霍尔元件基本参数测量

霍尔元件基本参数测量
霍尔元件基本参数测量

实验名称:霍尔组件基本参数测量

仪器与用具:TH-H 霍尔效应实验组合仪

实验目的:1、了解霍尔效应实验原理 2、学习“对称法”消除副效应影响的方法 3、测量霍尔系数、确定样品导电类型、计算霍尔组件灵敏度等

实验报告内容(原理预习、操作步骤、数据处理、误差分析、思考题解答) 【实验原理】:

通有电流I S 的半导体薄片置于与它垂直的磁场B 中,在薄片的两测就会产生电势差U —霍尔电势差,这种现象叫霍尔效应。

霍尔效应产生的原因,是因为形成电流的载流子在磁场中运动时,受到洛沦兹力F=qv ×B 的作用,正、负电荷在样品两测边界聚集,形成横向电场E H —霍尔电场,产生霍尔电势差U 。

载流子除受到洛沦兹力F=qv ×B 的作用外,还受横向电场力Fe=eE H 的作用,当受到洛沦兹力与横向电场力大小相等时,即

eE H =qv ×B (4.7.1) 样品两测边界聚集的电荷不再变化,达到平衡。

样品中电流强度: I S =nevbd ( 4.7.2) 样品中横向电场E h 可认为是匀强电场,则有: U=E h b=ne

1=R H d B

I s (4.7.3)

基本参数: 1、霍尔系数R H

霍尔系数定义: R H =

ne

1

由材料的性质(载流子密度)决定,反映材料的霍尔效应强弱。 由(4.7.3)得 R H =

IsB

d U H 上式提供了测量霍尔系数R H 的方法。 2、根据R H 的符号判断样品导电类型N 、P

半导体材料有N 型和P 型两种,将测的U H 、I S 、B 带入 R H =

IsB

d

U H 得数为正时,样品为P 型半导体,得数为正时,样品为P 型半导体。 3、件的灵敏度K

K=

ned

d B H 1

=

霍尔元件的灵敏度K 与载流子浓度n 和样品厚度d 有关,由于半导体内载流子浓度远小于金属,所以选用半导体材料制作霍尔元件,厚度一般只有0.2mm 。 4、载流子浓度n n=

e

R H 1

上式提供了用霍尔效应实验测量并计算载流子浓度的重要方法。 5、电导率σ,迁移率μ σ=1/ρ=

bd

U l

I s σ 6、消除霍尔元件副效应影响

实验中测量的霍尔元件两测的电势差U ,除霍尔电势差U H 外,还会有一些热磁副效应附加的一些电势差,这些附加电势差的方向与B 、I S 的方向有关,应用表4.7.1中对称测量法可基本消除这些影响。 【操作步骤】:

1、按仪器接口名称指示接好线路(注意不要接错,否则会损毁霍尔元件),I S 、I M 调节旋扭逆时针方向旋到底,开机预热几分钟。

2、调节I M

=0.6A 并保持不变, “功能切换”开关和中间铡刀开关分别扳向“U H ”,IS 分别取 、、

mA 、 、 、 ,分别测出U H 值,每组U H 值I S 、B 方向进行4种组合,分别测出U 1、U 2、U 3、U 4值,填入表4.7.1中。

3、调节Is=0.6A 并保持不变, “功能切换”开关和中间铡刀开关位置保持不变,I M 分别取0.300A 、0.400A 、0.500A 、0.600A 、0.700A 、0.800A 时测出U H ,测量数据记入表4.7.2中。

4、在零磁场下(I M 输入开关空位),取Im=, 中间铡刀开关置“U σ”置,分别测量Is 正、反方向的U σ值,记入表4.7.3中。 【数据处理】:

