并联管网系统水力特性剖析

并联管网系统水力特性剖析
并联管网系统水力特性剖析

并联管网系统水力特性剖析

秋冬供暖季即将来临,设计人员在热水供暖循环系统设计过程中,设计重点无外乎各种并联环路之间的流量合理分配问题。同程式和异程式两种系统作为典型的管网形式存在,在解决并联环路流量合理分配方面都有其独特的优势。

1、并联环路的水力特性

任意并联环路之间的流量分配都遵循下列水力学的基本原则:并联点的水头差相同,此水头差为:

式中H为水头差;S为环路的阻抗,它综合了环路的长度、管径和局部阻力因素;G为流量。

图1 并联系统的两种示例

图中的a和b为并联环路1和2的公共并联点,由于a和b之间的水头差,不管是经由环路1还是环路2都只能是同一个值,所以两个环路之间的流量分配比为

式子说明,并联环路之间的流量分配比与环路阻抗的平方根成反比,阻抗小,流量大;反之亦然。其中有一个重要概念:两个并联环路之间的压差即水头差H总是相等的,阻力特性的不同会通过流量分配自然平衡而使压力损失相同。

2、异程式系统的水力特性

异程式系统水力特性具备并联环路的典型特征:经由两个环路的水头差相等,总流量为两个环路的流量之和,即

图2 异程式系统的典型图示

图中c和d为环路1和环路2的公共并联点,经由c-a-1-b-d的水头差,必然与经由c-2-d的水头差相同。当这两个并联环路各自的阻抗确定之后,不管全系统的水力特性如何,两环路间的流量分配比是可以确定的,而且e-c和d-f管段的流量,必是这两个环路流量之和。当e-c和d-f管段的阻抗确定之后,又可以确定e和f之间的水头差。由此类推,可顺序确定所有环路之间的流量分配比。

3、同程式系统的水力特性

同程式系统不具备并联环路的典型性,虽然与异程式系统相同,经由两环路的水头差相等,但其流量组成存在复杂性。同程式系统的典型图示见下图。

图3 同程式系统的典型图示

图3中c和b为环路1和环路2的公共并联点,经由c-a-1-b的水头差,必然与经由c-2-d-b的水头差相等。但是与异程式系统显著不同的是,当这两个并联环路各自的阻抗确定之后,并不能确定两个环路之间的流量分配比,因为d-b段的流量主要取决于上游管段的水力特性,因而c-2-d的流量也不能确定。当d-b段上游阻抗较小时会使d点水头值较大,则c-d段有较小的水头差。相反,当d-b段上游阻抗较大时就会使d点水头值变小,则c-d段有较大的水头差。只有当e和b点之间所有管段的阻抗全部确定之后,经综合平衡才能真正确定各环路之间的流量分配比。在同程式系统设计过程中,需要注意两点:①供、回水管的水力坡降(比摩阻)相近;②供、回水管的水力坡降线尽量远离,即尽量减小“共同段”阻力损失所占的比例。

4、小结

针对上述两种并联环路的水力特性的分析,可知:

(1)异程式系统虽有自末端起各环路水头差顺序增大,需要将各环路的阻抗S相应增大,以求得流量合理分配的困难条件,但全系统的水力特性的直观性较好,便于计算和调节。

(2)同程式系统虽有各环路之间可能取得相近水头差,因而具备流量合理分配的有利条件,但各环路水头差的大小不似异程式系统那样存在直观规律性,计算和调节都较为困难。如果处理不当,某些环路会出现下段水头值高于上段水头值,而导致局部环路出现逆循环。

