微元法在高考物理中的应用汇总

微元法在高考物理中的应用汇总
微元法在高考物理中的应用汇总

微元法在高考物理中的应用

河南省信阳高级中学 陈庆威 2013.10.06

微元法是高中物理中的一个重要的思想方法。因其近年来在江苏高考物理试题中的频繁出现,尤其是它在2013年普通高等学校招生全国统一考试(课标卷I )第25题中的闪亮登场,让它在我们的高考备考中的地位变得更加重要。

很多同学在学习过程中对这类问题因陌生而感到头痛,想集中训练又苦于很难在较短时间里收集到较好的题型,对很多顶尖的学生来说这类问题做起来也往往心有余而力不足。希望通过以下几个典型的微元法试题的训练,能让你从陌生到熟练。

一、从真题中练方法

例题1.(2013全国课标卷I )

如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。导轨上端接有一平行板电容器,电容为C 。导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面。在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求:

⑵金属棒的速度大小随时间变化的关系。 【答案】⑴Q=CBLv ⑵

()22sin cos m gt

v m B L C

θμθ-=

+

【解析】(1)设金属棒下滑的速度大小为v ,则感应电动势为

E BLv =

平行板电容器两极板之间的电势差为

U E =

设此时电容器极板上积累的电荷量为Q ,按定义有

Q

C U

=

③ 联立①②③式得

Q CBLv = ④

(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i ,金属棒受到的磁场的作用力方向沿导轨向上,大小为

1f BLi = ⑤

设在时间间隔(),t t t +?内流经金属棒的电荷量为Q ?,按定义有

Q

i t

?=

? ⑥ Q ?也是平行板电容器极板在时间间隔(),t t t +?内增加的电荷量,由④

式得

Q CBL v ?=? ⑦

式中,v ?为金属棒的速度变化量,按定义有

v

a t

?=

? ⑧ 金属棒所受的摩擦力方向斜向上,大小为

2f N μ= ⑨

式中,N 是金属棒对于导轨的正压力的大小,有

cos N mg θ= ⑩

金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有

12sin mg f f ma θ--= ⑾

联立⑤至⑾式得

()

22sin cos m a g m B L C

θμθ-=

+ ⑿

由⑿式及题设可知,金属棒做初速度为零的匀加速运动。T 时刻金属棒的速度大小为

()

22sin cos m v gt m B L C

θμθ-=

+ ⒀

例题2.(2007?江苏)

如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5m ,现有一边长l=0.2m 、质量m=0.1kg 、电阻R=0.1Ω的正方形线框MNOP 以v 0=7m/s 的初速从左侧磁场边缘水平进入磁场,求: (1)线框MN 边刚进入磁场时受到安培力的大小F ; (2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q ;

(3)线框能穿过的完整条形磁场区域的个数n .

解:(1)线框MN边刚进入磁场时,感应电动势 V Blv E 4.10==,感应电流 ==

R

E

I A 14,受到安培力的大小 F=N BIl 8.2= (2)水平方向速度为0,==202

1

mv Q J 45.2

(3)用“微元法”解

线框在进入和穿出条形磁场时的任一时刻,感应电动势

0Blv E =,感应电流 R E I =,受到安培力的大小 F=BIl ,得R

v

l B F 22=

, 在t t ?→时间内,由牛顿定律:

v t m

F

?=? 求和,∑∑?=?v t v mR l B )(22, 02

2v x mR

l B =? 解得 m l

B R

m v x 75.12

20==,线框能穿过的完整条形磁场区域的个数n=

375.44

.075

.1=,取整数为4。 例题3.(2008?江苏)

如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直. (设重力加速度为g )

(1)若a 进入第2个磁场区域时,b 以与a 同样的速度进入第

1个磁场区域,求b 穿过第1个磁场区域过程中增加的动△E k . (2)若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域;此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且a .b 在任意一个磁场区域或无磁场区域的运动时间均相.求b 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q .

(3)对于第(2)问所述的运动情况,求a 穿出第k 个磁场区域时的速率v .

