逆变电路的主要应用及基本工作原理

逆变电路的主要应用及基本工作原理

逆变电路的主要应用及基本工作原理

?1引言

?我们先来说一说逆变的概念,它与整流相对,整流是交流变直流,而逆变是直流变交流。分为有源逆变和无源逆变:

?有源逆变:交流侧接电网,如光伏,风电,和去年开始火起来的储能,这些都是交流侧接电网的。后续我们也会慢慢针对光伏、风电、储能等展开讨论。

?无源逆变:即交流侧接负载。

?两者的主要区别就在于其交流侧的不同,接下来,我们主要以无源逆变展开,因为电网的工况跟常见的负载是有区别的,有的人会说,电网不也可以看作负载吗?这些我们后面再进行展开,这里我们就不论述具体的区别了。?

?逆变和变频,变频电路分为交交变频和交直交变频两种。交直交变频由交

PWM控制技术在逆变电路中的应用

PWM控制技术在逆变电路中的应用 研究了PWM控制技术在单相桥式逆变电路中的应用,首先详细地阐述了PWM控制技术的基本原理,简要地介绍了单相桥式逆变电路的工作原理,然后将PWM 控制技术应用到单相桥式逆变电路中,最后通过仿真结果验证了理论分析的正确性。 1 引言 在电力电子技术发展史上,逆变电路占据非常重要的一环,而PWM控制技术在逆变电路又处于核心地位,如何将PWM控制技术应用到逆变电路当中是摆在广大科技工作者面前一大难题。针对这个问题,本文首先阐述了PWM控制技术的基本原理,然后详细地研究了单极性SPWM和双极性SPWM实现方法,最后将PWM控制技术和单相桥式逆变电路结合起来分析并应用,并通过仿真实验验证了PWM控制技术在逆变电路的成功应用。 2 PWM控制技术的基本原理及实现方法 2.1 PWM控制技术的基本原理介绍 根据信号与系统知识可知,冲量相同而形状不一样的窄脉冲加在惯性环节上时,其输出作用相同。如图1(a)、(b)和(c)所示的三个波形分别为矩形波脉冲、三角波形脉冲以及正弦波形脉冲,显然它们的形状完全不同,但是面积完全相同,如果把它们分别加在具有同一个惯性的环节上时,其输出作用完全相同。 (a)矩形波脉冲(b)三角波脉冲(c)正弦半波脉冲 分别将如图1所示(a)、(b)和(c)所示波形施加在同一个一阶惯性环节上,其电路图和输出电流i(t)输出分别如图2(a)和(b)所示。从2(b)可以看出,在i(t)的上升段,i(t)的形状也稍微有点不同,但其下降段则完全相同。值得说明的是脉冲越窄,各i(t)输出波形的差异可以忽略不计。这种原理被称为面积等效原理,它是实现PWM 控制技术的理论基础。 如果用一系列等幅不等宽的脉冲来代替一个正弦半波,也就是说把正弦半波分成N等份,

SPWM逆变电路原理

对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。这里仅介绍最常用的PWM脉宽调制方式。 面积等效原理转换 把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。 图1 用面积等效原理转换为SPWM波形 如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。 对于正弦波的负半周,也可以用同样的方法得到PWM 波形。这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。 SPWM波形的生成 输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。 s 图2 全桥逆变电路的工作状态 输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。 图3上部分是SPWM波形控制信号生成的原理图,下部分是生成的SPWM波形。在调制法中,把所希望输出的波形称为调制波ur,把接受调制的信号称为载波uc,通常采用等腰三角波作为载波,正弦波作为调制信号。在两波交点时对电路中的开关器件进行通断控制,就可得