在GIS平台上建立供水管网水力模型的方法

科 技 前 沿科技创业家2012年10(下) TECHNOLOGICAL P IONEERS 6科技创业家 TECHNOLOGICAL PIONEERS 1 现行供水管网水力模型建模的方法和问题现在我国各地水司纷纷建立各自的GIS平台,但使用情况不是很理想。不是GIS技术不成熟,而是卡在建立供水管网水力模型这一问题上。现行的供水管网水力模型建模的方法主要分成以下三步:1.1相关管网信息数据提取和输出:根据需要将GIS平台中管网信息数据有选择的导出到一种外部数据库(DBASE、Access、SQL等等数据库模式)中,作为管网水力分析程序的输入数据,等待进行水力分析。1.2数据处理和计算:利用各种水力建模软件(如Epanet、Infoworks、同济宏扬等)设置必要的初始条件,进行延时水力模拟计算。计算前根据所使用的水力建模软件的需要,要对GIS平台输出的数据进行相应的处理,以转换成水力建模软件能识别的 数据格式。 1.3数据导入和表达:将计算结果导回 GIS平台,利用GIS平台显示模块进行表达。 现在最流行的几种GIS开发平台利用了 各种先进的技术手段想利用GIS直接建立 供水管网微观动态水力模型,但只要仔细 研究会发现它们还是使用着老模式:提取 输出所要分析的管网数据,数据处理和计 算,结果反馈和表达。这种模式的问题是: 1.4数据传输过程较多,容易产生数据 丢失,严重影响计算精度。要避免这个问题 只有在各个数据传输过程都加入数据自检 步骤,这又导致计算过程烦琐,严重影响计 算效率; 1.5其次由于数据无法自动同时更新, GIS平台中数据每发生一点变化都需要重 新进行管网建模。这意味着管网建模时间 要尽可能短!否则整个系统会因反映迟缓 而不具任何实际意义。 2 问题的解决方法和途径 通过对目前几种最流行的GIS开发平 台建立供水管网微观动态水力模型方法的 研究,我发现无论是直接建模,还是间接建 模,都忽略了一个关键性问题:如何选取你 所要的管网信息数据。通过对管网数据加 权可很好的解决这一问题。 我武水集团所使用的龙泉管网信息系 统是基于ORACLE关系数据库及西门子 SICAD/open平台的开放式管网GIS系统, 要想利用GIS平台直接建立供水管网微观 动态水力模型需要开发设计:数据管理、数 据选取,数据输入和检查、节点流量分配、水力计算、数据反馈和表达等六个新的功能模块,技术流程图如图1所示:2.1数据管理水力模型是建立在供水管网上的动态系统,随时间变化,需要分时段。它又是对GIS平台进行简化和抽象,以提高计算速度。因此建立水力模型首先要进行数据分析。我公司GIS平台采取的数据库是ORACLE关系数据库,可在高级C语言环境下开发ORACLE库接口,多采用SQL语句开发出满足各种需求的优化应用程序,但缺点是应用程序所使用的数据无法移植(数据共享功能比较单一)。为此我们需开发出一个数据管理模块,用来处理数据分析,建立水力模型相关数据库。下表是数据库结构设计表(如表1):2.2数据选取我们知道城市供水管网非常庞大,不可能每次建立水力模型都将所有数据全部代入水力模型,否则计算将变得非常困难。因此如何选取我们所需要的管网数据是建立水力模型的关键。对此需要开发专门的数据选取模块来满足需求。其工作原理是将GIS平台中每项数据填加一个标签项,参与水力建模的标签项设为“1”,不参与水力建模的标签项设为“0”。2.2.1节点的选择:一般进行拓扑分析,与被选择的管线连接的所有节点都进入水力模型。对节点的水力分析的关键是区分节点水流方向和节点流量。2.2.2管线的选择:一般水力建模前都要确定参与水力模型的最小管径,然后进行拓扑检查,防止出现错误。这种方法最大的问题是在局部管网建模时,如果不清楚来水管线和回水管线,所建立的水力模型往往与实际有很大的误差。所以我个人认为,在水力建模前要对管线加以标注,以区分来水、回水后再确定参与水力模型的最小管径以避免水力模型失真。2.2.3闸门的选择:传统水力建模方法认为闸门不进行操作,除水厂或加压泵站在GIS 平台上建立供水管网水力模型的方法探讨 胡炯 (武汉水务集团汉阳供水部管线所 湖北武汉 430050) 摘 要:在GIS 平台上建立供水管网水力模型是GIS 技术真正能运用起来的关键,建立供水管网水力模型的方法是首先将GIS 平台中的管网信息输出到外部数据库,再利用水力建模软件进行处理和计算,再将结果反馈回GIS 平台进行表达。本文通过对这种水力建模方法的探讨,对GIS 平台的运用提出新的看法,希望能对我公司水力建模有所帮助。 关键词:GIS 供水管网 水力模型 空间分析 图1 技术流程表1作者简介:胡炯;性别:男;学历:大学本科;职务:管线所技术员。 (下转8页)