表4.7.1 I M =

由上图:S H I U =1050.308.14 ?=×10-3 R H1= S H I U M KI d =×10-3

6.0502.03105.0??-=×10-3

表4.7.2 I s =

?=??=?=08.20502.08.010068.16K I U B U M H H 110—3 R H2==S

H I d B U ×10—3103105.0??=×10-3

表4.7.3 I s =

(1)霍尔系数R H

R H =

=+=+2

92

.667.6221H H R R ×10-3 (2)根据R H 的符号判断样品导电类型N 、P

(3)件的灵敏度 K

物理实验中心

实验名称:霍尔组件基本参数测量 姓名:李 昊 时间代码:06 K=

=d

B H ×10-3/×10-3

= (4)载流子浓度n n=e

R H 1

=1/×10-3××10-19=×1020 (5)电导率σ σ=1/ρ=

bd

U l

I s σ=×10-3×3×10- /×10-3×4×10-3××10-3

=×103

(1/Ωm ) (6)迁移率μ

μ=R H σ=×10-3××103=(1/T ) 【误差分析】

1、测量仪器精度不够,部分数据只能显示2位有效数字,经运算后产生误差较大。

2、做图时精度不够造成误差。

【思考题】

1、霍尔电压是如何产生的它的大小、正负与那些因素有关

答:形成电流的载流子,在半导体薄片中运动时,受磁场的洛仑兹力作用,向薄片两测发生偏转,两测分别聚集正、副电荷,形成电场,从而产生电势差。

2、列出霍尔系数、栽流子浓度、电导率及迁移率的计算公式,注明单位。 答:霍尔系数R H : R H =

IsB d

U H (Ω.m/T ) 载流子浓度n: n=e R H 1

(个/m 3)

电导率σ: σ=bd

U l

I s σ (1/Ω.m )

迁移率μ μ=R H σ (1/T )

【测试题】

1、如何利用霍尔效应实验,判断半导体导电类型(N 、P )。

答:伸出左手,让磁感线穿过手心,四指指向电流方向,如姆指指向与霍尔电势差方向相同,则为N 型半导体,如姆指指向与霍尔电势差方向相反,则为P 型半导体。 2、测量霍尔电势差时存在那些副效应影响如何消除这些影响

答: 测量霍尔电势差时会产生一些热磁副效应,给测量带来误差,如爱廷豪森效应、能斯托效应等,这些副效应产生的电势差的方向,与I S 、B 的方向有关。可采用对称测量法,分

别改变I

S 、B的方向组合,测出U

1

、U

2

、U

3

、U

4

,求平均值(绝对值相加),得到U

H

。这样

就消除了大部分副效应影响。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔元件测量磁场

4.1.1. 霍尔元件测量磁场 置于磁场中的载流导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点。利用它可以测量磁场;可以研究半导体中载流子的类别和特性等;也可以利用它制作传感器,用于磁读出头、隔离器,转速仪等。量子霍耳效应更是当代凝聚态物理领域最重要的发现之一,它在建立国际计量的自然基准方面也起了重要的作用。 【实验目的】 1.了解霍耳效应法测量磁场的原理和方法。 2.测定所用霍耳片的霍耳灵敏度。 3.用霍耳效应法测量通电螺线管轴线上的磁场。 4.用霍耳效应法测量通电线圈和亥姆霍兹线圈轴线上的磁场,验证磁场叠加原理,验证亥姆霍兹线圈中央存在均匀磁场。 【实验原理】 1.霍耳效应及其测磁原理 把一块半导体薄片(锗片或硅片等)放在磁感应强度大小为B 的磁场中(B 的方向沿z 轴方向),如图4.5.1所示。从薄片的四个 侧面A 、A ’、D 、D ’上分别引出两对 电极,沿纵向(即x 轴正向)通以电流 I H ,则在薄片的两个横向面D 、D ’之间 就会产生电势差,这种现象称为“霍耳 效应”,产生的电势差称为霍耳电势差。 根据霍耳效应制成的磁电变换元件称为 霍耳元件。霍耳效应是由洛伦兹力引起 的,当放在垂直于磁场方向的半导体薄片 通以电流后,薄片内定向移动的载流子 受到洛伦兹力F B : B v F B ?=q (4.5.1) 式中,q 、v 分别是载流子的电荷和移动速度。载流子受力偏转的结果使电荷在D 、D ’两端 面积聚而形成电场(图4.5.1中设载流子是负电荷,故F B 沿y 轴负方向),这个电场又给载流子一个与F B 反设方向的电场力F E 。设E 表示电场强度,U DD ’表示D 、D ’间的电势差,b 表示薄片宽度,则 b U q qE F DD E ' == (4.5.2) 达到稳定状态时,电场力和洛伦兹力平衡,有 E B F F = 即 b U q qvB DD ' = 图4.5.1 霍尔效应原理图

