15.(12分)[解析]:设双曲线方程为:λ=-2

2169y x ,∵双曲线有一个焦点为(4,0),0>∴λ

双曲线方程化为:254816169116

92

22=?=+?=-λλλλλy x ,

∴双曲线方程为:1251442525622

=-y x ∴455

164==e .

16.(12分)[解析]:易知2,2,==

=e a c a b ,准线方程:2

a x ±=,设()y x P ,,

)

2(21a x PF +

=

)

2

(22a x PF -

=

2

2y x PO +=,

222

2

212)2

(2a x a x PF PF -=-

=?∴ 222222)(PO y x a x x =+=-+= 21PF PO PF 、、∴成等比数列.

17.(12分)

[解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22,∴a > 2

由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4

|PF 1||PF 2|

1

∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2

)2

=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2.

此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2

-1=-1

3

,解得a 2=3,123222=-=-=∴c a b

∴P 点的轨迹方程为x 23

+y 2

=1.

(2)设l :y =kx +m (k ≠0),则由,????

?+==+m kx y y x 1322 将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*) 设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=

x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m

1+3k 2

即Q (-3km 1+3k 2,m

1+3k 2

) ∵|MA |=|MB |,∴M 在AB 的中垂线上, ∴k l k AB =k ·m

1+3k 2+1-

3km 1+3k 2

=-1 ,解得m =1+3k 2

2 …③ 又由于(*)式有两个实数根,知△>0,

即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得

12[1+3k 2

-(1+3k 22

)2]>0,解得-1<k <1,由k ≠0,∴k 的取值范围是k ∈(-1,0)∪(0,1).

18.(12分)[解析]:联立方程组

???=-+=1222y x b kx y 消去y 得(2k 2-1)x 2+4kb x +(2b 2+1)=0, 当时,即22k ,0212±==-k 若b=0,则k φ∈;若b

b x 22120b 2+±=?≠,不合题意. 当时,即2

2k ,0212±

≠≠-k 依题意有△=(4kb)2-4(2k 2-1)(2b 2+1)>0,12222+

222<<-

k . 19.(14分)[解析]:(1)解法一:设P(x 0,y 0), Q(x ,y )

??????

?-=-?--=+?+∴⊥⊥-)2(1)

1(1,),0,(),0,(0000

a

x y a x y a x y a x y PA QA PB QB a B a A

)3(1:

)2()1(2

2

22

2

2

00 =-?

-?a

x y a

x y 得由 2

22222

22

20

000,1a b a x y b y a x =

-∴

=-

4222242222,)3(a y b x a a a x y b =--=即得代入

经检验点)0,(),0,(a a -不合,因此Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(除点(-a ,0),(a ,0)外). 解法二:设P(x 0,y 0), Q(x ,y), ∵PA ⊥QA ∴

100-=-?-a

x y

a x y ……(1)连接PQ ,取PQ 中点R,

)

)0,(),0,((,:0,,.1)

(,1)3)(2()

3(,1:)1()2(),2(,02|,||||,|2

1

|||,|21||,,4222242222222

22222222022022

0022000外除去点点轨迹方程为整理得不合题意时得代入把得代入把即轴上点在a a a y b x a Q a y b x a a x a x b y a x a x b y a x y a x y x a y y x x x x y R RB RA PQ RB PQ RA PB QB QA PA -=-∴=-≠-∴±==--=--=∴-=--==+∴∴=∴==

∴⊥⊥

1

1111 ,1)1(:)2(2222

22224

22

2

422

22-+

=-+=+=+

=

=-e a c a b a a b a a e b a y a x C 的方程为

得由解 21 ,21

)2(11 ,22

2

21≤<∴=-+

≤∴≥e e e

Q

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -Q 在双曲线上 ∴(2 2 33 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

人教版普通高中数学必修课后习题标准答案

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

习题1.2(第24页)

练习(第32页) 1.答:在一定地范围内,生产效率随着工人数量地增加而提高,当工人数量达到某个数量时,生产效率 达到最大值,而超过这个数量时,生产效率随着工人数量地增加而降低.由此可见,并非是工人越多,生产效率就越高.b5E2R 。 2.解:图象如下 [8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数, 在[4,5]上是增函数. 4.证明:设12,x x R ∈,且1 2x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,

即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数. 5.最小值. 练习(第36页) 1.解:(1)对于函数 42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数; (2)对于函数 3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数 3()2f x x x =-为奇函数; (3)对于函数 21 ()x f x x +=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有 22()11 ()()x x f x f x x x -++-==-=--, 所以函数 21 ()x f x x +=为奇函数; (4)对于函数 2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数 2()1f x x =+为偶函数. 2.解: ()f x 是偶函数,其图象是关于y 轴对称地; ()g x 是奇函数,其图象是关于原点对称地.

