新型陶瓷材料在汽车中的应用

新型陶瓷材料在汽车中的应用
新型陶瓷材料在汽车中的应用

湖北汽车工业学院

本科生课程论文

论文题目新型陶瓷材料在汽车中的应用及未来发展学生专业班级材料成型及控制工程(汽车产业)T1233-5

学生姓名(学号)朱宝林(2012030526)

指导教师(职称)王天国

完成时间2014-11-5

2014 年11月05 日

目录

前言 (3)

第一章汽车发动机中的陶瓷材料 (4)

1.1 陶瓷汽车发动机 (4)

1.2 活塞顶用陶瓷结构 (5)

1.3 涡轮增压器陶瓷材料 (6)

第二章陶瓷纤维在发动机零件上的应用 (6)

第三章陶瓷材料在发动机其它部件的应用 (7)

第四章新型陶瓷材料未来的发展及在汽车上的应用·7

前言

关于新型陶瓷材料:

新型陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸

性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。

摘要:随着科学技术飞速发展,现代汽车制造业将更多特种陶瓷、智能陶瓷制品引入,采用到汽车上,并且伴随着更多的新型结构材料的引入,在汽车零部件加工制造技术上也带来了一场新的革命,在此主要介绍一些新型的陶瓷材料在现在及未来的汽车行业的使用情况及以后可能应用的发展前景。

目前应用于汽车上的陶瓷材料主要有:氧化硅陶瓷,碳化硅陶瓷,氮化硅陶瓷,氧化铝陶瓷这几种。

关键词:陶瓷材料、发动机、汽车、应用

第一章汽车发动机中的陶瓷材料

1·1 陶瓷汽车发动机

新型陶瓷是碳化硅和氮化硅等无机非金属烧结而成。与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。

同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。

由于陶瓷材料具有优良的耐热性、耐磨性、隔热性及重量轻优点,故使用陶瓷材料替代金属制备热机部件的技术受到了世界各国的高度重视。目前,发动机的主要零部件,如活塞、气缸盖、气门、排气管、涡轮烟压器、氧传感器及火花塞等都用先进的陶瓷材料来制造,并研制出了无水冷的绝热陶瓷发动机。另外为了防止汽车废气对大气环境的影响,各国都采用了的措施,制订了严格的排放标准,这些都促进了汽车工业用新技术的开发以及新材料的研多,特别是在发动机用先进陶瓷瓷材料方面取大了软大的进展,并在近年来的技术创新中发挥着更重的作用。

陶瓷发动机的优越性为:

·可以提高发动机的工作温度,从而大大提高效率。例如,目前作为发动机制造材料的镍基耐热合金,工作温度在1000℃左右。而采用陶瓷材料,则可以将工作温度提高到1300℃,使发动机效率提高30%左右。

·工作温度高,可使燃料燃烧充分,所排废气中的有害成分大为降低,这不仅降低了能源消耗,而且减少了环境污染。

·陶瓷的热传导性比金属低,这使发动机的热量不易散发,节省能源。

·陶瓷具有较高的高温强度和热传导性,可延长发动机的使用寿命。

1·2 活塞顶用陶瓷结构

在发动机中,活塞顶的工作环境非常苛刻,处于温度急变与应力急变的状态之中。在载货汽车用的直喷式发动机中,燃烧室位于活塞顶部呈对称涡流型。这种设计因其获得急速对称旋转的气流而使油粒与空气混合充分以达到完全燃烧。通常,燃烧室边缘的温度梯度最大,易产生热裂纹。值得注意的是,传统的活塞顶材料是铝合金,它可能受到450`C以上的高温作用。然而,铝合金的耐热性能较差,高温时可能导致活塞环与槽沟胶结。为此,活塞顶的内表面配置了复杂的油冷系统。现在,带有陶瓷顶的复合活塞是一种有效的解决方式。在这种设计中,陶瓷顶在活塞溶铸时嵌人或由螺钉固定在其裙套上。由于陶瓷材料的耐高温性和隔热性,就在顶部形成一层保护层,而且可使局部温度升高,更利于汽油的混合与燃烧。