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

实验五用霍尔元件测量磁场

实验五用霍耳元件测量磁场 一、实验目的 1.了解霍耳效应的产生机理。 2.掌握用霍耳元件测量磁场的基本方法。 二、实验仪器 霍尔效应实验仪。 三、实验原理 1、什么叫做霍耳效应? 若将通有电流的导体置于磁场B之中,磁场B(沿z轴)垂直于电流I H(沿x轴)的方 向,如图1 U H,这个现象称 为霍耳效应。 图1 霍耳效应原理 这一效应对金属来说并不显著,但对半导体非常显著。霍耳效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。还可以用霍耳效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。用霍耳效应制作的传感器广泛用于磁场、位置、位移、转速的测量。(1)用什么原理来解释霍耳效应产生的机理? 霍耳电势差是这样产生的:当电流I H通过霍耳元件(假设为P型)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛沦兹力 ) (B v F? =q B(1)式中q为电子电荷。洛沦兹力使电荷产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E,直到电场对载流子的作用力F E=q E与磁场作用的洛沦兹力相抵消为止,即 E B v q q= ?) ((2)这时电荷在样品中流动时将不再偏转,霍耳电势差就是由这个电场建立起来的。

如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍耳电势差有不同的符号,据此可以判断霍耳元件的导电类型。 (2)如何用霍耳效应侧磁场? 设P 型样品的载流子浓度为p ,宽度为b ,厚度为d 。通过样品电流I H =pqvbd ,则空穴的速度v =I H /pqvbd ,代入(2)式有 pqbd B I E H = ?=B v (3) 上式两边各乘以b ,便得到 d B I R pqd B I Eb U H H H H == = (4) pq R H 1= 称为霍耳系数。在应用中一般写成 U H =K H I H B . (5) 比例系数K H =R H /d =1/pqd 称为霍耳元件灵敏度,单位为mV/(mA ·T)。一般要求K H 愈大愈好。K H 与载流子浓度p 成反比。半导体内载流子浓度远比金属载流子浓度小,所以都用半导体材料作为霍耳元件。K H 与片厚d 成反比,所以霍耳元件都做的很薄,一般只有0.2mm 厚。 由(5)式可以看出,知道了霍耳片的灵敏度K H ,只要分别测出霍耳电流I H 及霍耳电势差U H 就可算出磁场B 的大小。这就是霍耳效应测磁场的原理。 2、如何消除霍耳元件副效应的影响? 在实际测量过程中,还会伴随一些热磁副效应,它使所测得的电压不只是U H ,还会附加另外一些电压,给测量带来误差。 这些热磁效应有埃廷斯豪森效应,是由于在霍耳片两端有温度差,从而产生温差电动势U E ,它与霍耳电流I H 、磁场B 方向有关;能斯特效应,是由于当热流通过霍耳片(如1,2端)在其两侧(3,4端)会有电动势U N 产生,只与磁场B 和热流有关;里吉-勒迪克效应,是当热流通过霍耳片时两侧会有温度差产生,从而又产生温差电动势U R ,它同样与磁场B 及热流有关。 除了这些热磁副效应外还有不等位电势差U 0,它是由于两侧(3,4端)的电极不在同一等势面上引起的,当霍耳电流通过1,2端时,即使不加磁场,3和4端也会有电势差U 0产生,其方向随电流I H 方向而改变。 因此,为了消除副效应的影响,在操作时我们要分别改变I H 的方向和B 的方向,记下四组电势差数据,作运算并取平均值: 由于U E 方向始终与U H 相同,所以换向法不能消除它,但一般U E <

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

霍尔元件测磁场实验报告

霍尔元件测磁场实验报告 The Standardization Office was revised on the afternoon of December 13, 2020

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳( 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电N通以直流电流I H 势差叫做霍尔电势差,这样的小薄片就是霍尔片。