半桥逆变电路工作原理的分析

电子镇流器中半桥逆变电路工作原理的分析 陈传虞 引言 半桥逆变电路是电子镇流器和电子节能灯中最常用也是最基本的电路,正确地理解它的工作原理,将有助于我们合理地选择元器件如磁环变压器、扼流电感、启动电容等元件的参数,正确地安排三极管的驱动电路,以降低它的功耗与热量,提高整灯的可靠性。遗憾地是过去受观测仪器(如示波器)和测试手段的局限,我们无法观测到电路中关键点如三极管各个电极电流的正确波形(如文献4的电流i B 、i c 的起始波形就是错误的),因而无法作出符合实际情况的定量分析和判断,以至形成一些错误的概念。最近看到深爱公司叶文浩先生发表在中国照明电器(刊载于04年11、12期)的文章,受到不少启发,到欧普照明公司后,利用比较先进的示波器TDS5000,对电路关键点的电流和电压波形,进行了仔细的测试,感到认识上有所提高,澄清了过去不少胡塗概念,特撰写本文,抛砖引玉,与叶先生商榷,并就教于国内方家。 首先讨论半桥逆变电路的工原理,尽管这个电路是众所周知的,但人们对它的理解却并不十分正确,存在一些错误观念。因此,本文拟对它作较为仔细的探讨。讨论时以图1所示的基本电路作为讨论的出发点,后面所引用的元件名称及符号,均按图1所给出的为准。为支持和验证所提出的观点,文中給出了许多用示波器实际观测到的波形。 图1、半桥逆变电路的基本形式 一. 三极管如何由导通变为截止(以VT 2为例) 不论是用触发管DB 3还是由基极偏置电阻产生基极电流i B2(后者用在基极回路中带电容的半桥逆变电路中),两种触发方式中的哪一种,在接通电源后,都会由于i B2的出现而产生VT 2的集电极电流i c2,通过磁环变压器的正反馈,引起电压v BE2上升, i B2进一步增加, i c2也随之增加。出现以下的连锁反应: 2b i ↑ 2C i ↑ 2b ↑ 这种再生反馈的结果,产生了雪崩效应,三极管迅速导通并饱和(在半桥逆变电路正常工作期间, 三极管VT 1或VT 2如何由截止变成导通的原因,我们将在后面文章中加以讨论)。导通后的三极管可以看成闭合的开关,三极管的电流i c2不再受基极电流i B2控制,而仅由外电路元件的参数来确定。 在三极管开始导通的一段时间内,i c2增加,通过磁环变压器绕组间的正反馈使磁环绕组N 2上的感应电动势增加,v BE2及 i B2均增加,由图2知,i B2同磁环绕组N 2上的电压v N2触发 电流 通过T r N 3与N 2

pwm逆变电路的应用.

《电力电子技术》课程大作业 设计题目: PWM电路的应用 学生所在系部:电子工程系 学生所在专业:自动化 学生所在班级: 学生姓名: #### 学生学号: ##### 任课教师姓名: 大作业成绩:

PWM逆变电路的应用 一、摘要 随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。因此,高质量的逆变电路已成为电源技术的重要研究对象。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。 PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。 二、基本设计指标: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1-1形状不同而冲量相同的各种窄脉冲 1. 面积等效原理 分别将如图1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图1-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图1-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

三电平逆变器的主电路结构及其工作原理

所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。

逆变电焊机的工作原理

逆变电焊机的基本工作原理: 逆变电焊机主要是逆变器产生的逆变式弧焊电源, 又称弧焊逆变器, 是一种新型的焊接电源。 是将工频(50Hz)交流电, 先经整流器整流和滤波变成直流, 再通过大功率开关电子元件(晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT),逆变成几kHz~几十kHz的中频交流电, 同时经变压器降至适合于焊接的几十V电压, 再次整流并经电抗滤波输出相当平稳的直流焊接电流。 其变换顺序可简单地表示为: 工频交流(经整流滤波)→直流(经逆变)→中频交流(降压、整流、滤波)→直流。即为:AC→DC→AC→DC 因为逆变降压后的交流电, 由于其频率高, 则感抗大, 在焊接回路中有功功率就会大大降低。 所以需再次进行整流。 这就是目前所常用的逆变电焊机的机制。 逆变电源的特点: 弧焊逆变器的基本特点是工作频率高, 由此而带来很多优点。 因为变压器无论是原绕组还是副绕组, 其电势E与电流的频率f、磁通密度B、铁芯截面积S及绕组的匝数W有如下关系:E=4.44fBSW 而绕组的端电压U近似地等于E,即: U≈E=4.44fBSW 当U、B确定后,若提高f,则S减小,W减少, 因此, 变压器的重量和体积就可以大大减小。 就能使整机的重量和体积显著减小。 还有频率的提高及其他因素而带来了许多优点, 与传统弧焊电源比较, 其主要特点如下: 1.体积小、重量轻,节省材料,携带、移动方便。 2.高效节能,效率可达到80%~90%,比传统焊机节电1/3以上。 3.动特性好,引弧容易,电弧稳定,焊缝成形美观,飞溅小。 4.适合于与机器人结合,组成自动焊接生产系统。 5.可一机多用,完成多种焊接和切割过程。