近年来,氮化硅材料(合成方法:主要有硅粉直接氮化法、二氧化硅还原法和氯化硅法,保存方法:常温密闭,阴凉通风干燥处,用途:1.氮化硅粉末作为工程陶瓷材料,在工业上有广泛用途。主要用于超高温燃气透平,飞机引擎,透平叶片,热交换器,电炉等。也可作耐热涂层,用于火箭和原子能反应堆。2.用于绝缘材料、机械耐磨材料、热机材料、切削工具、高级耐火材料及抗腐蚀、耐磨损密封部件等。氮化硅陶瓷可做燃气轮机的燃烧室、机械密封环、输送铝液的电磁泵的管道及阀门、永久性模具、钢水分离环等。氮化硅摩擦系数小,用于高温轴承,其工作温度可达1200℃,比普通合金轴承的工作温度提高2.5倍,而工作速度是普通轴承的10倍。利用氮化硅陶瓷很好的电绝缘性和耐急冷急热性可以用来做电热塞,用它进行汽车点火可使发动机起动时间大大缩短,并能在寒冷天气迅速起动汽车。氮化硅陶瓷还有良好的透微波性能、介电性以及高温强度,作为导弹和飞机的雷达天线罩。3.用作精细陶瓷烧结原料,耐腐蚀、耐磨、研磨原材料。)在工程中的应用日益广泛。由于它具有好的高温力学性能以及抗热震、抗氧化、耐磨损性能,因此是一种较理想的陶瓷发动机活塞顶材料。

1·3 涡轮增压器陶瓷材料

涡轮增压器是通过动力涡轮对高温排气热能回收使之转化为机械能的发动机组合元件。为了耐受高温尾气的冲击,涡轮通常由一种叫“尼孟镍克”(铬、镍耐热合金)的特殊介金材料制成的。而现在的陶瓷材料不仅有较高的抗热应力性能,而且可以减轻零件

的重量,这在涡轮增压器上意味着有更快的响应特性和更高的效率。德国大众汽车公司已开发出带SiC转子的涡轮增压器,并将装有这种新型陶瓷增压器的气车进行了60小时连续运转试验。测试时,增压界的最高转速为110000r/min,此时涡轮机温度可达1200℃,在加速测试时,该涡轮的响应比金属涡轮快20%左右。

第二章陶瓷纤维在发动机零件上的应用

在发动机连结件中,陶瓷纤维对其强度提高方面有越来越广泛的应用。有种名为

“FP”的A1

20

3

纤维,主要是用来增强汽车发动机的超轻连杆。这项新技术将为陶瓷纤

维在发动机零部件的应用开拓出广阔的前景。这种陶瓷纤维的氧化铝含量为99%,主要有以下优点:

·高硬度 ;

·优良的抗热应力性能;

·高抗拉强度;

·重量轻。

与传统的钢质连杆相比,这种由Al

2O

3

纤维增强的铝质连杆在具有相同尺寸参数的

情况,重量减轻约35%,这可减小连杆——活塞系统的惯性,从而降低由此造成的机械能损失。由30%——35%的“FP”纤维增强的铝质和镁质材料,其硬度和抗疲劳性能分别提高到原来的4倍和5倍。目前,这种铝质增强杆已经在丰田车上得到了使用。

第三章陶瓷材料在发动机其它部件的应用

目前,正在生产和测试的陶瓷发动机部件还有钦酸铝质气缸盖,Si

3N

4

陶瓷预热室、

PSZ气缸套、陶瓷气门座及Si

3N

4

陶瓷轴承等。另外,在发动机活动件上采用等离子喷涂

方法涂覆陶瓷材料对于减小活动件的磨擦,延长零件的使用寿命效果十分显著。无水冷绝热陶瓷发动机利用了陶瓷材料的耐高温、强度高、隔热性好的特点,并采用陶瓷或陶瓷涂层对燃烧室零部件隔热,从而大大减少了由气缸盖、气缸套传出的热量,去除了气缸套、气缸盖中的冷却水,进而取消了发动机独立的冷却水系统。与传统的发动机相比,具有以下优点:【9】

·由燃烧室温度升高,燃烧条件改善,故可燃用多种料;

·取消冷却水系统,减少了冷却水带走的热量,使发动机热效率得到了提高;

·使发动机结构简化,减少了发动机出现的故障率;

·使发动机能适应高寒、沙漠、缺水等环境及特种场合的需要

·此外,此发动机还可以配装涡轮增压器来回收利用排气带走的热量,从而进一步提高发动机的热效率。

无水冷绝热陶瓷发动机虽已试车成功,但要在实际中推广使用,还有许多问题要解决。例如,提高陶瓷零部件的可靠性,降低成本以改善其经济性等。随着陶瓷零部件设计开发的不断进展,可以预见,陶瓷发动机成为产品是完全有希望的。

第四章新型陶瓷材料未来在汽车上的应用

在各种新材料中, 新型陶瓷是近年来发展很快的一种, 其中功能陶瓷, 特别

是电子功能陶瓷的发展速度快于结构陶瓷。目前研究与开发的重点已出现向结构陶瓷和复合陶瓷逐步转移的趋势, 预测以后, 这种转移将有明显增强。21 世纪将是一个以各种复合材料为主的时代。当前的研究工作主要是为下世纪的技术突破作准备。无论是氧化物陶瓷, 还是非氧化物陶瓷一, 都存在向小型化、薄膜化、集体化、高功能、多功能发展的趋势。有逐步重视关键基础技术研究的倾向,目的是实现陶瓷材料性能测试与评价技术的实用化。在材料体系中, 成分全新的新品种不多, 绝大多数是通过改换元素、添加元素和改善工艺等途径来实现性能的最佳化。因此, 技术方面的更新不断出现。由于陶瓷的制造需要系列专门技术, 各道生产工序都影响材料的最终性能, 因此近几年国外公司有实行从原料准备到成品加工一体化生产的倾向陶瓷材料发展日