解:⑴因为a 和b 产生的感应电动势大小相等,按回路方向相反,所以感应电流为0,所以a 和b 均不受安培力作用,由机械能守恒得 1sin k E mgd θ?= ①

⑵设导体棒刚进入无磁场区时的速度为1v ,刚离开无磁场区时的速度为2v ,即导体棒刚进入磁场区时的速度为2v ,刚离开磁场区时的速度为1v ,由能量守恒得:

在磁场区域有:22

12

111

sin 22m Q m mgd θ+=+v v ② 在无磁场区域:2

22

1211sin 22

m m mgd θ=+v v ③ 解得:12()sin Q mg d d θ=+

⑶用微元法

设导体棒在无磁场区域和有磁场区域的运动时间都为t , 在无磁场区域有:21sin gt θ-=v v ④ 且平均速度:

122

2d t

+=v v ⑤ 在有磁场区域,对a 棒:sin F mg BIl θ=- 且:2Bl I R

=

v 解得: R

v

l B F 2mgsin 22-=θ ⑥

因为速度v 是变量,用微元法

根据牛顿第二定律, 在一段很短的时间t ?内

t m

F v ?=

? 则有22sin 2B l g t mR θ??

?=-????

?∑∑v v 因为导体棒刚进入磁场区时的速度为2v ,刚离开磁场区时的速度为1v , 所以∑-=?21v v v ,

1

d t v =?∑,t t =?∑

所以:12

2212sin d mR

l B gt v v -

=-θ ⑦ 联立④⑤⑦式,得mR d l B d l B mgRd v 8sin 41

221

2221-=θ

(原答案此处一笔带过,实际上这一步很麻烦,以下笔者给出详细过程:

④代入⑦得:θ

sin 41

22mgR d l B t =, ⑧

⑧代入⑤得:1

2

2221sin 8d l B R mgd v v θ

=

+ ⑨

⑦+⑨得:mR d l B d l B mgRd v 8sin 41

221

2221-=θ。)

a .

b 在任意一个磁场区域或无磁场区域的运动时间均相等, 所以a 穿出任一个磁场区域时的速率v 就等于1v .所以

mR d l B d l B mgRd v 8sin 41

221

222-

=θ。 (注意:由于a .b 在任意一个磁场区域或无磁场区域的运动时间均相等,所以a 穿出任一个磁场区域时的速率v 都相等,所以所谓“第K 个磁场区”,对本题解题没有特别意义。) 例题4.(2009?江苏)

如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为L 、足够长且电阻忽略不计,导轨平面的倾角为α。条形匀强磁场的宽度为d ,磁感应强度大小为B 、方向与导轨平面垂直。长度为d 2的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“

型装置。总质量为m ,置于导轨上。导体棒中通以大小恒为I 的电流(由外接恒流源产生,图中未画出)。线框的边长为d (L d <),电阻为R ,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回。导体棒在整个运动过程中始终与导轨垂直。重力加速度为g 。求:

1) 装置从释放到开始返回的过程中,线框中产生的焦耳热Q ; 2) 线框第一次穿越磁场区域所需的时间1t ;

3) 经过足够长时间后,线框上边与磁场区域下边界的最大距离m x 。

【解答】设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框的安培力做功为W 由动能定理W d mg +?4sin αBILd -0= 且W Q -=

解得=Q αsin 4mgd BILd -

(1) 设线框刚离开磁场下边界时的速度为1v ,则接着向下运动d 2 由动能定理d mg 2sin ?αBILd -0=212

1

mv - 装置在磁场中运动的合力

'sin F mg F -=α

感应电动势Bdv =ε 感应电流R

I ε

=

'

安培力d BI F ''=

由牛顿第二定律,在t 到t t ?+时间内,有t m

F v ?=

? 则∑?v =∑?-

t mR v

d B g )sin (22α 有=1v αsin 1gt mR

d B 3

22-

解得α

αsin 2)sin 2(23

21m g R d B m gd BILd m t +

-=

(2) 经过足够长时间后,线框在磁场下边界与最大距离m x 之间往

复运动,

由动能定理m x mg ?αsin )(d x BIL m --0= 解得α

sin mg BILd BILd

x m -=

二、在强化训练中提升能力

1.(2004哈尔滨)如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上

的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)、ab 、cd 棒的最终速度;

(2)、全过程中感应电流产生的焦耳热。 2.(1999上海)如图所示,长电阻r =0.3Ω、m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是