高中数学-双曲线例题

高中数学-双曲线典型例题 一、根据方程的特点判断圆锥曲线的类型。 例1 讨论19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92, 16222=-=b a c ,这些椭圆有共同的焦点(-4,0) ,(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为:()16014162 2<<=+--λλ λy x ∵双曲线过点()223,,∴1441618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=-y x 三、求与双曲线有关的角度问题。 例3 已知双曲线116 92 2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小. 解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴10022 21=+PF PF ∵()100441222221=+==b a c F F ∴ο9021=∠PF F (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索. 四、求与双曲线有关的三角形的面积问题。 例 4 已知1F 、2F 是双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ?的面积. 分析:利用双曲线的定义及21PF F ?中的勾股定理可求21PF F ?的面积. 解:∵P 为双曲线14 22 =-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F ∵ο9021=∠PF F ∴在21F PF Rt ?中,202 2122 21==+F F PF PF

最新高中数学必修1课后习题答案完整版汇编

高中数学必修1课后习题答案 第一章 集合与函数概念 1.1集合 1.1.1集合的含义与表示 练习(第5页) 1.用符号“∈”或“?”填空: (1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A , 印度_______A ,英国_______A ; (2)若2 {|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ; (4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国?A ,印度∈A ,英国?A ; 中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-?A 2 {|}{0,1}A x x x ===. (3)3?B 2{|60}{3,2} B x x x =+-==-. (4)8∈ C ,9.1?C 9.1N ?. 2.试选择适当的方法表示下列集合: (1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合; (3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集. 2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程2 90x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+??=-+?,得14x y =??=? , 即一次函数3y x =+与26y x =-+的图象的交点为(1,4), 所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

高中数学必修1课后习题答案完整版

高中数学必修1课后习题答案 第一章 集合与函数概念 1.1集合 1.1.1集合的含义与表示 练习(第5页) 1.用符号“∈”或“?”填空: (1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A , 印度_______A ,英国_______A ; (2)若2 {|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ; (4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国?A ,印度∈A ,英国?A ; 中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-?A 2 {|}{0,1}A x x x ===. (3)3?B 2 {|60}{3,2} B x x x =+-==-. (4)8∈ C ,9.1?C 9.1N ?. 2.试选择适当的方法表示下列集合: (1)由方程2 90x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合; (3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集. 2.解:(1)因为方程2 90x -=的实数根为123,3x x =-=, 所以由方程2 90x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+??=-+?,得14x y =??=? , 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

双曲线习题及标准答案

圆锥曲线习题——双曲线 1. 如果双曲线2 42 2y x - =1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A) 3 64 (B) 3 6 2 (C)62 (D)32 2. 已知双曲线C ∶22 221(x y a a b -=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的 圆的半径是 (A )a (B)b (C)ab (D)22b a + 3. 以双曲线 221916 x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .2 2 1090x y x +-+= B .22 10160x y x +-+= C .2 2 10160x y x +++= D .2 2 1090x y x +++= 4. 以双曲线2 2 2x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.2 2 430x y x +--= B.22 430x y x +-+= C.2 2 450x y x ++-= D.2 2 450x y x +++= 5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它到左准 线的距离,则双曲线离心率的取值范围是( ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 6. 若双曲线122 22=-b y a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心 率是( ) (A )3 (B )5 (C )3 (D )5 7. 过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的 两条渐近线的交点分别为,B C .若1 2 AB BC = ,则双曲线的离心率是 ( )