新月异,并且在各个行业及领域都展现出了很好的发展前景。未来还将会有氧化锂陶瓷,滑石陶瓷,氧化钍陶瓷,钛酸钡陶瓷,硼化物、氮化物、硅化物等金属陶瓷,铁氧体陶瓷,稀土钴瓷等更多的新型特种陶瓷材料应用到汽车的制造与加工上。相信在汽车材料与加工行业中,新型陶瓷材料也会大放异彩,在其中发挥重要作用。

参考文献:

1、张南林等6105陶瓷无水冷发动机的研制.发动机用先进陶瓷,科学出版社]1993

2、张连方等我国研制的陶瓷绝热涡轮复合式发动机发动机用先进陶瓷,科学出

版社1993

3、唐绍裘.传感器与敏感陶瓷元器件的发展概况.陶瓷19 93 .2 8一33

4、王零森编特种陶瓷.中南工业大学出版社,1994

5、邻风英等无水冷机用氮化硅陶瓷活塞顶材料研究及部件制备发动机用先进陶瓷

科学出版社,(1993)

6、张伟儒等6105机氮化硅陶瓷气门材料及其部件制备的研究.现代技术陶

瓷,1997,4,3一6

7、SWARTZ S L.SHROUT TR,TAKENAKAT, Electronic ceramics R&D in the US and

Japan[J].Parr I:Japanese View Am Ceram Soc Bull,1997,76(8):51~55

8、Masahiko Miyaki, Hideya Fujisawa, Akira Masuda,Yoshihisa Yamamoto. Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engines. SAE paper 910252

9、Jan Cxsmits,,Susan I. Dalke and Thomas Cooney [J].The constituent equations of Piezoelectric bimorphs. 2000 14(28): 41-61

课程论文成绩评定表

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

新型陶瓷原料介绍

新型陶瓷原料介绍 1、氧化物原料 a、氧化铝:它是新型陶瓷制品中使用最为广泛的原料之一,具有一系列优良性能。此外,它也是高温耐火材料、磨料、磨具、激光材料及氧化铝宝石等的重要原料。 b、氧化锆:它是高温结构陶瓷、电子陶瓷和耐火材料的重要原料。 c、二氧化钛:它是制造电容器陶瓷、热敏陶瓷和压电陶瓷等制品的重要原料。 d、氧化铍:它是高导热性新型陶瓷的重要原料。 e、三氧化二铁:它是强磁性材料的重要原料。 f、二氧化锡:广泛用于电子陶瓷中。 g、氧化锌:它可以使陶瓷材料的机械和电性能得到改善。 h、氧化镍:应用于热敏陶瓷中。 i、氧化铅:在新型陶瓷中主要用作合成PbTiO3、Pb(Zr、Ti)O3以及Pb(Mg1/3、Nb2/3)O3的主要原料。 j、五氧化二铌:在电子陶瓷工业中它用途很广,如用作制造铌镁酸铅低温烧结独石电容器,铌酸锂单晶等的主要原料,同时还可作为改性添加剂。 k、锰的氧化物:如制作湿度传感器、过热保护器等。 l、氧化铬:用作气敏元件、气体警报器的配料中。 m、氧化钴:应用于聚光材料等方面。 2、复合氧化物原料 a、钛酸盐:主要有BaTiO3、SrTiO3、CaTiO3、MgTiO3和PbTiO3等。BaTiO3是压电、铁电陶瓷的重要原料。 b、锆酸盐:主要有BaZrO3和SrZrO3等。应用于磁芯、振荡器等。 c、锡酸盐:主要有BaSnO3、CaSnO3、InSnO3、CaSnO3、NiSnO3和PbSnO3,如CaSnO3用作于电容器中。 d、铌酸盐:主要有LiNbO3和KnbO3。 e、锑酸盐:主要有BaSb2O6、PbSb2O6和MgSb2O6等。 f、铝酸盐:主要有MgAl2O4。 g、铝硅酸盐:主要有3Al2O3o2SiO2。 3、稀土氧化物原料,如:Yb2O3、Tu2O3、Nd2O3、Ce2O3、La2O3等。

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

新型陶瓷材料在汽车中的应用

湖北汽车工业学院 本科生课程论文 论文题目新型陶瓷材料在汽车中的应用及未来发展学生专业班级材料成型及控制工程(汽车产业)T1233-5 学生姓名(学号)朱宝林(2012030526) 指导教师(职称)王天国 完成时间2014-11-5 2014 年11月05 日