L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R

的两端,垂直导轨平面的匀强磁场向下穿过平

面。现以向右恒定外力F 使金属棒右移。当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏。问:⑴此满偏的电表是哪个表?说明理由。⑵拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上。求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量。

3.(2004广州)如图所示,金属棒ab 质量m =5g ,放在相距L =1m 、处于同一水平面上的两根光滑平行金属导轨最右端,导轨距地高h =0.8m ,电容器电容C =400μF ,电源电动势E =16V ,整个装置放在方向竖直向上、磁感应强度B =0.5T 的匀强磁场中。单刀双掷开关S 先打向1,稳定后再打向2,金属棒因安培力的作用被水平抛出,落到距轨道末端水平距离x =6.4cm 的地面上;空气阻力忽略不计,取g =10m/s 2.求金属棒ab 抛出后电容器两端电压有多高?

4.(南京2010三模)如图所示,两根足够长的平行金属导轨由倾斜和水平两部分平滑连接组成,导轨间距m L 1=,倾角θ=45°,水平部分处于磁感应强度T B 1=的匀强磁场中,磁场方向竖直向上,磁场左边界MN 与导轨垂直。金属棒ab 质量kg m 021=,电阻Ω=11R ,金属

棒cd 质量kg m 2.02=,电阻Ω=32R ,导轨电阻不计,两棒与导轨间动摩擦因数2.0=μ。开始时,棒ab 放在斜导轨上,与水平导轨高度差

m h 1=,棒cd 放在水平轨上,距

MN 距离为0s 。两棒均与导轨垂直,

现将ab 棒由静止释放,取2/10s m g =。求:

(1)棒ab 运动到MN 处的速度大小;(2)棒cd 运动的最大加速度; (3)若导轨水平部分光滑,要使两棒不相碰,棒cd 距离MN 的最小距离0s 。

5.(2010模拟)如图所示,两根足够长的光滑直金属导轨 MN 、PQ 平行固定在倾角θ=37°的绝缘斜 面上,两导轨间距 L =1m ,导轨的电阻可忽略。M 、P 两点间接有阻值为 R 的电阻。一 根质量 m =1kg 、电阻 r =0.2?的均匀直金属杆 ab 放在两导轨上,与导轨垂直且接触良 好。整套装置处于磁感应强度 B =0.5T 的匀强磁场中,磁场方向垂直斜面向下。自图示 位置起,杆 ab 受到大小为 F =0.5v +2(式中 v 为杆 ab 运动的速度,力 F 的单位为 N ) 、 方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻 R 的电流

随时间均匀增大。g 取10m/s2,sin37°=0.6。

运动,并请写出推理过程;

⑵求电阻R 的阻值;

(3)求金属杆下滑1m所需的时间t以及此

过程产生的焦耳热。

6.(2012虹口二模)如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度为B=2T。若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过一定时间t金属棒的速度稳定不变,电阻R中产生的电热为3.2J,图(乙)为安培力与时间的关系图像。试求:

(1)金属棒的最大速度;(2)金属棒速度为2m/s时的加速度;

(3)此过程对应的时间t;(4)估算0~3s内通过电阻R的电量。

图(乙)

图(甲)