双曲线练习题及答案

双曲线相关知识 双曲线的焦半径公式: 1:定义:双曲线上任意一点P 与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程x^2/a^2-y ^2/b^2=1 点P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex -a) 点P(x,y )在右支上 │PF1│=ex+a ;│PF2│=ex-a 运用双曲线的定义 例1.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( ) A 、第一象限 B、第二象限 C 、第三象限 D、第四象限 练习1.设双曲线19 162 2=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或23 例2. 已知双曲线的两个焦点是椭圆10x 2 +32 y 52=1的两个顶点,双曲线的两条准 线分别通过椭圆的两个焦点,则此双曲线的方程是( )。 (A)6x 2-4y 2=1 (B )4x 2-6y 2=1 (C )5x 2-3y 2=1 (D )3x 2 -5 y 2=1 练习2. 离心率e=2是双曲线的两条渐近线互相垂直的( )。 (A)充分条件 (B )必要条件 (C )充要条件 (D)不充分不必要条件 例3. 已知|θ|< 2 π ,直线y=-tg θ(x-1)和双曲线y 2co s2θ-x2 =1有且仅有一个公共点,则θ等于( )。 (A)±6π (B)±4π (C )±3π (D )±12 5π 课堂练习

1、已知双曲线的渐近线方程是2 x y ±=,焦点在坐标轴上且焦距是10,则此双曲线 的方程为 ; 2、焦点为(0,6),且与双曲线12 22 =-y x 有相同的渐近线的双曲线方程是 ( ) ?A.124 122 2=-y x B . 124 122 2=-x y C. 112 242 2=-x y D. 112242 2=-y x 3. 设e 1, e 2分别是双曲线1b y a x 2222=-和1a y b x 22 22=-的离心率,则e 12+e 22与e 12·e 2 2 的大小关系是 。 4.若点O 和点(2,0)F -分别是双曲线2 221(a>0)a x y -=的中心和左焦点,点P 为双 曲线右支上的任意一点,则OP FP ?的取值范围为 ( ) A .)+∞ B .[3)++∞ C .7[-,)4+∞ D.7 [,)4+∞ 5. 已知倾斜角为 4 π 的直线l 被双曲线x 2-4y2=60截得的弦长|AB |=82,求直线l 的方程及以AB 为直径的圆的方程。 6. 已知P 是曲线xy=1上的任意一点,F (2,2)为一定点,l :x+y -2=0为一定直线,求证:|PF |与点P到直线l 的距离d 之比等于2。 7、已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为 ) .

高中数学双曲线基础练习题

双曲线基础练习题 1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( ) A .116922=+y x B. 116922=-y x C. 116922=+-y x 19 16.2 2=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( ) A .191622=-y x B. 191622=+-y x C.116922=+y x D.116 92 2=-y x 3.双曲线19 162 2=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 18 4.双曲线19 162 2=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5.方程6)5()5(2222=++-+-y x y x 化简得: A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19 162 2=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( ) A . 116922=-y x 和116922=+-y x B. 116922=-y x 和19 162 2=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和125 162 2=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( ) A .1222=-y x B .122=+-y x C .122=-y x D. 122 2=+-y x 8.P 为双曲线19 162 2=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 36 9.双曲线19 162 2=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0) 10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )

重点高中数学椭圆、双曲线、抛物线历年真题及详解

重点高中数学椭圆、双曲线、抛物线历年真题及详解

————————————————————————————————作者:————————————————————————————————日期:

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C. 3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 (C) 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = ?= ||2AF ∴=. 5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

高中数学双曲线经典考点及例题讲解

双曲线 考纲解读 1.根据双曲线的定义和性质求标准方程;2.根据双曲线的标准方程求双曲线的性质:离心率、渐近线等;3.利用双曲线定义及性质解决简单的直线与双曲线的关系问题. [基础梳理] 1.双曲线的定义 (1)平面内与两个定点F1,F2的距离之差的绝对值(|F1F2|=2c>0)为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距. (2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. ①当2a<|F1F2|时,M点的轨迹是双曲线; ②当2a=|F1F2|时,M点的轨迹是两条射线; ③当2a>|F1F2|时,M点不存在. 2.双曲线的标准方程与几何性质 x2y2y2x2