目录 前言 (3) 第一章汽车发动机中的陶瓷材料 (4) 1.1 陶瓷汽车发动机 (4) 1.2 活塞顶用陶瓷结构 (5) 1.3 涡轮增压器陶瓷材料 (6) 第二章陶瓷纤维在发动机零件上的应用 (6) 第三章陶瓷材料在发动机其它部件的应用 (7) 第四章新型陶瓷材料未来的发展及在汽车上的应用·7

前言 关于新型陶瓷材料: 新型陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸 性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。 摘要:随着科学技术飞速发展,现代汽车制造业将更多特种陶瓷、智能陶瓷制品引入,采用到汽车上,并且伴随着更多的新型结构材料的引入,在汽车零部件加工制造技术上也带来了一场新的革命,在此主要介绍一些新型的陶瓷材料在现在及未来的汽车行业的使用情况及以后可能应用的发展前景。 目前应用于汽车上的陶瓷材料主要有:氧化硅陶瓷,碳化硅陶瓷,氮化硅陶瓷,氧化铝陶瓷这几种。 关键词:陶瓷材料、发动机、汽车、应用

第一章汽车发动机中的陶瓷材料 1·1 陶瓷汽车发动机 新型陶瓷是碳化硅和氮化硅等无机非金属烧结而成。与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。 同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。 由于陶瓷材料具有优良的耐热性、耐磨性、隔热性及重量轻优点,故使用陶瓷材料替代金属制备热机部件的技术受到了世界各国的高度重视。目前,发动机的主要零部件,如活塞、气缸盖、气门、排气管、涡轮烟压器、氧传感器及火花塞等都用先进的陶瓷材料来制造,并研制出了无水冷的绝热陶瓷发动机。另外为了防止汽车废气对大气环境的影响,各国都采用了的措施,制订了严格的排放标准,这些都促进了汽车工业用新技术的开发以及新材料的研多,特别是在发动机用先进陶瓷瓷材料方面取大了软大的进展,并在近年来的技术创新中发挥着更重的作用。 陶瓷发动机的优越性为: ·可以提高发动机的工作温度,从而大大提高效率。例如,目前作为发动机制造材料的镍基耐热合金,工作温度在1000℃左右。而采用陶瓷材料,则可以将工作温度提高到1300℃,使发动机效率提高30%左右。 ·工作温度高,可使燃料燃烧充分,所排废气中的有害成分大为降低,这不仅降低了能源消耗,而且减少了环境污染。

日用陶瓷材料的应用及其发展

日用陶瓷材料的应用与发展 法学092 刘婷09437105 陶瓷材料是人类应用时间最早,并且应用领域最广的材料之一。它是一种天然或人工合成的粉状合成物,经过成型或高温烧结,由金属元素和非金属的无机化合物构成的固体材料。 陶瓷具有耐高温、耐腐蚀、耐磨损、原料丰富、成本低廉等诸多优点。现在,最受关注的三大固体材料是金属材料、高分子材料,以及陶瓷材料。按照其用途的不同,通常可将陶瓷材料分为工业、艺术和日用陶瓷三大类。其中工业陶瓷是指应用于各种工业的陶瓷制品,包括建筑陶瓷、化工陶瓷、电子陶瓷和特种陶瓷几大类;艺术陶瓷主要指花瓶、雕塑等以陈列欣赏和美化环境为主要作用的陶瓷;而日用陶瓷主要是指如餐具、茶具、洁具等日常生活中应用的陶瓷制品。本文主要研究日用陶瓷的应用形式及其发展趋势。 陶瓷材料与其他材料 相对而言,金属材料具有良好的延展性和可塑性,具有良好的热传导性,可是其耐温性和耐腐蚀性较差。高分子材料具有耐腐蚀性和可加工性,色彩丰富,但是其机械强度,耐高温性和耐磨性较差。陶瓷具有高硬度、耐磨、耐酸、耐碱、耐热、耐冷等优越的性能,肌理富于变化,色彩丰富而且不褪色,造型可塑性强,在丰富人们的物质和精神生活,美化环境,以及提升生活品质等方面可达到作用,是其他材料不可替代的。陶瓷致命的缺点在于高脆性和韧性差,这是材料结构所决定的。在室温下,陶瓷材料分子结构几乎不会产生滑移和位错运动,材料处于受力状态时无法通过塑性变形来松弛应力[2]。但是随着生产技术的发展和陶瓷新品种的开发,必然可在其原有基础上逐步改善其容易碎裂的不足,满足相应的产品设计要求。 现在,金属材料和高分子材料越来越多的应用于餐具,容器等日用产品,走