(完整版)三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+V dc/2; 若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

逆变电路的基本工作原理

逆变电路的基本工作原理 1、S4闭合,S 2、S3断开时,负载电压uo为正S1;S 1、S4断开,S 2、S3闭合时,uo为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。阻感负载时,io滞后于uo,波形也不同(图5-1b)。t1前:S 1、S4通,uo和io均为正。t1时刻断开S 1、S4,合上S 2、S3,uo变负,但io不能立刻反向。io从电源负极流出,经S 2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大(2)换流方式分类换流电流从一个支路向另一个支路转移的过程,也称换相。开通:适当的门极驱动信号就可使其开通。关断:全控型器件可通过门极关断。半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。研究换流方式主要是研究如何使器件关断。本章换流及换流方式问题最为全面集中,因此在本章讲述

1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。 2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。 3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容性。电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感Ld, id基本没有脉动。工作过程:4个臂的切换仅使电流路径改变,负载电流基本呈矩形波。负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,对谐波阻抗很小,uo波形接近正弦。t1前:VT 1、VT4通,VT 2、VT3断,uo、io均为正,VT 2、VT3电压即为uot1时:触发VT 2、VT3使其开通,uo加到VT 4、VT1上使其承受反压而关断,电流从VT 1、VT4换到VT

逆变器应用及一种简单的逆变器电路图

逆变器应用及一种简单的逆变器电路图随着科技的快速发展,逆变器已经越来越多的出现在人们的生活中。目前,逆变器的已经在很多领域应用到,比如电脑、电视、洗衣机、空调、家庭影院、电动砂轮、电动工具、缝纫机、录像机、按摩器、风扇、照明等等。逆变器是一种能够进行电能转换的器件,当输入的是直流电是,输出就会变成交流电,而且一般是为220v50HZ正弦或方波。它与应急电源的工作原理是相反的,逆变器一般由控制逻辑、滤波电路和逆变桥组成。本文将首先介绍二极管在逆变器中的应用,然后结合一种简单的逆变器电路图,具体分析PWM逆变器的工作原理。 二极管在逆变器中的应用 在家电应用中,最主要的就是高效率和节能,三相无刷直流电机正是因为具有效率高、尺寸小的优点,被广泛的应用在家电设备及其他很多应用中。除此之外,由于还将机械换向装置替换成电子换向器,三相无刷电机进而被认为可靠性比原来更高了。 标准的三相功率级(power stage)被用来驱动一个三相无刷直流电机,如图1所示。功率级产生一个电场,为了使电机很好地工作,这个电场必须保持与转子磁场之间的角度接近90°。六步序列控制产生6个定子磁场向量,这些向量必须在一个指定的转子位置下改变。霍尔效应传感器扫描转子的位置。为了向转子提供6个步进电流,功率级利用6个可以按不同的特定序列切换的功率MOSFET。下面解释一个常用的切换模式,可提供6个步进电流。 MOSFET Q1、Q3和Q5高频(HF)切换,Q2、Q4和Q6低频(LF)切换。当一个低频MOSFET处于开状态,而且一个高频MOSFET 处于切换状态时,就会产生一个功率级。 步骤1) 功率级同时给两个相位供电,而对第三个相位未供电。假设供电相位为L1、L2,L3未供电。在这种情况下,MOSFET Q1和Q2处于导通状态,电流流经Q1、L1、L2和Q4。 步骤2)MOSFET Q1关断。因为电感不能突然中断电流,它会产生额外电压,直到体二极管D2被直接偏置,并允许续流电流流过。续流电流的路径为D2、L1、L2和Q4。 步骤3)Q1打开,体二极管D2突然反偏置。Q1上总的电流为供电电流(如步骤1)与二极管D2上的恢复电流之和。 显示出其中的体-漏二极管。在步骤2,电流流入到体-漏二极管D2(见图1),该二极管被正向偏置,少数载流子注入到二极管的区和P区。 当MOSFET Q1导通时,二极管D2被反向偏置,N区的少数载流子进入P+体区,反之亦然。这种快速转移导致大量的电流流经二极管,从N-epi到P+区,即从漏极到源极。