参考答案

1.解析:(1)由动能定理:m g h m v v g h

==1

2

22

(*此题动量不守恒) ab 与cd 匀速运动,则它们不受安培力作用,回路感应电动势为零,

E 1=BL 1v 1,E 2=BL 2v 2,则v 2=3v 1

ab 与cd 组成的系统受到安培力合力不为零,F 1=3F 2,动量不守恒,

用动量定理:ΣF 1?Δt=m (v -v 1),ΣF 2?Δt=m v 2,

得v gh v gh 121

10

23

10

2=

=

(2)系统能量守恒 Q m g h m v m v m g h

=--=1212910

122

2 2.解析(1)U=I (R+r ),当U=1V 时,I=1.25A ,所以电压表先满偏。

(2)V U R r R E 6.1=+=,因为E=BL v ,所以BL=0.8,N r

R v

L B F 6.122=+=, (3)用动量定理,ΣF ?Δt=ΣBIL ?Δt=mv ,BL ?ΣI Δt=mv ,BLQ=mv ,

C BL

mv

Q 25.0==

3.解析:下落时间s g

h

t 4.02==

,C CE Q 31104.6-?==, 根据动量定理,ΣF ?Δt=ΣBI l ?Δt=mv ,Bl ?ΣI Δt=mv ,BlQ=mv ,

C Bl mv Q 32106.1-?==

,V C

Q Q U 122

1=-= 4.解析:(1)21121

v m gh m =,s m s m gh v /47.4/522≈==

(2)ab 刚进入磁场时,感应电流最大,加速度最大

2221122max /12.1/2

5

)(s m s m R R m v l B a ≈=+=

(3)ab 和cd 组成的系统受到合外力为零,动量守恒,最后稳定下来,具有共同的速度'v .

')(211v m m v m +=,2

'v

v =

,设ab 和cd 的瞬时速度分别为v 1和v 2, 感应电动势为)(21v v BL E -=

方法一:2

121221111)

(R R v v L B t v m a m F +-=??==,v L B R R m t v v ?+=?-2221121)()(

v L B R R m t v v ?+=

?-2221121)()(,两边求和:v L

B R R m t v v ∑?+=?-∑2

221121)

()( 即m m v L B R R m v v L B R R m s 79.1554

2)()'()(22211222110≈=?+=-+=

方法二:对ab 运用动量定理,)'(1v v m t F -=??∑,即

)'()(1212

12

2v v m t v v R R L B -=??-∑+, m m v L B R R m v v L B R R m s 79.155

4

2)()'()(2

2211222110≈=?+=-+=

5.解析:(1)通过R 的电流kv r R BLv

I =+=

,因为I 随时间均匀增大,所以v 随时间均匀增大,导体棒做匀加速直线运动。

(2)合外力是恒力,C v R v r R v L B mg F F =+-++=+-+=2

.025.0625.0sin 2

2θ合

所以R=0.3Ω,F 合=8N , (3)a=8m/s 2,s a

x

t 5.02==

, J t r

R a L B t at r R L B t v r R L B t r R E Q 4)(32222

222222=+=??∑+=??∑+=??+∑=

6.解析:(1)金属棒的速度最大时,安培力也最大,为1N ,拉力等于安培力,

s m F P v /4max

==, 或 125.0max max 22max ==+=v r

R v L B F ,s m v /4max =,

(2)N r

R v

L B F 5.022=+=

安, N v P F 2'==,2/5.7's m m F F a =-=安, (3)在此过程中,由动能定理得:

22

011=22

m Pt W m m +-v v 安,

安培力做功全部转化为焦耳热,W 安=-(Q R +Q r )= -2Q R =-2×3.2J=-6.4J

解出22

220-20.240.212 6.479

s=s=1.975s 22440

m m m W t P -?-?+?=

=?v v 安

(4)图线与横轴之间共有112415131.52

+?=个小方格,

相应的“面积”为131.5×0.2×0.1N·s=2.63 N·s ,即F t ??∑安=2.63 N·s

故q I t =??∑F t

BL

??=∑安

2.63

C=2.63C 20.5

=

?

高中物理公式大全(整理版)

高中物理公式大全 一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g ) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合,两个分力垂直时: 2 221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = N (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ② 为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快 慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0 f 静 f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 2 3 24GT r M π=r GM v =

(完整)高中物理解题(微元法)

高中奥林匹克物理竞赛解题方法 微元法 方法简介 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 赛题精讲 例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。 解析:该题不能用速度分解求解,考虑采用“微元法”。 设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?' →?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶 端C 点做匀速直线运动. 例2:如图3—2所示,一个半径为R 的四分之一光滑球 面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不能 忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=?

高考物理微元法解决物理试题及其解题技巧及练习题

高考物理微元法解决物理试题及其解题技巧及练习题 一、微元法解决物理试题 1.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( ) A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=1 2 ρsv2 【答案】B 【解析】 【分析】 【详解】 设t时间内吹到建筑物上的空气质量为m,则有: m=ρsvt 根据动量定理有: -Ft=0-mv=0-ρsv2t 得: F=ρsv2 A.F =ρsv,与结论不相符,选项A错误; B.F =ρsv2,与结论相符,选项B正确; C.F =ρsv3,与结论不相符,选项C错误; D.F=1 2 ρsv2,与结论不相符,选项D错误; 故选B。 2.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm。查询得知,当时雨滴竖直下落速度约为12m/s。据此估算该压强约为()(设雨滴撞击唾莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3) A.0.15Pa B.0.54Pa C.1.5Pa D.5.1Pa 【答案】A 【解析】 【分析】 【详解】 由于是估算压强,所以不计雨滴的重力。设雨滴受到支持面的平均作用力为F。设在△t时间内有质量为△m的雨水的速度由v=12m/s减为零。以向上为正方向,对这部分雨水应用动量定理有 () F t mv mv ?=--?=?