陶瓷材料的分类应用及其发展前景

陶瓷材料的分类应用及其发展前景 摘要:根据陶瓷的不同结构性质对陶瓷产品进行分类,并分别对其用途进行阐述,通过对各种类型的陶瓷性能和在不同领域内的应用的总结,来对陶瓷产业的未来发展进行展望。关键词:陶瓷材料分类性能应用发展前景 前言: 陶瓷作为如今生活中应用越来越广泛和频繁的材料,其种类和应用方向也被越来越明细的分类。而且其发展方向和前景也越来越受到重视。在这篇论文中我将通过借鉴一下查阅的资料等发表一下自己对这方面还不太成熟的看法,希望我对这方面的总结能对阅读这篇论文的人有些意义。 首先我们可以按不同的分类标准将陶瓷产品进行分类; 普通陶瓷: 建筑陶瓷: 包括有瓷质砖、锦砖、细炻砖、仿石砖、彩釉砖、劈离砖和釉面砖等。产品具有良好的耐久性和抗腐蚀性,其花色品种及规格繁多(边长在5cm~100cm间),主要用作建筑物内、外墙和室内、外地面的装饰。 卫生陶瓷及卫浴产品: 包括有洗面器、便器、淋浴器、洗涤器、水槽等。该类产品的耐污性、热稳定性和抗腐蚀性良好,具有多种形状、颜色及规格,且配套齐全,主要用作卫生间、厨房、实验室等处的卫生设施。除此之外,还有搪瓷浴缸、压克力浴缸、浴室等卫浴产品。 美术陶瓷: 包括有陶塑人物、陶塑动物、微塑、器皿等。产品造型生动、传神,具有较高的艺术价值,款式及规格繁多。主要用作室内艺术陈设及装饰,并为许多收藏家所珍藏。 园林陶瓷: 包括有中式、西式琉璃制品及花盆等。产品具有良好的耐久性和艺术性,并有多种形状、颜色及规格,特别是中式琉璃的瓦件、脊件、饰件配套齐全,用作园林式建筑的装饰。 日用陶瓷: 包括有细炻餐具、陶质砂锅。产品热稳定性好,基本没有铅、镉溶出,具有多种款式及规格,主要作餐饮、烹饪用具。 陶瓷机械: 包括有球磨机、喷雾干燥塔、压砖机、辊道窑等建筑陶瓷生产用成套设备。 电工陶瓷: 绝缘器件等。 化工陶瓷: 试验器皿、耐热容器、管道、设备等。 特种陶瓷: 氧化物陶瓷: 氧化物陶瓷种类繁多,在陶瓷家族中占有非常重要的地位。最常用的氧化物陶瓷是用