热水管网的水力计算

8章建筑内部热水供应系统 8.4热水管网的水力计算 8.4 热水管网的水力计算 8.4热水管网的水力计算

热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。 水力计算的目的是: 计算第一循环管网(热媒管网)的管径和相应的水头损失; 计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失; 确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。

以热水为热媒时,热媒流量G按公式(8-8)计算。 热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算 出管路的总水头损失H h 。热水管道的流速,宜按表8-45选用。 8.4.1 第一循环管网的水力计算 1.热媒为热水 热水管道的流速表8-12

当锅炉与水加热器或贮水器连接时,如图8-12所示, 热媒管网的热水自 然循环压力值H zr 按式 (8-35)计算: ) (8.921ρρ-?=h H zr 图8-12

热水管网的水力计算 8.4.1 第一循环管网的水力计算 式中H zr —热水自然循环压力,Pa ; Δh —锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m ;ρ1—锅炉出水的密度,kg/m 3; ρ2—水加热器或贮水器的出水密度,kg/m 3。 当H zr >H h 时,可形成自然循环,为保证运行可靠一般要求 (8-36): h H 当H zr 不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。 zr H ≥(1.1~1.15)h H

艾三维BIM分享:Bentley市政给排水管网水力模型解决方案

Bentley市政给排水基础设施BIM应用 前景 水是人类生活不可或缺的部分,给排水从始至终贯穿人们生活的每一个角落,从古时大禹治水到如今南水北调等等,无一不体现市政给排水基础设施的重要性,随着计算机软件技术的不断发展,传统的给排水解决方案已经无法满足现阶段以及未来工程技术的要求,随着国内外建筑行业对于BIM应用的全面协同发展,给排水即将迎来新的行业升级,全新的市政给排水基础设施的解决方案将更加智能化,更加精确的设计、模拟、分析市政给排水真实的情况,帮助用户管理给排水基础设施的生命周期。 给排水基础设施解决方案以建立和管理给排水基础设施生命周期为中心。构建、设计和运营用于提供饮用水的原水输送、处理和配送系统,或用于收集、输送污水和雨水径流进行处理的排水系统。集规划、设计、建模和分析网络为一体的解决方案将给用户建造更加出色的输配水系统;解决方案还将搭载运营建模、GIS、资产性能和资产生命周期管理等各种功

能,为用户提供漏损管理、能耗管理、资产维护、投资优先级等预测分析,帮助用户管理整个城市给排水生命周期做出更明智的决策! 新的市政给排水基础设施BIM解决方案解决了传统解决方案无法避免的缺漏,极大的扩展了其解决范围,让高新技术融入其中,使给排水生命周期更趋于智能化、系统化,同时顺应国家对建筑行业发展和改革的大趋势。 Bentley市政给排水基础设施产品整体解决方案 海思德(Haestad)是美国目前从事水资源与给排水工程专业软件开发研究最大的专业团队。海思德创立于 1979 年。其全球总部位于美国康涅狄克州的 Watertown 市。经过将近 30 年的努力,海思德已经拥有 130 000 多个用户,遍布 170 个国家,用户既有大型自来水公司和政府机构,也有小型的市政咨询公司。它专注于提供市政给排水及水利、水文专业模型软件、服务、教育、培训及专业图书等服务。 2004年8月,Haestad并入世界领先的建筑、工程和运营(AEC)软件开发商Bentley 系统公司,为水资源领域提供了全新的给排水BIM解决方案。 给水系统解决方案 WaterCAD/WaterGEMS是一款综合性强和功能性齐全的给水系统设计建模分析软件,为用户充分分析了解给水系统状况、发现潜在问题并提供最佳解决方案,从给水管网压力和需求的基础分析,到水资源流失和消防研究,从了解和预防瞬态问题到确保水质,从能源管理到应急响应,涵盖给水基础设施管理生命周期各个方面。 在功能的应用上,有以下特点:

给水管网系统建模及其可靠性分析报告

给水管网系统建模及其可靠性分析 摘要 给水管网系统是一个拓扑结构复杂、规模庞大、用水变化随机性强、运行控制为多目标的网络系统。管网建模是仿真给水管网系统动态工况的最有效的方法,是为模拟管网系统建立数学模型的过程。模拟容主要是图形模拟、状态模拟和参数模拟。而建立模型并不是一蹴而就的,要不断的开发、更新和完善。在管网优化设计的四个方面中,保证给水系统可靠性是给水设计的主要容之一。随着现代科学技术的快速发展,可靠性工程理论日益受到广泛重视。 关键词:给水管网系统建模;管网优化设计:管网系统可靠性 一、引言 我国各城市的市政公用输配系统(供水、供气)是城市重要的基础设施之一,也是城市建设和可持续性发展的制约因素,这些工程网络在系统规划上有许多方面存在着共性。 对给水管网系统进行建模,一方面对于大量复杂、繁琐的问题能够取得快速、准确的计算结果,大大提高了工作效率,使得以前很少或者不可能进行的大型工程量计算问题和多方案比较问题得以顺利解决。另一方面,可以对输配系统的工作状态(水力、水质)进行比较准确的模拟仿真,尤其当系统中有较完善的设施时,更可以对系统的实时工况进行在线模拟,这样不仅可为系统的优化运行、调度提供很好的基础条件,为系统的改扩建提供可靠的依据,也为给水管网水质预测和安全输配提供支持。 对给水管网系统建模完成后应注意管网的优化设计,包括四个方面:水压、水量的保证性;水质的安全性;可靠性和经济性。随着现代科学技术的快速发展,作为系统工程之一的可靠性工程理论日益受到广泛重视。在近代,各种工程系统、构筑物设计时,已经开始应用可靠性的数学理论。可靠性和其他技术经济指标一样,成为评价系统优劣的主要指标。可靠性问题之所以得到重视,是因为系统、构筑物、设备相互有关,任一部分损坏可能导致整个系统的故障,而整个系统的故障,例如给水系统发生故障,将对社会和人民生活带来损害。而故障的发生多数为随机事件,一般无法预料和预防,因此给水系统可靠性具有概率的性质。在生活节奏日益加快的今天,确保给水管网系统的正常运行具有十分重要的意义。

水力模型在海宁供水管网运行管理中的应用

水力模型在海宁供水管网运行管理中的应用 摘要:供水管网水力模型在供水企业中日益得到重视和应用。海宁自来水有限公司建立供水管网水力模型,利用水力模型实现区块化管理,降低漏失率、降低产销差、改善水质、节能降耗、提高供水安全可靠性;在线实时监控供水管网水量、压力和水质情况;发生事故时,能够及时制定应急方案;提出规划改造和优化调度方案等,可有效的提高管网管理的科学性、安全性和经济性,避免了盲目性。从而,实现“数字化”供水和“智能化”水务。 关键词:供水管网水力模型区块化管理模型应用在线实时监控 1前言 随着海宁市供水规模的扩大和供水安全要求的提高,供水企业需要全面掌握和分析供水管网的运行状态,这样对供水系统的管理工作提出了新的要求。近年来,供水企业管理水平日益提高、科技投入的力度日益增强、企业信息化的建设日益成熟。海宁自来水有限公司提出“数字供水”概念,建成了数字化供水系统,全面应用于生产、经营、服务工作。“数字化”供水搭建信息技术平台,打造“智能水务”,实现科技全方位支撑运营服务。水务建立营业一体化平台、供水管网地理信息系统、供水设施综合监测系统和供水管网水力模型系统。“十二五”计划提出:降低漏损率,降低产销差,节能降耗,提高供水管网安全可靠性。建立供水管网水力模型是管网优化设计和运行工况分析重要的手段之一,有效地提高供水系统的科学化管理水平,提高供水系统的运行稳定性、可靠性,为水务带来良好的经济效益和社会效益。 2海宁市供水现状 海宁市地处长江中下流域,四季分明,气候温和。全市共有两座水厂,现有供水计能力30万m3/d,供水面积668平方公里,服务人口约80万。全市DN75mm 以上的管道长度为1075km,管材以球墨铸铁、铸铁、钢、PE等为主。 3水力模型项目前期调研 上海、深圳、佛山、天津等城市已经建立供水管网水力模型,并将其成功的应用于供水系统生产管理中。如,管网运行管理、水厂优化调度、规划改扩建等,

