2019-2020年高中数学 第三章不等式3.4基本不等式第三课时教案 新人教A版必修5

2019-2020年高中数学 第三章不等式3.4基本不等式第三课时教案 新人教A版必修5
2019-2020年高中数学 第三章不等式3.4基本不等式第三课时教案 新人教A版必修5

2019-2020年高中数学 第三章不等式3.4基本不等式第三课时教案 新人教

A 版必修5

授课类型:习题课

【教学目标】

1.知识与技能:进一步掌握基本不等式;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;

2.过程与方法:通过例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。

3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【教学重点】

掌握基本不等式,会用此不等式证明不等式,会用此不等式求某些函数的最值

【教学难点】

利用此不等式求函数的最大、最小值。

【教学过程】

1.课题导入

1.基本不等式:如果a,b 是正数,那么).""(2

号时取当且仅当==≥+b a ab b a 2.用基本不等式求最大(小)值的步骤。

2.讲授新课

1)利用基本不等式证明不等式

例1 已知m>0,求证。

[思维切入]因为m>0,所以可把和分别看作基本不等式中的a 和b, 直接利用基本不等式。

[证明]因为 m>0,,由基本不等式得

24

6221224m m +≥==?= 当且仅当=,即m=2时,取等号。

规律技巧总结 注意:m>0这一前提条件和=144为定值的前提条件。

3.随堂练习1

[思维拓展1] 已知a,b,c,d 都是正数,求证()()4ab cd ac bd abcd ++≥.

[思维拓展2] 求证22222

()()()a b c d ac bd ++≥+.

例2 求证:.

[思维切入] 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,

而左边

44

(3)3

33

a a

a a

+=+-+

--

.这样变形后,在用基本不等式即可得证.

[证明]

44

3(3)3337 33

a

a a

+=+-+≥== --

当且仅当=a-3即a=5时,等号成立.

规律技巧总结通过加减项的方法配凑成基本不等式的形式.

2)利用不等式求最值

例3 (1) 若x>0,求的最小值;

(2)若x<0,求的最大值.

[思维切入]本题(1)x>0和=36两个前提条件;(2)中x<0,可以用-x>0来转化.

解 1) 因为 x>0 由基本不等式得

9

()412

f x x

x

=+≥==,当且仅当即x=时, 取最小值12.

(2)因为 x<0, 所以 -x>0, 由基本不等式得:

99

()(4)(4)()12

f x x x

x x

-=-+=-+-≥==,

所以 .

当且仅当即x=-时, 取得最大-12.

规律技巧总结利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.随堂练习2

[思维拓展1] 求(x>5)的最小值.

[思维拓展2] 若x>0,y>0,且,求xy的最小值.

4.课时小结

用基本不等式证明不等式和求函数的最大、最小值。

5.评价设计

1.证明:

2.若,则为何值时有最小值,最小值为几?

【板书设计】

2019-2020年高中数学 第三章不等式3.4基本不等式第二课时教案 新人教

A 版必修5

授课类型:新授课

【教学目标】

1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题

2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。

3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【教学重点】

基本不等式的应用

【教学难点】

利用基本不等式求最大值、最小值。

【教学过程】

1.课题导入

1.重要不等式:

如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a

2.基本不等式:如果a,b 是正数,那么).""(2

号时取当且仅当==≥+b a ab b a 3.我们称的算术平均数,称的几何平均数.

ab b a ab b a ≥+≥+2222和

成立的条件是不同的:前者只要求a,b 都是实数,而后者要

求a,b 都是正数。 2.讲授新课

例1(1)用篱笆围成一个面积为100m 的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。由, 可得 , 。等号当且仅当x=y 时成立,此时x=y=10.

因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m.

(2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <,其面积S =x (36-2x )=·2x (36-2x )≤

当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2

解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园的面积为xy m 。

,可得

当且仅当x=y,即x=y=9时,等号成立。

因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m

归纳:1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +

,且a +b =M ,M 为定值,则ab ≤,等号当且仅当a =b 时成立.

2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且ab =P ,P 为定

值,则a +b ≥2,等号当且仅当a =b 时成立.