新课标高中物理公式大全(最新版)

新课标高中物理公式汇编 一、力学公式 1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料 有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 212 2212++ 合力的方向与F 1成α角: tg α=F F F 212sin cos θθ + 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) 7、 万有引力: F=G m m r 12 2 (1). 适用条件 (2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量 R 一天体半径 g 一天体表面重力 1

高二物理公式大全总结

高二物理公式大全总结 高二物理公式大全 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt Vo)/2 4.末速度Vt=Vo at 5.中间位置速度Vs/2=[(Vo2 Vt2)/2]1/2 6.位移s=V平t=Vot at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12 F22 2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12 F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1 F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于 宏观物体,不适用于处理高速问题,不适用于微观粒子 五、振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表 示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃: 349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或 孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方 向相同) 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)波仅仅传播了振动,介质本身不随波发生迁移,是传递能量的 一种方式; (3)干涉与衍射是波特有的;

高中物理公式总结排版版

高中物理公式总结 GAO ZHONG WU LI GONG SHI ZONG JIE

一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,g 极>g 赤,g 低纬>g 高纬) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合 两个分力垂直时: 2221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围:? F 1-F 2 ? ? F ? F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = ?N (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ②?为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0? f 静? f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度; r 表示卫星 或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ① 天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ② 行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 ③ 行星或卫星做匀速圆周运动的角速度: ,轨道半径越大,角速度越小。 2 3 24GT r M π=

最新最全高考物理公式知识点整理

最新最全高考物理公式知识点整理 一、力学公式 1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 212 2212++ 合力的方向与F 1成α角: tg α=F F F 212sin cos θ θ + 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 1

高中物理解题方法---微元法

高中物理解题方法----微元法 一、什么是微元法: 在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。 二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。所以,微元法又叫小量分析法,它是微积分的理论基础。 三、微元法解题思想: 在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。 微元法的灵魂是无限分割与逼近。用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。 例1、如图所示,岸高为h ,人用不可伸长的绳经滑轮拉船靠岸,若当绳与水平方向为θ时,人收绳速率为υ,则该位置船的速率为多大? 例2、如图所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大? 例3、如图所示,半径为R ,质量为m 的匀质细圆环,置于光滑水平面上,若圆环以角 速度ω绕环心O 转动,试证明:(1)圆环的张力π ω22R m T = (2)圆环的动能2)(2 1 R m E k ω= 例4、一根质量为M ,长度为L 的匀质铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图所示,求链条下落了长度x 时,链条对地面的压力为多大? 例5、如图所示,半径为R 的半圆形绝缘细线上、下1/4圆弧上分别均匀带电+q 和-q ,求圆心处的场强. 例6、如图所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置. 例7、(1)试证明:质量为M 的匀质球壳,对放置在空腔内任意一点的质量为m 的质点的万有引力为零。 (2)若将上述质点移至球壳外距球心O 距离为r 处,求此时系统具有的引力势能为多少?规定∞→r 时,系统引力势能为零

_高中物理公式大全

_高中物理公式大全 一、直线运动 (1)匀变速直线运动 1.平均速度V平=x/t(定义式) 2.有用推论Vt2-V02=2as 3.中间时刻速度Vt/2=V平=(Vt+V0)/2 4.末速度Vt=V0+at 5.中间位置速度Vs/2=[(V02+Vt2)/2]1/2 6.位移s=V平t=V0t+at2/2=Vt/2t 7.加速度a=(Vt-V0)/t (以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0) 8.实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差) 9.主要物理量及单位:初速度(V0):m/s;加速度 (a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 (1)平均速度是矢量; (2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是测量式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与 时刻、s--t图、v--t图/速度与速率、瞬时速度。 二、质点的运动 (2)----曲线运动、万有引力 1) 平抛运动 1水平方向速度:Vx=V0 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V0t 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2 位移方向与水平夹角α:tgα=y/x=gt/2V0 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作 是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα;