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

新型透明陶瓷材料研发成功填补我国空白

一种“晶莹剔透、性能优异”的新型透明陶瓷材料生产的产品上月底在河南洛阳研制成功。新型透明陶瓷材料的研制和成功应用,使我国在透明陶瓷材料领域大大缩短了与国外先进水平的差距,填补了我国特种材料领域的空 新型透明陶瓷材料研发成功填补我国空白 11月14日,由联合国开发计划署、联合国工业发展组织等国际组织与中国国际跨国公司研究会联合主办的中外跨国公司CEO圆桌会议在北京召开,来自山东淄博的统一防静电陶瓷在大会展出,这一曾经为神舟七号发射成功做出重要贡献的高新科技陶瓷一经亮相,立即在北京媒体界引发轰动效应,受到各大报社新闻记者关注。防静电陶瓷技术缔造者袁国梁先生一入场即被众多媒体记者“团团包围”,袁国梁先生在会展上向国内外专家、媒体记者、参会观众展示并详细讲解了这一高新科技防静电瓷砖,在采访中,袁国梁先生表示防静电瓷砖有望在未来几年内进入普通家庭,为百姓造福。 防静电陶瓷是一种高新科技陶瓷,具有永久、稳定的防静电性能,耐磨,耐腐蚀,耐高温达1200摄氏度导电性不变、防渗透。多年来,防静电陶瓷一直是欧美发达国家科学家的研究重点。经过山东淄博统一陶瓷集团两年多的潜心研究,2007年,这一世界性技术难题在我国取得突破性进展。经过我国自主研发成功的防静电瓷砖一经问世,就以其高标准的综合性功能引发陶瓷科技界的轰动,并迅速取代了传统PVC等其他材料防静电地板,进入神舟七号载人航天飞船控制装配中心,为我国航天航空事业做出了重要贡献,防静电陶瓷因此被誉为“太空”陶瓷。目前,该陶瓷广泛应用于高精尖技术研发场所,并逐渐由航天航空、国防军事等行业向高新电子行业、医疗医药行业、石油化工行业以及普通的科技办公大楼和高端写字楼扩散,应用范围不断扩大,引起了国内外一些高端地产企业和高新科技企业家们的关注。 不久前,中国电子仪器行业协会防静电装备分会的孙延林秘书长曾撰文指出,随着工业发展和人们生活的不断提高,静电对人们的不良影响和危害日益显著。静电在工业方面,尤其是计算机、通信、集成电路等高精尖技术行 神七防静电陶瓷亮相北京 业,经常引发种种生产事故,在美国机场电路大规模发展的初期,每年因静电造成电子工业直接经济损失达一百多亿美元,在人们日常生活中,静电也会产生诸多不良影响甚至危害,比如,医院重症监护室和安装心电起搏器的病人必须要注意到防静电,国外曾经发生过多起因静电放电引发心电起搏器误动作使心脏病人丧生的实例;在医院、医药生产车间、家居环境产生静电时,会大量吸附空气尘埃,使医院,家居环境的墙壁、办公用具很快变脏,环境空气质量变坏,洁净度降低,在医药生产车间洁净度降低的时,药品合格率就会大幅降低;据统计,家用微电子产品和高端精密家电使用中出现故障总数的65%以上是静电放电和静电感应引起的。 当代全球经济化的高科技活动和商务活动以及家庭活动时时刻刻体现在现代通讯、微电子技术、信息技术,使电磁波充斥了地球空间,人造化学品(绝缘材料)遍布我们的衣食住行,这种环境使人体与大地逐渐隔离,使现代都市人非常容易产生和积累过多的静电,破坏了人体的电能平衡和生理平衡,对健康造成了危害。静电在家居环境、家用电器方面产生的问题以及对人体的危害和影响在西方很早就受到注意,西方国家也纷纷开发出种种防静电产品,在我国,由于种种客观因素制约,只有高新科研场所采取了严密的防静电措施,防静电类产品并未真正走入寻常百姓的家庭之中。 受邀参加中外跨国公司CEO圆桌会议并作主题演讲的统一陶瓷董事长袁国梁先生在采访中告诉记者,目前这一新兴陶瓷产品还主要应用在高新科研场所、电讯大楼以及其他一些对防静电要求较高的场所和高档住宅区,但随着“绿色、健康、环保”观念的一步步深入,我国地产界也在提倡“生态家居”、“绿色家居”,无毒无污染的绿色健康住房和家居健康越来越成为购房者和媒体界关注的焦点问题,人们对静电放电对家居环境和人体产生的危害认识的不断加深,防静电陶瓷也在逐渐走向大众,不久的将来,防静电地板瓷砖这一高新科技产品将会走入寻常百姓 家庭,为广大百姓服务。 87 信息集锦

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷,而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展,各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各行各业。 3.1应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作航天发动机