基于管网水力模型的独立计量分区优化

118  给水排水 Vol 134 No 13 2008 基于管网水力模型的独立计量分区优化 徐 强1,2 陈求稳1 刘锐平1 顾军农3 (1中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085; 2中国科学院研究生院,北京 100049;3北京市自来水集团有限公司第九水厂,北京 100031) 摘要 管网漏失和水质稳定性是影响供水安全的重要问题,科学合理的独立计量分区(Discrete Metering Area ,DMA )管理,可以辅助漏失点定位,控制二次污染。根据北京市某区实际监测数据,开发了供水管网水力水质模型,并应用建立的模型针对该区分析了不同DMA 方案的可行性,确定了优化的DMA 模式。 关键词 给水管网 DMA 管理 管网模型 方案优化 Optimization of discrete metering area scheme by pipeline net work model Xu Qiang 1,2,Chen Qiuwen 1,Liu Ruiping 1,Gu J unnong 3 (1.S t ate Key L aboratory of U rban and Regional Ecolog y ,Research Center f or Eco 2Envi ronment al S ciences ,Chi nese A cadem y of S ciences ,B ei j i n g 100085,Chi na;2.Gra d uate U ni versit y of Chi nese A cadem y of S ciences ,B ei j i ng 100049,Chi na; 3.N o.9W aterw orks ,B ei j i n g W ater S u p pl y Grou p Co.,L t d.,B ei j i n g 100031,Chi na ) Abstract :The leakage and water quality stability in pipeline are important issues to water supply.It is proved that discrete metering area (DMA )is a practical and effective method to detect leakage.Besides ,DMA is also useful to reduce recontamination of water in pipes.This study investigated the water pressure changes in a pipe network of an area in Beijing.Basing on the analyses of field monitoring data ,a numerical network hydraulics model was developed.The model was then applied to study t he possibilities of different DMA scenario s.According to t he simulation result s ,implementability and cost ,an optimized DMA scheme was finally suggested. K eyw ords :Water dist ribution system ;DMA planning ;Network model ;Scenario optimization 世界范围内管网平均漏失率约为17%,我国的 管网漏失率则高达25%[1]。管网漏失不仅浪费了宝贵的水资源,也带来重大的经济损失[2]。及时发现管网漏失,并采取有效的运行管理措施,能够提高供水可靠性并减少漏失。但是漏失检测和漏点定位一直以来是一项非常困难而繁琐的工作[3,4]。实践证明通过科学合理的独立计量分区(Discrete Metering Area ,DMA )管理,可以及时发现管网漏失和爆管等问题,辅助漏失点快速定位,还能有效控制二次污染,保障管网输配水水质。欧美国家已针对供水管网漏失控制出版了专业手册,其中就有很 大的篇幅涉及分区管理的原理、规划思想及实 例[5,6],近年来,国内也有一些研究[7,8]。但是DMA 模式意味着“环状管网—枝状管理”,实施后可能对用水区的供水稳定性和安全带来影响。1 管网水力模型本研究以EPAN ET 模型为参考,开发了基于节点法的管网恒定流模型,其基本方程包括连续性方程和能量方程[9],其中连续性方程是指从任一节点流出和流入的流量,其代数和等于零;能量方程指在管网的任一闭合环内,各管段的水头损失代数和等于零。此外, 进入管网的总流量等于所有节点流

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

住宅套内给水排水管道水力计算知识交流

住宅套内给水排水管道水力计算 专业--给排水常识2010-05-26 18:06:18 阅读21 评论0 字号:大中小订阅 1 入户管管径计算 《住宅建筑规范》[1]第5.1.4条规定:“卫生间应设置便器、洗浴器、洗面器等设施或预留位置;……。”这是现阶段住宅内卫生器具配置的最低要求,从《建筑给水排水设计规范》[2]中可知普通住宅Ⅱ、Ⅲ类符 合此项要求。 以普通住宅Ⅱ类为计算算例,表1-1为普通住宅Ⅱ类最高日生活用水定额及小时变化系数,表1-2为住宅常见卫生器具的给水额定流量、当量和连接管公称管径。表1-3为生活给水管道的水流流速要求值。 普通住宅Ⅱ类常见户型配置情况:所有户型配置均配置一间厨房,一套洗衣设施,以卫生间间数不同,分为一卫户(一间卫生间的户型)、二卫户(二间卫生间的户型)和三卫户(三间卫生间的户型)。表1-4 为常见户型卫生器具不同组合的当量数。 以PP-R管道和PAP管道作为典型管材进行水力计算。三通分水连接方式常用的建筑给水用无规共聚聚丙烯(PP-R)管道,当冷水管工作压力≤0.6MPa时,常选用S5系列,S5系列计算内径较大;分水器分水连接方式常用的铝塑复合(PAP)管道,铝塑复合(PAP)管道采用对接焊型,计算内径较小。表1-5为住宅常见户型入户管水力计算表。由表1-5可知,普通住宅Ⅱ类常见户型入户管公称管径应为DN25~DN32;如入户管管径采用小一级的,首先流速不满足规范要求,其次同样长度的入户管水头损失比满足流 速要求管径的水头损失大3倍左右。 表1-1 最高日生活用水定额及小时变化系数[2]