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 3 U(011) 1 U(001)5 U(101) 4 U(100) 6 U(110) 2 U(010) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ U(000) 7 U(111) β c U θ β u α u 1 sv U2 sv U 3 sv U 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1、U sv2、U sv3 来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1)

根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。 β 1 4 图1.3 电压空间矢量合成示意图 根据伏秒特性等效原理算出 () ???? ? ? ? ?? ????--==-=T T T T V T u T V T u u T s dc s ref dc s ref ref 21021 33321 β β α (1.3)

-逆变电路的基本工作原理

第5章逆变电路 主要内容:换流方式,电压型逆变电路,电流型逆变电路,多重逆变电路和多电平逆变电路。 重点:换流方式,电压型逆变电路。 难点:电压型逆变电路,电流型逆变电路。 基本要求:掌握换流方式,掌握电压型逆变电路,理解电流型逆变电路,了解多重逆变电路和多电平逆变电路。 逆变概念: 逆变——直流电变成交流电,与整流相对应。 本章无源逆变逆变电路的应用: 蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要逆变电路。交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。 本章仅讲述逆变电路基本内容,第6章PWM控制技术和第8章组合变流电路中,有关逆变电路的内容会进一步展开 1换流方式 (1)逆变电路的基本工作原理 单相桥式逆变电路为例: S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。S1、S4闭合,S2、S3断开时,负载电压u o为正S1;S1、S4断开,S2、S3闭合时,u o为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。 图5-1 逆变电路及其波形举例

电阻负载时,负载电流i o和u o的波形相同,相位也相同。阻感负载时,i o滞后于u o,波形也不同(图5-1b)。 t1前:S1、S4通,u o和i o均为正。 t1时刻断开S1、S4,合上S2、S3,u o变负,但i o不能立刻反向。 i o从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,i o逐渐减小,t2时刻降为零,之后i o才反向并增大 (2)换流方式分类 换流——电流从一个支路向另一个支路转移的过程,也称换相。 开通:适当的门极驱动信号就可使其开通。 关断:全控型器件可通过门极关断。 半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。 研究换流方式主要是研究如何使器件关断。 本章换流及换流方式问题最为全面集中,因此在本章讲述 1、器件换流 利用全控型器件的自关断能力进行换流(Device Commutation)。 2、电网换流 由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。 3、负载换流 由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。 图5-2 负载换流电路及其工作波形 基本的负载换流逆变电路:

三相逆变器电路原理和工作过程图文说明

三相逆变器电路原理和工作过程图文说明 单相逆变器电路由于受到功率开关器件的容量、零线(中性线)电流、电网负载平衡要求和用电负载性质等的限制,容量一般都在100kV A以下,大容量的逆变电路大多采用三相形式。三相逆变器按照直流电源的性质不同分为三相电压型逆变器和三相电流型逆变器。 1.三相电压型逆变器。 电压型逆变器就是逆变电路中的输入直流能量由一个稳定的电压源提供,其特点是逆变器在脉宽调制时的输出电压的幅值等于电压源的幅值,而电流波形取决于实际的负载阻抗。三相电压型逆变器的基本电路如图6-15所示。该电路主要由6只功率开关器件和6只续流二板管以及带中性点的直流电源构成。图中负载L和R表示三相负载的各路相电感和相电阻。 图6-15 三相电压型逆变器电路原理图 图6-15三相电压型逆变器电路原理图功率开关器件VT1~VT6在控制电路的作用下,控制信号为三相互差1200的脉冲信号时,可以控制每个功率开关器件导通180度或120度,相邻两个开关器件的导通时间互差60度逆变器三个桥臂中上部和下部开关元件以180度间隔交替开通和关断,VT1~VT6以60度的电位差依次开通和关断,在逆变器输出端形成a、b、c三相电压。 控制电路输出的开关控制信号可以是方波、阶梯波、脉宽调制方波、脉宽调制三角波和锯齿波等,其中后三种脉宽调制的波形都是以基础波作为载波,正弦波作为调制波,最后输出正弦波波形。普通方波和被正弦波调制的方波的区别如图6-16所示,与普通方波信号相比,被调制的方波信号是按照正弦波规律变化的系列方波信号,即普通方波信号是连续导通的,而被调制的方波信号要在正弦波调制的周期内导通和关断N次。

三相方波逆变电路原理说明

1 引言 设计要求 本次课程设计题目要求为三相方波逆变电路的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab 仿真等,巩固了理论知识,基本达到设计要求。完成三相方波逆变电路的仿真,开关管选IGBT,直流电压为530V, 阻感负载,负载有功功率1KV y感性无功功率为100Var。 逆变的概念 逆变即直流电变成交流电,与整流相对应 电力系统中,将电网交流电通过整流技术变成直流电,然后通过逆变技术,将直流变成高频交流,再通过高频变压器降压,就达到缩小变压器体积和提高供电质量的目的了。

三相逆变 三相逆变技术广泛应用于交流传动、无功补偿等领域。在三相PWM交流 伺服系统中,一般采用三个桥臂的结构,即逆变桥主电路有6 个功率开关器件 (功率MOSFE或IGBT)构成,若每个开关器件都用一个单独的驱动电路驱动,则需6 个驱动电路,至少要配备4 个相互独立的直流电源为其供电,使得系统硬件结构复杂,可靠性下降,且调试困难,设计成本偏高。 2三相电压源型SPW逆变器 PWM的基本原理 PWM(Pulse Width Modulation) 控就是对脉冲的宽度进行调制的技术,即通过一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWh控制技术最重要的理论基础是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。 SPW控制技术是PW M空制技术的主要应用,即输出脉冲的宽度按正弦规律变化而和正弦波等效。 SPWM逆变电路及其控制方法 SPW逆变电路属于电力电子器件的应用系统,因此,一个完整的SPW逆变电路应该由控制电路、驱动电路和以电力电子器件为核心的主电路组成。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。 目前应用最为广泛的是电压型PW逆变电路,脉宽控制方法主要有计算机法和调制法两种,但因为计算机法过程繁琐,当需要输出的正弦波的频率、幅值或相位发生变化时,结果都要变化,而调制法在这些方面有着无可比拟的优势,因此,调制法应用最为广泛。 所谓调制法,就是把希望输出的波形作为调制信号U t,把接收调制的信号作 为载波U c,通过信号波的调制得到所期望的PW波形。 三相方波逆变器 电路结构相同,只是控制方式不同。每一开关元件在输出电压的一个周期中闭合180°

[三电平逆变器的主电路结构及其工作原理]三电平逆变器工作原理

[三电平逆变器的主电路结构及其工作原理]三电平逆变器 工作原理 三电平逆变器的主电路结构及其原理 所谓三电平是指逆变器侧每相输出电压相对于直流侧有三种取值,正端电压(+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱 位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT 开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假 设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压U=+Vdc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1

充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+Vdc/2。通常标识为所谓的“1”状态,如图所示。 “1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从O点顺序流过箱位二极管Da1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管Da2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-Vdc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-Vdc/2。通常标识为“-1”状态,如图所示。 三电平逆变器工作状态间的转换

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz 工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携式电器使

用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA 的驱动能力。 TL494芯片的内部电路 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。 IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷

相关文档
最新文档