《霍尔元件通用技术条件》编制说明

《霍尔元件通用技术条件》编制说明 (征求意见稿) 一、工作简况 1、任务来源 本项目是工业和信息化部行业标准制修订计划(工信厅科[2017] 70号),计划编号:2017-0581T-JB,项目名称“霍尔元件通用技术条件”进行修订,标准起草牵头单位:沈阳仪表科学研究院有限公司,计划应完成时间2019年。 2、主要工作过程 起草(草案、调研)阶段: 沈阳仪表科学研究院有限公司接受本标准的修订任务后,于2018年1月组织成立了标准编制工作组,制定了标准修订计划,修订工作组对霍尔元件的定义、基本参数、要求、试验方法、检验规则、标志、包装及贮存等进行了总结和归纳。 在参照了国外相关标准和1999年发布的《霍尔元件通用技术条件》的基础上,根据各参编单位提出的意见,工作组经全方位的讨论、研究、修改及补充,确立了本《工作组讨论稿》的结构框架及基本内容。 2018年8月2日和8月9日在沈阳仪表科学研究院有限公司分别召开两次编制工作组会议。会上对标准工作组讨论稿进行了逐字逐句的讨论,工作组根据各位成员的意见,对标准进行修改,形成本征求意见稿及编制说明。 征求意见阶段: 审查阶段: 报批阶段: 3、主要参加单位和工作组成员及其所做的工作等 本标准由沈阳仪表科学研究院有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心、中国仪器仪表协会传感器分会、海宁嘉晨汽车电子技术有限公司、杭州电子科技大学等单位共同起草。 工作组主要成员:徐丹辉、李洪儒、张阳、于振毅、王松亭、郑楠、钱正洪、白茹。 工作安排:徐丹辉任修订工作组组长,全面负责标准修订工作,李洪儒、钱正洪负责对各阶段标准的审核。李洪儒、张阳负责与参编单位沟通、协调工作组内的意见。王松亭、郑楠、白茹负责标准资料收集、确定标准相关技术参数等工作。于振毅负责对资料进行总结和归纳、对各方面意见及建议的归纳分析,并提出内部修改意见。

实验523用霍尔元件测磁场

实验5-23用霍尔元件测磁场 霍尔效应是磁电效应的一种。当在载流导体的垂直方向上加上磁场,则在与电流和磁场都垂直的方向上将建立一个电场。这一现象是霍尔于1879年发现的。被称为“霍尔效应”。具有这种效应的不仅是金属,还有半导体、导电流体等。而半导体的霍尔效应比金属强得多。半导体霍耳器件在磁测量中应用广泛。它可用来测量强电流、压力、转速、流量、半导体材料参数等,在自动控制等技术中的应用也越来越多。 【实验目的】 1.了解产生霍尔效应的物理过程。 2.学习用霍尔元件测量通电螺线管内部的磁场。 【仪器器材】 HLZ-2型霍尔元件测螺线管磁场仪、UJ37型电位差计、直流安培表、直流毫安表、 直流稳压电源、电阻箱、变阻器等。 【实验原理】 一、霍尔效应原理 霍尔元件是根据霍尔效应原理研制的一种磁电转换元件,是由半导体村料做成的。 如图5-23-1所示,把一块n 型(载流子是电子)半导体薄片放在垂直于它的磁场B 中,在薄片的四个侧面A 、A '及D 、 D ',分别引出两对导线,当沿A 、A '方向通过电流I 时,薄片内定向移动的电子将受到洛仑磁力B f 的作用,其大小为 B f evB = (5-23-1) 式中,e 为电子的电量,B 为磁感应强度,v 为电子的移动速度。 电子受力偏转的结果,使得电荷在D 、D '两侧聚积而形成电场,这个电场又给电子一个与B f 反方向的电场力E f 。两侧电荷积累越多,E f 便越大。当B f =E f 时,电荷的积累达到动态平衡。此时,在薄片D 、D '之间建立的电场称为霍尔电场,相应的电势差称为霍尔电压H U ,这种现象即为霍尔效应。设b 、d 分别为薄片的宽度和厚度,n 为电子浓度,当B f =E f 时 H V evB e b = (5-23-2) 又 I evbdn =- (5-23-3) 由式(5-23-2)和(5-23-3)可得 H H IB V K IB end =- = (5-23-4) 图5-23-1 霍尔效应原理图

霍尔效应实验报告(DOC)

大学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日

? (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议

霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N型半 导体材料),它沿着与电流s I 相反的X负向运动。 由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y轴负方向的B 侧偏转,并使B侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。 设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B 式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。 同时,电场作用于电子的力为 l eV eE f H H E /-=-= 式中H E 为霍尔电场强度,H V 为霍尔电压,l 为霍尔元件宽度