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

新型陶瓷的应用

新型陶瓷的应用 【摘要】与采用黏土及其他天然矿物为主要原料制成的传统陶瓷不同的是,新型陶瓷以精致的高纯天然无机物或人工合成的高纯度无机化合物为原料,采用精密控制的加工工艺烧结而成。其形式多样,品种繁多,原料扩大到几乎整个无机非金属材料。严格要求的原料和精湛的制造技术使新型陶瓷拥有许多优越性能,其作为一种应用非常广泛的高科技新型材料是许多新兴科学技术的先导。 【关键词】:新型陶瓷;优越性能;应用广泛 新型陶瓷具有耐高温、耐腐蚀、高强度、高硬度的优越性能,应用非常广泛,大到航空航天、核反应,小到生产生活中的刀具,大大促进了人类社会的发展。 一、新型陶瓷刀具 作为切削加工用的刀具材料,必须满足以下的要求:1、硬度大(常温、高温)2、韧性好3、耐热性好4、热传导性好5、化学稳定性好6、不与被切削材料粘结7、容易制作成刀具。陶瓷材料要达成以上的条件,是经历了一段很长的研究过程的[1]。陶瓷刀具根据基底材料的不同可分为Al2O3基陶瓷刀具、Si3N4基陶瓷刀具和金属陶瓷刀具。 最早进入使用的是Al2O3基的陶瓷刀具,这种刀具硬度大、耐高温性能好,并且容易烧结致密化而最早被注目并得到小规模试用。然而,这种陶瓷性脆,容易崩刀缺刃,一般只能用于机械冲击小的精密加工。由于无法达到生产对刀具的韧性要求,Al2O3基的陶瓷刀具渐渐退出了历史舞台[2]。 Si3N4基陶瓷刀具又可分为单一Si3N4基陶瓷刀具、复合Si3N4基陶瓷刀具、Sialon陶瓷刀具和Si3N4晶须增韧陶瓷刀具。它们均以Si3N4为基底材料,且抗氧化能力、化学稳定性、抗蠕变能力、耐磨性、耐热性、抗塑性变形能力依次变强。以Si3N4为基底材料的陶瓷刀具有自润滑性能,其摩擦行书较小,抗粘结能力强,且切削刃可磨得很锋利,能加工出良好的表面质量,特别适合于车削易形成积屑瘤的工件材料,如铸造硅铝合金等[3,4]。 金属陶瓷又可分为Ti(C,N)基金属陶瓷刀具、涂层金属陶瓷刀具和纳米TiN改性的TiC 基金属陶瓷刀具。金属陶瓷硬度高,强度低,韧性低,因此不宜在有强烈冲击和振动的情况下使用,但是金属陶瓷的导热性、耐热性、抗粘结性和化学稳定性比高速钢好得多,因此,在刀具材料中获得了广泛使用[5]。 随着现代纳米技术的发展,有望制造出纳米陶瓷刀具,使之能更好的用于生活生产中。 二、汽车零部件 从最初开始采用陶瓷材料制作汽车用的绝缘装置到生产火花塞的绝缘子,再扩展到净化排气的氧传感器等,越来越多的新型陶瓷被应用到汽车零部件中。近年来,采用了高灵敏度陶瓷元件的汽车减震装置越来越受到人们的青睐。这种汽车减震装置具有识别路面且能做自我调节的功能,在20S内即可完成汽车行驶中的感知与调节过程。且在粗糙路面上,能将振动减至最低,使乘坐者有舒适的乘车体验。智能陶瓷雨刷也被应用于汽车中,它能自动感知雨量,并能将汽车挡风玻璃上的雨刷自动调节到最佳速度。氧化锆陶瓷质氧传感器被应用于汽车的净化排气装置中,它可准确测定排气中的CO2浓度,然后将该测定值反馈给发动机其及燃料供给系统,以促进内燃机的燃烧经常保持在充分燃烧状态,从而达到显著的节能效果[6]。新型陶瓷金属润滑技术也被应用到了汽车生产中。采用高分子技术,将该技术加入到润滑油中,形成的厚度不足1um的陶瓷金属膜,彻底改变了传统润滑机理,使金属摩擦系数大幅度降低。该新型陶瓷金属润滑油还可提高燃油节油率,降低CO等汽车尾气的排放量,增加动力输出,并且明显降低汽车噪声[7]。

浅谈新型陶瓷材料

浅谈新型陶瓷材料 ------由陶瓷谈谈我对学科的认识提及陶瓷,大家并不陌生。日常生活中,我们接触的有餐具,卫生陶瓷,装饰瓷砖等等,陶瓷遍布我们生活中的各个领域。最让我们叹为观止的也许是素有“瓷都”之称的景德镇生产出的陶瓷制品,它以“白如玉,明如镜,薄如纸,声如罄”的独特风格蜚声海内外。在中国,制陶技艺的产生可追溯到纪元前4500年至前2500年的时代,可以说,中华民族发展史中的一个重要组成部分是陶瓷发展史,它体现了中国人在科学技术上的成果以及对美的追求与塑造。陶瓷凭借它完美的塑造与所蕴含的科技重量让更多的人去追寻,同时也深深地吸引了我。 早期,陶瓷是陶器与瓷器的总称。陶瓷是以无机非金属天然矿物或化工产品为原料、经原料处理、成型、干燥、烧成等工具制成的产品。也许,没有接触这门学科之前,我对于陶瓷并不了解多少,由一块简单的瓷砖更不能联想到它有其它什么样的性能特点。通过材料概论这门课,也因为为准备这篇论文看了一些关于陶瓷方面的书籍,让我在这方面的知识有了一些拓展与对陶瓷更深入的了解。 陶瓷在我们生活中的广泛应用正因为它具有很多优良的性能。力学性能方面,陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。热性能方面,陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低

于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。电性能也是陶瓷很重要的一个性能,电子陶瓷是现代陶瓷的重要组成部分。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种绝缘器件。少数陶瓷还具有半导体的特性,可作整流器。陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。同时,陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 了解了陶瓷的基本性能后,我们看到了它独特的优越性,但也有它的缺点,如脆性。这就需要对陶瓷材料进行研究分析,如合理利用晶界特性是改善材料的重要手段。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。 新型陶瓷材料具有远胜过以往陶瓷独特性能的优异特性,从最根本的原料方面来说,它突破了传统陶瓷以天然的岩石、矿物、粘土等材料做主要原料的界限,而新型陶瓷则采用人工合成的高纯度无机化合物为原料。因此新型陶瓷的生产不再受地域性的限制,而在普通陶瓷中,如景德镇的高岭土在国际陶瓷界都具有影响,高岭土是陶瓷工业最重要的原材料,景德镇产的高岭土品质非常好,用它生产出来的景德镇瓷器,曾经代表着中国陶瓷制品的高端水平和上等品质。可见,新型陶瓷在原料的需求方面不再具有如此明显的地域性。同时,新型