注:(1)流出水头[7] 是指给水时,为克服配水件内摩阻、冲击及流速变化等阻力而能放出的额定流量的 水头所需的静水压。 (2)最低工作压力[2] 是指在此压力下卫生器具基本上可以满足使用要求,它与额定流量无对应关系。 住宅入户管上水表的水头损失取0.010[2]~0.015MPa[4]。笔者以水表本层出户集中布置方式(水表距楼面1.0m),常见户型厨房、卫生间和阳台用水点为算例,根据管件采用三通分水或分水器分水的连接情况,经过管道、配件沿程和局部水头损失计算后,加上卫生器具的最低工作压力和水表的水头损失不同组合,表前最低工作压力在0.10~0.15MPa。对分水器集中配水连接方式水头损失较小,对应的表前最低工 作压力可采用较小的数值。 现代住宅给水支管设计常常只到水表后(或在室内预留一处接口),表前最低压力值的大小关系到住户将来装修后的正常用水,对于这一点应加以重视。同时必须指出,目前大部分水箱供水方式,水箱设置高度难以满足顶上1~3层表前最低工作压力(卫生器具的最低工作压力)的要求,这一点在设计时应特别注意。 3 排水横支管管径计算 排水横支管设计排水流量(通水能力)是按照重力流(不满流)进行计算,同管径的排水横支管设计排水流量远小于排水立管的设计排水流量。表3-1 为住宅常见卫生器具排水的流量、当量和排水(连接)管的 管径。 以常用的建筑排水硬聚氯乙烯(UPVC)管道(公称外径50~110mm)作为计算算例。表3-2为水力 计算参数、计算过程和计算结果。 表3-1卫生器具排水的流量、当量和排水管的管径[2]

城市供水调度工作中供水管网水力模型系统的应用

城市供水调度工作中供水管网水力模型系统的应用 发表时间:2018-05-17T15:04:41.630Z 来源:《基层建设》2018年第3期作者:张远军 [导读] 摘要:伴随着城市水利项目的发展,供水管网水力模型系统的监督管理成为了城市建设中的重点,只有建构良好且完整的水力模型系统应用机制,才能更好地优化供水调度工作质量。 珠海水务环境控股集团有限公司广东珠海 519000 摘要:伴随着城市水利项目的发展,供水管网水力模型系统的监督管理成为了城市建设中的重点,只有建构良好且完整的水力模型系统应用机制,才能更好地优化供水调度工作质量。本文结合案例,对城市供水调度工作中供水管网水力模型系统发展现状进行了简要分析,并集中阐释了系统应用和后续管理的建议,以供参考。 关键词:城市;供水调度;供水管网;水力模型系统;应用 行过程中的供水水压、水量以及水质不受到外界影响,在实际操作工作开始前,要对边界阀门进行操作处理,利用模型模拟完全关闭以及打开的工况参数,以保证供水调度工作运行效率。 (一)模型录入 在供水管网水力模型系统应用体系中,数据录入是最基本的要求,要对模型中的相关数据进行定位处理,整合其实际运行效率,结合阀门的阀门卡位置对GIS系统中的坐标予以判定,建立基础性定位模型,见图三。相关部门结合工况运行数据和相关信息,维护数据更新和数据处理效果,尤其是对水泵开关以及水池水位等基础信息进行整合以及处理,从而完善数据管理结构[4]。 图三:模型中阀门位置示意图 (二)调度工况 要对模型进行处理,结合不同阀门开关的实际状态进行24小时模拟,结合实际情况和信息的动态收集,确保阀门打开以及阀门关闭的早晚时间都能被有效模拟出来,从而对阀门两侧压力差予以测定和分析,整合后将平均过流量数据汇总成表,表格中涉及的参数包括口径(mm)、开启过流量(m3/h)、关闭时压力差(m)、流向以及有无流量正负现象。在对24小时模拟压力分布图以及模拟数据表进行全面分析后,就能得出相应的模拟结果,该地区阀门在开启后,部分地区边界压力会下降2m到2.5m,压力影响范围也有所扩大,流量相较于阀门状态时的变化并不是十分明显,尤其是对边界区域的影响较小。综上所述,只有有效控制阀门开启状态和速度,才能从根本上保证水质的平稳性。 (三)后续评估 在工程体系建立后,要对实时记录进行分析,尤其要建立模型运算数据和实测数据之间的对比分析,从而保证评估效果符合预期。对其模型模拟曲线进行处理,能推测出相应压力和流量的变化率,在工程项目运行后,现场的压力流测量数据和模拟数据较为一致,无论是压力参数、流量数据还是流向都大致能满足模型模拟数据,具有一定的研究价值[5]。 四、城市供水调度工作中供水管网水力模型系统反思 在对相关情况进行系统化分析后,要整合有效的监督管理工作,充分发挥供水管网水力模型系统的价值和优势[6]。建立相关系统就是为了有效整合供水调度和生产资源,提高工程操作管理水平,避免系统运行过程中调度操作和决策的盲目性,借助水力模型的应用和管