例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。

解:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得 )1600(720240000x

x l ++= 297600

4027202400001600

2720240000=??+=??+≥x

x 当.2976000,40,1600有最小值时即l x x

x == 因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元

评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。

归纳:用均值不等式解决此类问题时,应按如下步骤进行:

(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;

(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;

(3)在定义域内,求出函数的最大值或最小值;

(4)正确写出答案.

3.随堂练习

1.已知x ≠0,当x 取什么值时,x 2+的值最小?最小值是多少?

2.课本第113页的练习1、2、3、4

4.课时小结

本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题。在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。

5.评价设计

课本第113页习题[A]组的第2、4题【板书设计】

必修五 3.1不等式与不等关系(第一课时)教案

§3.1不等式与不等关系 【教学目标】 1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。 【教学重点】 用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理解不等式(组)对于刻画不等关系的意义和价值。 【教学难点】 用不等式(组)正确表示出不等关系。 【教学过程】 1.课题导入 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不等式来表示不等关系。 下面我们首先来看如何利用不等式来表示不等关系。 2.讲授新课 1)用不等式表示不等关系 引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤ 引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示 2.5%2.3% f p ≤??≥? 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学必修五-不等关系与不等式-教案

第三章不等式 必修5 3.1 不等关系与不等式 一、教学目标 1.通过具体问题情境,让学生感受到现实生活中存在着大量的不等关系; 2.通过了解一些不等式(组)产生的实际背景的前提下,学习不等式的相关内容; 3.理解比较两个实数(代数式)大小的数学思维过程. 二、教学重点: 用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值. 三、教学难点: 使用不等式(组)正确表示出不等关系. 四、教学过程: (一)导入课题 现实世界和生活中,既有相等关系,又存在着大量的不等关系我们知道,两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边,等等.人们还经常用长与短,高与矮,轻与重,大与小,不超过或不少于等来描述某种客观事物在数量上存在的不等关系. 在数学中,我们用不等式来表示这样的不等关系.

提问: 1.“数量”与“数量”之间存在哪几种关系?(大于、等于、小于). 2.现实生活中,人们是如何描述“不等关系”的呢?(用不等式描述) 引入知识点: 1.不等式的定义:用不等号<、>、≤、≥、≠表示不等关系的式子叫不等式. 2.不等式a b ≥的含义. 不等式a b ≥应读作“a 大于或者等于b ”,其含义是指“或者a >b ,或者a =b ”,等价于“a 不小于b ,即若a >b 或a =b 之中有一个正确,则a b ≥正确. 3.实数比较大小的依据与方法. (1)如果a b -是正数,那么a b >;如果a b -等于零,那么a b =;如果a b -是负数,那么a b <.反之也成立,就是(a b ->0?a >b ;a b -=0?a =b ;a b -<0?a

人教A版新课标高中数学必修一教案-《等式性质与不等式性质》

《 等式性质与不等式性质》 1、知识与技能 (1)能用不等式 (组)表示实际问题的不等关系; (2)初步学会作差法比较两实数的大小; (3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法 使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】 能用不等式(组)表示实际问题的不等关系, 会作差法比较两实数的大小 ,通过类比法,掌握不等式的基本性质. 【教学难点】 运用不等式性质解决有关问题. (一)新课导入 用不等式(组)表示不等关系

中国"神舟七号”宇宙飞船飞天取得了最圆满的成功.我们知道,它的飞行速度(v )不小于第一宇宙速度(记作2v ),且小于第二宇宙速度(记 1v ). 12v v v ≤< (二)新课讲授 问题1:你能用不等式或不等式组表示下列问题中的不等关系吗 (1)某路段限速40km /h ; (2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%; (3)三角形两边之和大于第三边、两边之差小于第三边; (4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于(1),设在该路段行驶的汽车的速度为vkm /h ,“限速40km /h ”就是v 的大小不能超过40,于是0<v ≤40. 对于(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%. 2.5%2.3% f p ≥??≥? 对于(3),设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c . 对于(4),如图,设C 是线段AB 外的任意一点,CD 垂直于AB ,垂足 为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE . 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图接着, 就可以用不等式研究相应的问题了 问题2:某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元 解:提价后销售的总收入为错误!x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