霍尔效应及霍尔元件基本参数的测量

霍尔效应及霍尔元件基本参数的测量 086041B班D组何韵 摘要:霍尔效应是磁电效应的一种,利用这一现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面.霍尔效应是研究半导体材料性能的基本方法.本实验的目的在于了解霍尔效应的原理及有关霍尔器件对材料的要求,使用霍尔效应试验组合 仪,采用“对称测量法”消除副效应的影响,经测量得到试样的V H —I M 和V H —I S 曲线,并通 过实验测定的霍尔系数,判断出半导体材料试样的导电类型、载流子浓度及载流子迁移率等重要参数. 关键词:霍尔效应hall effect,半导体霍尔元件semiconductor hall effect devices,对称测量法symmetrical measurement,载流子charge carrier,副效应secondary effect 美国物理学家霍尔(Hall,Edwin Herbert,1855-1938)于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应.这个电势差也被叫做霍尔电势差.霍尔的发现震动了当时的科学界,许多科学家转向了这一领域,不久就发现了爱廷豪森(Ettingshausen)效应、能斯托(Nernst)效应、里吉-勒迪克(Righi-Leduc)效应和不等位电势差等四个伴生效应. 在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍耳效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖.之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert https://www.360docs.net/doc/b319009844.html,ughlin,1950-)、施特默(Horst L. St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理

讲义_霍尔效应测量

变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1. 了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2. 掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3. 掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲线,了解霍尔系数和电导率与温度的关系。 4. 了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部分硅原子组成共价键时,从邻近硅原子价键上夺取一个电子成为负离子,而在邻近失去一个电子的硅原子价键上产生一个空穴。这样满带中电子就激发到禁带中的杂质能级上,使硼原子电离成硼离子,而在满带中留下空穴参与导电,这种过程称为杂质电离。产生一个空穴所需的能量称为杂质电离能。这样的杂质叫做受主杂质,由受主杂质电离而提供空穴导电为主

霍尔元件测磁场与实验报告

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳(A.H.Hall 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、N通以直流电流I H,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

假设霍尔片是由n 型半导体材料制成的,其载流子为电子,在电极M 、N 上通过的电流由M 极进入,N 极出来(如图),则片中载流子(电子)的运动方向与电流I S 的方向相反为v,运动的载流子在磁场B 中要受到洛仑兹力f B 的作用,f B =e v ×B ,电子在f B 的作用下,在由N →M 运动的过程中,同时要向S 极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(P 极所在侧面)带正电,在上下两侧面之间就形成电势差V H ,即霍尔电势差。薄片中电子在受到f B 作用的同时,要受到霍尔电压产生的霍尔电场E H 的作用。f H 的方向与f B 的方向正好相反,E H =V H /b , b 是上下侧面之间的距离即薄片的宽度,当f H +f B =0时,电子受力为零达到稳定状态,则有 –e E H +(–e v ×B)=0 E H = - v ×B 因 v 垂直B ,故 E H =v B (v 是载流子的平均速度) 霍尔电压为 V H = b E H = b v B 。 设薄片中电子浓度为n ,则 I S =nedb v , v =I S /nedb 。 V H = I S B/ned =K H I S B 式中比例系数K H = 1/ned ,称为霍尔元件的灵敏度。 将V H =K H I S B 改写得 B = V H / K H I S 如果我们知道了霍尔电流I H ,霍尔电压V H 的大小和霍尔元件的灵敏度K H ,我们就可以算出磁感应强度B 。 实际测量时所测得的电压不只是V H ,还包括其他因素带来的附加电压。根据其产生的原因及特点,测量时可用改变I S 和B 的方向的方法,抵消某些因素的影响。例如测量时首先任取某一方向的I S 和B 为正,当改变它们的方向时为负,保持I S 、B 的数值不变,取(I S+,B +)、(I S-、B +)、(I S+、B -)、(I S-,B -)四种条件进行测量,测量结果分别为: V 1= V H +V 0+V E +V N +V RL V 2=-V H -V 0-V E +V N +V RL V 3=-V H +V 0-V E -V N -V RL V 4=V H -V 0+V E -V N -V RL 从上述结果中消去V 0,V N 和V RL ,得到 V H = 4 1 (V 1-V 2-V 3+V 4)-V E

霍尔效应及磁场的测定

霍尔效应及磁场的测定 近年来,在科研和生产实践中,霍尔传感器被广泛应用于磁场的测量,它的测量灵敏度高,体积小,易于在磁场中移动和定位。本实验利用霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正比,从而掌握霍尔效应的物理规律;用通电螺线管中心点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;用霍尔元件测螺线管内部的磁场沿轴线的分布。 【实验目的与要求】 1.了解霍尔传感器的工作原理,学习测定霍尔传感器灵敏度的方法; 2.掌握用霍尔传感器测量螺线管内磁感应强度沿轴线方向的分布。 【实验原理】 一、霍尔效应 图8-1 霍尔效应原理图 把矩形的金属或半导体薄片放在磁感应强度为B 的磁场中,薄片平面垂直于磁场方向。如图8-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。(图8-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。由于洛伦兹力B v e F m ?-=的作用,电子向一侧偏转,在半导体薄片的横 向两端面间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。电子在霍尔电场H E 中所受的电场力为H H E e F -=,当电场力与磁场力达到平衡时,有 ()()0=?-+-B v e E e H B v E H ?-=