给水管网水力分析计算

第5章 给水管网水力分析计算 (4h) 5.1 给水管网水力特性分析 管段水力特性: ei n i i i i T Fi i h q q s H H h -=-=-1 ,s i = s fi + s mi + s pi ,h ei : 静扬程 ei n i i i T i F i h q s H H h -±=-=)( (流量方向与管段方向一致时+号) n i i f i T i F i q s H H h )(±=-= (管段上无泵站和局部阻力) ( 用海曾-威廉公式 87 .4852 .1852.167.10D C l q h w i f = ) 管网恒定流方程组求解条件: 节点流量或压力必须有一个已知(定流节点和定压节点) 管网中必须有一个定压节点 管网恒定流方程组求解方法: 树状管网(管段流量可唯一确定,一次计算完成) 环状管网(解环方程组,或解节点方程组,多次计算才能完成) 5.2 树状管网水力分析 求管段流量:从末端开始逆推法 求节点压头:从定压节点开始顺推法 例题:某给水管网如图所示,节点(1) 为清水池,管段[1]上泵站特性为 h p =42.6-311.1q p 1.852,节点(1)水头7.80m ,各节点流量、管段参数见图,管道Cw=100。试进行水力分析,计算各管段流量、各节点水头与自由水头。

节点号(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 地面标高m 9.80 11.50 11.80 15.20 17.40 13.30 12.80 13.70 12.50 15.00 解:第一步:从节点(10)开始逆推法求管段流量 计算各管段压降 第二步:从定压节点(1)开始顺推法求节点水头。

流体输配管网水力计算的目的

第 2 章气体管流水力特征与水力计算 2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。) 答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。取20℃空气密度为1.204kg/m3,可求得各温度下空气的密度分别为: 15℃:==1.225 kg/m3 35℃:==1.145 kg/m3 25℃:==1.184 kg/m3 因此: 夏季空调送风与室内空气的密度差为 1.225-1.184=0.041kg/m3 冬季空调送风与室内空气的密度差为 1.204-1.145=0.059kg/m3 空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s2,则

夏季空调送风位压=9.807×0.041×3=1.2 Pa 冬季空调送风位压=9.807×0.059×3=1.7 Pa 空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。可见送风位压的作用与系统阻力相比是完全可以忽略的。 但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H可达50米以上。这种情况送风位压应该考虑。 2-2 如图 2-1-1 是某地下工程中设备的放置情况,热表示设备为发热物体,冷表示设备为常温物体。为什么热设备的热量和地下室内污浊气体不能较好地散出地下室?如何改进以利于地下室的散热和污浊气体的消除? 图 2-1-1 图2-1-2

图 2-1-3 图2-1-4 答:该图可视为一 U 型管模型。因为两侧竖井内空气温度都受热源影响,密度差很小,不能很好地依靠位压形成流动,热设备的热量和污浊气体也不易排出地下室。改进的方法有多种:(1)将冷、热设备分别放置于两端竖井旁,使竖井内空气形成较明显的密度差,如图 2-1-2 ;(2)在原冷物体间再另掘一通风竖井,如图 2-1-3 ;(3)在不改变原设备位置和另增竖井的前提下,采用机械通风方式,强制竖井内空气流动,带走地下室内余热和污浊气体,如图 2-1-4 。2-3 如图 2-2 ,图中居室内为什么冬季白天感觉较舒适而夜间感觉不舒适?