高中数学《不等式》选修题型归纳

6.不等式选讲 6.1均值不等式在证明中的应用 1. (1)已知,,,a b R x y R + ∈∈,求证:()2 22x y x y a b a b ++≥+; (2)已知实数,x y 满足:2221x y +=,试利用(1)求 2221 x y +的最小值。 (1)证:()()2222222 222x y bx ay a b x y x y xy x y a b a b ??++=+++≥++=+? ??? ()2 22x y x y a b a b ++≥ +(当且仅当x y a b =时,取等号); (2)解:()2 22222222212121922x y x y x y ++=+≥=+,当且仅当221 3x y ==时,2221x y +的最小值 是9。 考点:均值不等式在证明中的应用、综合法证明不等式 6.2绝对值不等式 6.2.1单绝对值不等式 2. 已知函数254,0 ()22,0 x x x f x x x ?++≤?=?->??若函数()y f x a x =-恰有4个零点,则实数a 的 取值范围为_______. 答案:(1,2)

解析:分别作出函数()y f x =与||y a x =的图像, 由图知,0a <时,函数()y f x =与||y a x =无交点, 0a =时,函数()y f x =与||y a x =有三个交点, 故0.a > 当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点, 当0x >,02a <<时,函数()y f x =与||y a x =有两个交点, 当0x <时,若y ax =-与254,(41)y x x x =----<<-相切, 则由0?=得:1a =或9a =(舍), 因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点, 当0x <,1a =时,函数()y f x =与||y a x =有三个交点, 当0x <,01a <<时,函数()y f x =与||y a x =有四个交点, 所以当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点.

人教课标版高中数学选修4-5:《不等式的基本性质》教案(1)-新版

1.1 课时1 不等式的基本性质 一、教学目标 (一)核心素养 在回顾和复习不等式的过程中,对不等式的基本性质进行系统地归纳整理,并对“不等式有哪些基本性质和如何研究这些基本性质”进行讨论,使学生掌握相应的思想方法,以提高学生对不等式基本性质的认识水平. (二)学习目标 1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础. 2.掌握不等式的基本性质,并能加以证明. 3.会用不等式的基本性质判断不等关系和用比较法. (三)学习重点 应用不等式的基本性质推理判断命题的真假;代数证明. (四)学习难点 灵活应用不等式的基本性质. 二、教学设计 (一)课前设计 1.预习任务 (1)读一读:阅读教材第2页至第4页,填空: a b >? a b =? a b >?> ②a c b c a b +>+?> ③ac bc a b >?> ④33a b a b >?> ⑤22a b a b >?> ⑥,a b c d ac bd >>?> 2.预习自测 (1)当x ∈ ,代数式2(1)x +的值不大于1x +的值. 【知识点】作差比较法 【解题过程】2(1)(1)x x +-+=2(1)x x x x -=- 【思路点拨】熟悉作差比较法 【答案】[0,1]

(2)若c ∈R ,则22ac bc > a b > A.? B.? C.? D.≠ 【知识点】不等式的基本性质 【解题过程】由22ac bc >,得0c ≠,所以20c >;当,0a b c >=时,22ac bc =. 【思路点拨】掌握不等式的基本性质 【答案】A. (3)当实数,a b 满足怎样条件时,由a b >能推出 11a b ,所以当0ab >时,11a b <. 【思路点拨】掌握作差比较法 【答案】当0ab >时, 11a b <. (二)课堂设计 1.问题探究 探究一 结合实例,认识不等式 ●活动① 归纳提炼概念 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的. 【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 认识作差比较法 关于实数,a b 的大小关系,有以下基本事实: 如果a b >,那么a b -是正数;如果a b =,那么a b -等于零;如果a b <,那么a b -是负数.反过来也对. 这个基本事实可以表示为:0;0;0a b a b a b a b a b a b >?->=?-=

高中数学《基本不等式》公开课优秀教学设计

《§3.4.1基本不等式》的教学设计 教材:人教版高中数学必修5第三章 一、教学内容解析 本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。 二、教学目标设置 1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识; 2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。 3.通过例题让学生学会用基本不等式求最大值和最小值。 三、学生学情分析 对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。 四、教学策略分析 在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点 五、教学过程: (一)情景引入 下图是2002年在北京召开的第24届国际数学家大会会议现场。