若只考虑大小,不考虑方向有 E H =vB 因此霍尔电压 U H =wE H =wvB (1) 根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为 I=nevwd (2) 式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。由式(1)和式(2)可得 IB K IB d R end IB U H H H =?? ? ??== (3) 即 I K U B H H = (4) 式中en R H 1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔 元件的灵敏度。在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。对于一定的霍尔元件,K H 是一常数,可用实验方法测定。 图8-2 SS95A 型集成霍尔传感器结构图 虽然从理论上讲霍尔元件在无磁场作用(B =0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。随着科技的发展,新的集成化(IC)器件不断被研制成功,本实验采用SS95A 型集成霍尔传感器(结构示意图如图8-2所示)是一种高灵敏度传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。其特点是输出信号大,并且已消除剩余电压的影响。SS95A 型集成霍尔传感器有三根引线,分别是:“V +”、“V -”、“V out ”。其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于SS95A 型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。在实验时,只要在磁感应强度为零(B =0)条件下,“V out ”和“V -”之间的电压为2.500V ,则传感器就处于标准工作状态之下。

霍尔元件基本参数测量

实验名称:霍尔组件基本参数测量 仪器与用具:TH-H 霍尔效应实验组合仪 实验目的:1、了解霍尔效应实验原理 2、学习“对称法”消除副效应影响的方法 3、测量霍尔系数、确定样品导电类型、计算霍尔组件灵敏度等 实验报告内容(原理预习、操作步骤、数据处理、误差分析、思考题解答) 【实验原理】: 通有电流I S 的半导体薄片置于与它垂直的磁场B 中,在薄片的两测就会产生电势差U H —霍尔电势差,这种现象叫霍尔效应。 霍尔效应产生的原因,是因为形成电流的载流子在磁场中运动时,受到洛沦兹力F=qv ×B 的作用,正、负电荷在样品两测边界聚集,形成横向电场E H —霍尔电场,产生霍尔电势差U H 。 载流子除受到洛沦兹力F=qv ×B 的作用外,还受横向电场力Fe=eE H 的作用,当受到洛沦兹力与横向电场力大小相等时,即 eE H =qv ×B (4.7.1) 样品两测边界聚集的电荷不再变化,达到平衡。 样品中电流强度: I S =nevbd ( 4.7.2) 样品中横向电场E h 可认为是匀强电场,则有: U H =E h b=ne 1=R H d B I s (4.7.3) 基本参数: 1、霍尔系数R H 霍尔系数定义: R H = ne 1 由材料的性质(载流子密度)决定,反映材料的霍尔效应强弱。 由(4.7.3)得 R H = IsB d U H 上式提供了测量霍尔系数R H 的方法。 2、根据R H 的符号判断样品导电类型N 、P 半导体材料有N 型和P 型两种,将测的U H 、I S 、B 带入 R H = IsB d U H 得数为正时,样品为P 型半导体,得数为正时,样品为P 型半导体。

霍尔测磁场(大物实验)