[三基自测] 1.双曲线x 23-y 2 2=1的焦距为( ) A .32 B.5 C .2 5 D .45 答案:C 2.若双曲线E :x 29-y 2 16=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1| =3,则|PF 2|等于( ) A .11 B .9 C .5 D .3 答案:B 3.x 22+m -y 2m +1 =-1表示双曲线,则m 的范围为________. 答案:(-∞,-2)∪(-1,+∞) 4.(2017·高考全国卷Ⅰ改编)双曲线x 2- y 2 3=1的渐近线方程为________. 答案:y =±3x 考点一 双曲线定义及应用|易错突破 [例1] (1)已知两圆C 1:(x +4)2+y 2=2,C 2:(x -4)2+y 2=2,动圆M 与两圆C 1,C 2 都相切,则动圆圆心M 的轨迹方程是( ) A .x =0 B.x 22-y 2 14=1(x ≥2) C.x 22-y 2 14=1 D.x 22-y 2 14 =1或x =0 (2)已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43 |PF 2|,求△F 1PF 2的面积. [解析] (1)动圆M 与两圆C 1,C 2都相切,有四种情况:①动圆M 与两圆都外切;②动圆M 与两圆都内切;③动圆M 与圆C 1外切、与圆C 2内切;④动圆M 与圆C 1内切、与圆C 2外切.在①②情况下,显然,动圆圆心M 的轨迹方程为x =0;在③的情况下,设动圆M 的半径为r ,则|MC 1|=r +2,|MC 2|=r - 2. 故得|MC 1|-|MC 2|=22;

高中数学双曲线抛物线知识点总结

双曲线 平面到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22 2 21x y a b -=共渐近线的方程可设为2222(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

(完整版)高中数学-圆锥曲线练习题含答案

圆锥曲线专题练习 一、选择题 1.已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A .116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 4.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 5.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 6.如果22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 二. 填空题 7.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。 8.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三.解答题 9.已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

10、已知动点P 与平面上两定点(A B 连线的斜率的积为定值12- . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |= 3 24时,求直线l 的方程.

高中数学双曲线抛物线知识点的总结

双曲线 平面内到两个定点, 的距离之差的绝对值是常数2a(2a< )的点的轨迹。 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为22 22(0)x y m n λλ-=≠,与双曲线 2222 1x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= ( 3,A -在双曲线上 ∴(2 2 3 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离 1d = , 同理得到点(-1,0)到直线l 的距离 2d =

历年高考数学真题精选37 双曲线

历年高考数学真题精选(按考点分类) 专题37 双曲线(学生版) 一.选择题(共24小题) 1.(2019?新课标Ⅰ)双曲线22 22:1(0,0)x y C a b a b -=>>的一条渐近线的倾斜角为130?,则C 的离心率为( ) A .2sin40? B .2cos40? C . 1 sin50? D . 1 cos50? 2.(2016?新课标Ⅰ)已知方程22 2213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距 离为4,则n 的取值范围是( ) A .(1,3)- B .(- C .(0,3) D . 3.(2019?全国)已知双曲线22 22:1(0,0)x y C a b a b -=>>,过C 的左焦点且垂直于x 轴的直线 交C 于M ,N 两点,若以MN 为直径的圆经过C 的右焦点,则C 的离心率为( ) A 1 B .2 C D 4.(2019?新课标Ⅲ)已知F 是双曲线22 :145 x y C -=的一个焦点,点P 在C 上,O 为坐标 原点.若||||OP OF =,则OPF ?的面积为( ) A . 3 2 B . 52 C . 72 D . 92 5.(2019?新课标Ⅲ)双曲线22 :142 x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为 坐标原点.若||||PO PF =,则PFO ?的面积为( ) A . 4 B . 2 C . D .6.(2019?新课标Ⅱ)设F 为双曲线22 22:1(0,0)x y C a b a b -=>>的右焦点,O 为坐标原点,以 OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若||||PQ OF =,则C 的离心率为( ) A B C .2 D 7.(2018?天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )

高中数学双曲线题型归纳

高中数学双曲线题型归纳 类型一 双曲线的定义 【例1】已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________. 1-1设P 是双曲线120 162 2=- y x 上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( ) A .1 B .17 C .1或17 D .以上答案均不对 1-2已知F 是双曲线112 42 2=- y x 的左焦点,A (1,4),P 是双曲线右支上的动点, 则|PF |+|P A |的最小值为( ) A .5 B .5+43 C .7 D .9 1-3已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 类型二 几何性质 【例2】设F 1,F 2分别为双曲线122 22=-b y a x (a >0,b >0)的左、右焦点.若在双曲线右 支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x ±5y =0 C .4x ±3y =0 D .5x +4y =0

2-1若双曲线()01322 2>=-b b y x 的一个焦点到一条渐近线的距离等于焦距的4 1,则该双 曲线的虚轴长是( ) A .2 B .1 C . 5 5 D . 5 5 2 2-2设直线x -3y +m =0(m ≠0)与双曲线122 22=-b y a x (a >0, b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________. 2-3中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2, 且F 1F 2=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程; (2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.

相关文档
最新文档