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

高中数学选修4-5中的著名不等式

选修4-5中的著名不等式 内蒙古赤峰市翁牛特旗乌丹一中熊明军 新课程改革推出了知识模块,把高等数学中一些领域的知识进行了简化,下放到高中。选修4-5中给出了许多著名不等式的特例,下面对课本上的这些不等式及其一般形式做一下介绍。 绝对值的三角不等式(): 定理:若为实数,则,当且仅当时,等号成立。 绝对值的三角不等式一般形式: ,简记为。 柯西不等式() 定理:(向量形式)设为平面上的两个向量,则。 当及为非零向量时,等号成立及共线存在实数,使。 当或为零向量时,规定零向量与任何向量平行,即当时,上式依然成立。 定理:(代数形式)设均为实数,则,当且仅当时,等号成立。 柯西不等式的一般形式() 定理:设为实数,则

,当且仅当时,等号成立(当某时,认为)。 闵可夫斯基不等式() 定理:设均为实数,则,当且仅当存在非负实数(不同时为0),使时,等号成立。 闵可夫斯基不等式的一般形式: 定理:设是两组正数,,则 或,当且仅当时,等号成立。 排序不等式() 定理:设为两组实数为 的任一排列,则有。 当且仅当或时,等号成立。 排序原理可简记作:反序和乱序和顺序和。 切比晓夫不等式():

定理:设为任意两组实数, ①如果或,则有 ②如果或,则有 ①②两式,当且仅当或时,等号成立。 平均值不等式() 定理:设为个正数,则,当且仅当 时,等号成立。 当时,,当且仅当时,等号成立。 加权平均不等式() 定理:设为正数,都是正有理数,并且,那么。 杨格不等式():

定理:设为有理数,满足条件(互称为共轭指标),为正数,则。 当时,,此时的杨格不等式就是熟知的基本不等式。 贝努利不等式(): 定理:设,且,为大于1的自然数,则。 贝努利不等式的一般形式: (1)设,且同号,则; (2)设,则①当时,有;②当或时,有 ,①②当且仅当时等号,成立。

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

高一数学必修一均值不等式题型归纳

均值不等式题型归纳 一、拼凑求最值 1.函数y =x ·(3-2x ) (0≤x ≤1)的最大值为______________. 2.已知x ≥52,则f (x )=x 2-4x +52x -4 有( ) A .最大值54 B .最小值54 C .最大值1 D .最小值1 3.当x >1时,不等式x +1x -1 ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 二、“1”的代换 1.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245 B .285 C .5 D .6 三、实际应用 1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓 储时间为x 8 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件 2.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为__________元. 3.一批救灾物资随17列火车以v km/h 的速度匀速直达400km 以外的灾区,为了安全起见, 两列火车的间距不得小于(v 20 )2km ,则这批物资全部运送到灾区最少需__________h. 4.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积S 的取值范围是多少? (2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?

高中数学选修-不等式选讲p

不 等 式 选 讲1 1.若,a b 是任意的实数,且a b >,则( ) (A)22b a > (B)1 (D)b a )21()2 1(< 2.不等式32 ->x 的解集是( ) (A) )32,(--∞ (B) )32,(--∞),0(+∞ (C) )0,32(-),0(+∞ (D) ) 0,32(- 3.不等式 125 x x -++≥的解集为( ) (A) (][)+∞-∞-,22, (B) (][)+∞-∞-,21, (C) (][)+∞-∞-,32, (D) (][)+∞-∞-,23, 4.若0n >,则232 n n + 的最小值为 ( ) (A) 2 (B) 4 (C) 6 (D) 8 5.若A=(3)(7)x x ++,B=(4)(6)x x ++,则A ,B 的大小关系为__________. 6.设a ,b ,c 是不全相等的正数,求证: 1)()()()8a b b c c a abc +++>; 2)a b c ab bc ca ++>++. 7..已知x ,y R ∈,求证222x y +≥2 () 2x y + 8.如图1,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折 转作成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大? 9.已知a ,b ,0c >,且不全相等,求证 222222()()()6a b c b a c c a b abc +++++>. 10. 已知1a ,2a ,…,+∈R a n ,且121=n a a a ,求证n n a a a 2)1()1)(1(21≥+++ . B 组 11.已知x ,0>y ,且2>+y x .试证:y x +1,x y +1中至少有一个小于 2. 12.求函数 x x y 21015-+-=的最大值.

相关文档
最新文档