用霍尔效应测量磁场分布 霍尔效应是美国科学家霍尔于1879年发现的。由于它揭示了运动的带电粒子在外磁场中因受洛伦兹力的作用而偏转,从而在垂直于电流和磁场的方向上将产生电势差的规律,因此该效应在科学技术的许多领域(测量技术、电子技术、自动化技术等)中都有着广泛的用途。现在霍尔效应产品已经在自动化和信息技术中得到了广泛地应用。特别是在用计算机进行四遥(遥测、遥控、遥信、遥调)监控的一些现代化设备中,应用磁平衡和磁比例式原理研制的霍尔电压传感器、霍尔电流传感器和霍尔开关量传感器进行静电(直流)隔离,实现了直流电压高精度的隔离传送和检测,直流电流高精度的隔离检测和监控量越限时准确的隔离报警。从而在我国引起了许多科技人员对霍尔效应、霍尔元件以及应用霍尔效应的实用知识和 实用技术的关注。 本实验通过研究霍尔电压与工作电流的关系,霍尔电压与磁场的关系以 及消除霍尔效应的副效应的方法,从实验中认识霍尔效应,为在自动检测、自动控制和信息技术中应用霍尔效应打下一个良好的基础。 1897年,霍尔设计了一个根据运动载流子在外磁场中的偏转来确定在导体或半导体中占主导地位的载流子类型的实验。在研究通有电流的导体在磁场中的受力时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起到了重要的推动作用。直到现在,霍尔效应的研究仍是研究半导体性质的重要实验方法。利用霍尔系数和导电率的联合测量,可以用来研究半导体的到点机构、散射机构,并可以确定半导体的一些基本参数,如半导体材料的导电类型、载流子浓度、迁移率大小、禁带宽度、杂质电离能等。 【实验目的】 (1)掌握霍尔元件的工作原理。 (2)学习用霍尔元件测量磁场的原理和方法。 (3)学习用霍尔元件测绘载流圆线圈和亥姆霍兹线圈的磁场分布。 (4)学习用霍尔元件测绘螺线管磁场分布。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于(图15-1)所示的半导体试样,若在X 方向通以电流I ,在Z 方向加磁场B ,则在Y 方向即试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。显然,该电场是阻止载 流子继续向侧面偏移,当载流子所受的横向电场力H eE 与洛仑兹力eVB 相等时,样品两侧电 荷的积累就达到平衡,故有: H eE eVB = (15-1) 其中,H E 为霍尔电场,V 是载流子在电流方向上的平均漂移速度。 设试样的宽为b ,厚度为d ,载流子浓度为n ,则 S I neVbd = (15-2) 由(15-1)、(15-2)两式可得: 1S S H H H I B I B V E b R ne d d ==?= (15-3)

实验8-霍尔元件测磁场

实验8霍尔元件测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。金属材料的霍尔效应太弱而未得到实际应用。随着半导体材料和制造工艺的发展,人们利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到使用和发展,广泛用于非电量检测、电动控制、电磁测量和计算装置方面。 近年来霍尔效应实验不断有新的发现,在低温和强磁场条件下的量子霍尔效应是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并已取得了重要应用。 【实验目的】 (1)了解霍尔效应原理。 (2)学习利用霍尔效应测量霍尔元件有关参数。 (3)学习用“对称交换测量法”消除附加效应的影响。 (4)学习用霍尔元件测磁场的基本方法。 【实验仪器】 霍尔效应实验仪,霍尔效应测试仪 【原理】 1.霍尔效应 1879年,当时为美国普多金斯大学研究生院二年级学生的霍尔,在研究载流导体在磁场中受力性质时发现:当一电流垂 直于外磁场方向通过导体时,在垂直于电流和 磁场的方向导体的两侧会产生一电位差,如图

4-8-1所示。将这种实验现象称做霍尔效应,所产生的电位差称霍尔电压,产生 霍尔效应的载流导体、半导体、离子晶体称霍尔元件。 霍尔电压的成因可用电子论解释:导体中若沿X 方向通以电流,电流密度为J ,则有沿负X 方向运动的电子,设速度为v ,此电子将受Z 方向的磁场B 的洛伦兹力B f 的作用,从而在导体A 侧积累了电子,这样就形成了沿负Y 方向的电场H E ,即形成了霍尔电压H U 。 2.测磁场原理 如果导体中电流I 是稳定而均匀的,则电流密度J 的大小为 I J Ld = 式中,L 为矩形导体的宽;d 为其厚度;Ld 为导体垂直于电流方向的截面积。 如果在导体所在的范围内,磁场B 也是均匀的,则霍尔电场也是均匀的,大小为 H H U E L = (4-8-1) 霍尔电场的建立使电子受到一电场力E f ,方向与洛伦兹力相反,并随着电荷积累的增加,霍尔电场的电场力也增大。当达到一定程度时,电场力E f 与洛伦兹力B f 大小相等,电荷积累达到动态平衡,形成稳定的霍尔电压,同时电流I 恢复到原来的稳定值,达到动态平衡时有 H evB eE = (4-8-2) 将式(4-8-1)代入得 H U vBL = (4-8-3) 在此式中,H U 、L 容易测,但电子运动速度v 难用简单的方法测量,而电流I 是