给水排水管道系统水力计算

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

给水管网水力计算基础

给水管网水力计算基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于 v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 表 自由水头Hz 值

并联管网系统水力特性剖析.pdf

并联管网系统水力特性剖析 秋冬供暖季即将来临,设计人员在热水供暖循环系统设计过程中,设计重点无外乎各种并联环路之 间的流量合理分配问题。同程式和异程式两种系统作为典型的管网形式存在,在解决并联环路流量合理分 配方面都有其独特的优势。 1、并联环路的水力特性 任意并联环路之间的流量分配都遵循下列水力学的基本原则:并联点的水头差相同,此水头差为:式中H为水头差;S为环路的阻抗,它综合了环路的长度、管径和局部阻力因素;G为流量。 图1 并联系统的两种示例 图中的a和b为并联环路1和2的公共并联点,由于a和b之间的水头差,不管是经由环路1还是环路2都只能是同一个值,所以两个环路之间的流量分配比为 式子说明,并联环路之间的流量分配比与环路阻抗的平方根成反比,阻抗小,流量大;反之亦然。 其中有一个重要概念:两个并联环路之间的压差即水头差H总是相等的,阻力特性的不同会通过流量分配 自然平衡而使压力损失相同。 2、异程式系统的水力特性 异程式系统水力特性具备并联环路的典型特征:经由两个环路的水头差相等,总流量为两个环路的 流量之和,即

图2 异程式系统的典型图示 图中c和d为环路1和环路2的公共并联点,经由c-a-1-b-d的水头差,必然与经由c-2-d的水头差相同。当这两个并联环路各自的阻抗确定之后,不管全系统的水力特性如何,两环路间的流量分配比是可 以确定的,而且e-c和d-f管段的流量,必是这两个环路流量之和。当e-c和d-f管段的阻抗确定之后,又可以确定e和f之间的水头差。由此类推,可顺序确定所有环路之间的流量分配比。 3、同程式系统的水力特性 同程式系统不具备并联环路的典型性,虽然与异程式系统相同,经由两环路的水头差相等,但其流 量组成存在复杂性。同程式系统的典型图示见下图。 图3 同程式系统的典型图示 图3中c和b为环路1和环路2的公共并联点,经由c-a-1-b的水头差,必然与经由c-2-d-b的水头差相等。但是与异程式系统显著不同的是,当这两个并联环路各自的阻抗确定之后,并不能确定两个环路 之间的流量分配比,因为d-b段的流量主要取决于上游管段的水力特性,因而c-2-d的流量也不能确定。当d-b段上游阻抗较小时会使d点水头值较大,则c-d段有较小的水头差。相反,当d-b段上游阻抗较大时就会使d点水头值变小,则c-d段有较大的水头差。只有当e和b点之间所有管段的阻抗全部确定之后,经综合平衡才能真正确定各环路之间的流量分配比。在同程式系统设计过程中,需要注意两点:①供、回 水管的水力坡降(比摩阻)相近;②供、回水管的水力坡降线尽量远离,即尽量减小“共同段”阻力损失所占的比例。 4、小结 针对上述两种并联环路的水力特性的分析,可知: (1)异程式系统虽有自末端起各环路水头差顺序增大,需要将各环路的阻抗S相应增大,以求得流量合理分配的困难条件,但全系统的水力特性的直观性较好,便于计算和调节。 (2)同程式系统虽有各环路之间可能取得相近水头差,因而具备流量合理分配的有利条件,但各环 路水头差的大小不似异程式系统那样存在直观规律性,计算和调节都较为困难。如果处理不当,某些环路 会出现下段水头值高于上段水头值,而导致局部环路出现逆循环。

相关文档
最新文档