现代工业上陶瓷材料的应用与发展

现代工业上陶瓷材料的应用与发展 摘要:阐述陶瓷材料的结构相、分类和陶瓷基复合材料的特性,以及陶瓷材料 在车辆上的应用。简要介绍手机电池中正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)和它们所起的不同作用。 关键词:传统陶瓷新型陶瓷传感器 PTC热敏电阻 NTC热敏电阻特性应用 引言:本文主要介绍陶瓷材料在汽车和手机这两个在当今社会中最具代表性的 工业中的应用与发展。陶瓷是古老而又新型的材料,它是用天然或人工合成的无机粉状物料,经过成型和高温烧结而制成的一种多相固体材料。利用天然硅酸盐矿物(如粘土、长石、石英等)为原料制成的陶瓷叫普通陶瓷,也叫传统陶瓷。这类陶瓷原料来源广,成本低,用量大。天然原料中的杂质对陶瓷的性能不利,人们用纯度高的人工合成原料(如氧化物、氮化物、碳化物、硅化物、硼化物、氟化物等),用传统陶瓷工艺方法制造的新型陶瓷,也叫现代陶瓷或特种陶瓷。新型陶瓷材料在现代工业的许多方面都已经发挥了巨大作用,现代工业应用多属精细陶瓷。比如在汽车上很早以前就有火花塞、窗玻璃、水泵的机械式密封使用了陶瓷。而且作为排放对策,触媒载体、氧传感器、爆震传感器等功能陶瓷相继出现。目前,已有许多发动机零件采用结构陶瓷制造,不久将来,陶瓷发动机将会出现。而在当今社会不可或缺的通讯工具——手机中,也可以看到精细陶瓷材料的身影。 1.陶瓷的结构相 陶瓷一般由晶相、玻璃相和气相组成。 (1)晶相晶相是体现陶瓷材料性质的主要组成相。大多数陶瓷材料是由离子键(如MgO、CaO、Al203等)和共价键(如金刚石、SiC等)为主要结合键。晶体中非金属元素的原子直径大,可排列成不同的晶系,形成晶体"骨架",金属原子的直径小,处于骨架的间隙中。 陶瓷晶体中主要的两类结构是硅酸盐结构和氧化物结构。陶瓷材料是多相多晶体材料,其物理化学性能主要由晶相决定。晶相中晶粒的大小对陶瓷的性能影响很大。晶粒越细,晶界越多,裂纹扩展越不容易,材料的强度越高。这一点和金属材料很相似。 (2)玻璃相玻璃是非晶态材料,由熔融的液体凝固得到。陶瓷中玻璃相的作用是将分散的晶相粘结在一起;降低烧成温度;抑制晶体长大以及填充气孔空隙。但玻璃相的机械强度比晶相低,热稳定性差,在较低的温度下就开始软化。而且往往因带有一些金属离子而降低陶瓷的绝缘性能。工业陶瓷要控制玻璃相的数量,一般约为20%~40%。

新型陶瓷材料在汽车上的应用

新型陶瓷材料在汽车 上的应用 姓名:钟麒 专业:信息与计算科学系1102班 学号:41163056 摘要:随着科学技术飞速发展,现代汽车制造业将更多特种陶瓷、智能陶瓷制品引入,采用到汽车上,并且伴随着更多的新型结构材料的引入,在汽车零部件加工制造技术上也带来了一场新的革命,在此主要介绍一些新型的陶瓷材料在现在及未来的汽车行业的使用情况及以后可能应用的发展前景。 目前应用于汽车上的陶瓷材料主要有:氧化硅陶瓷,碳化硅陶瓷,氮化硅陶瓷,氧化铝陶瓷这几种。未来还将会有氧化锂陶瓷,滑石陶瓷,氧化钍陶瓷,钛酸钡陶瓷,硼化物、氮化物、硅化物等金属陶瓷,铁氧体陶瓷,稀土钴瓷等更多的新型特种陶瓷材料应用到汽车的制造与加工上。一.汽车发动机中的陶瓷材料 1.陶瓷汽车发动机

新型陶瓷是碳化硅和氮化硅等无机非金属烧结而成。与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。 同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。 由于陶瓷材料具有优良的耐热性、耐磨性、隔热性及重量轻优点,故使用陶瓷材料替代金属制备热机部件的技术受到了世界各国的高度重视。目前,发动机的主要零部件,如活塞、气缸盖、气门、排气管、涡轮烟压器、氧传感器及火花塞等都用先进的陶瓷材料来制造,并研制出了无水冷的绝热陶瓷发动机。另外为了防止汽车废气对大气环境的影响,各国都采用了的措施,制订了严格的排放标准,这些都

相关文档
最新文档