高考物理必考公式整理

2019年高考物理必考公式整理高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。以下是查字典物理网为大家整理的高考物理必考公式,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、平抛运动公式总结 1.水平方向速度:Vx=V o 2.竖直方向速度:Vy=gt 3.水平方向位移:x=V ot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[V o2+(gt)2]1/2,合速度方向与水平夹 角:tg=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2,位移方向与水平夹角:tg=y/x=gt/2V o 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)与的关系为tg=2tg (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 二、原子和原子核公式总结

1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来) 2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。射线是伴随射线和射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注: (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

高中物理竞赛方法集锦微元法针对训练

高中物理竞赛方法集锦微元法针对训练 例18:如图3—17所示,电源的电动热为E ,电容器的 电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同 一水平面上的平行光滑长导轨,它们的电阻能够忽略不计, 两导轨间距为L ,导轨处在磁感应强度为B 的平均磁场 中,磁场方向垂直于两导轨所在的平面并指向图中纸面 向里的方向.L 1和L 2是两根横放在导轨上的导体小棒, 质量分不为m 1和m 2,且21m m <.它们在导轨上滑动 时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻 相同,开始时两根小棒均静止在导轨上.现将开关S 先合向 1,然后合向2.求: 〔1〕两根小棒最终速度的大小; 〔2〕在整个过程中的焦耳热损耗.〔当回路中有电流时,该电流所产生的磁场可忽略不计〕 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大. 〔1〕设两小棒最终的速度的大小为v ,那么分不为L 1、L 2为研究对象得: 111 1v m v m t F i i -'=? ∑=?v m t F i i 111 ① 同理得: ∑=?v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=?+?∑∑ 又因为 11Bli F i = 21i i t t ?=? 22Bli F i = i i i =+21 因此 ∑∑∑∑?=?+=?+?i i i i t i BL t i i BL t BLi t BLi )(212211 v m m q Q BL )()(21+=-= 而Q=CE q=CU ′=CBL v 因此解得小棒的最终速度 2221)(L CB m m BLCE v ++= 〔2〕因为总能量守恒,因此热Q v m m C q CE +++=22122)(2 12121 即产生的热量 22122)(2 12121v m m C q CE Q +--=热

微元法在高中物理中的应用

微元法在高中物理中的应用 江苏省靖江市斜桥中学夏桂钱 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。 一、挖掘教材中微元素材,认知微元思想 微元法思想在新课标教材(人教版)上时有渗透。如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t时刻的瞬时速度。正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。 必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。这两个功的计算,前者的难点在于物体运动的路径是曲线,后者的难点在于力的大小在变化。教材中的处理方法是前者采用了“化曲为直”的思想,后者采用了“化变为恒”的思想。

高中物理公式总结(全)

高中物理公式总结(全)

一、质点的运动 1.1直线运动 1.1.1匀变速直线运动 1.平均速度V 平=S/t (定义式) 2.有用推论V t 2 –V o 2 =2as 3.中间时刻速度 V t/2=V 平=(V t +V o )/2 4.末速度V t =V o +at 5.中间位置速度V s/2=[(V o 2 +V t 2 )/2]1/2 6.位移S= V 平t=V o t + at 2 /2 7.加速度a=(V t -V o )/t 以V o 为正方向,a 与V o 同向(加速)a>0;反向(减速)则a<0 8.实验用推论ΔS=aT 2 ΔS 为相邻连续相 等时间T 内位移之差 9.主要物理量及单位:初速(V o )m/s 加速度(a)m/s 2 末速度(V t )m/s 时间(t)秒(s) 位移(S)米(m ) 路程米(m ) 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V t -V o )/t 只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t 图/v--t 图/速度与速率/

1.1.2 自由落体 1.初速度V o =0 2.末速度V t =gt 3.下落高度h=gt 2 /2(从V o 位置向下计算) 4.推论V t 2 =2gh t=(2h/g)1/2 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8 m/s 2 ≈10m/s 2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 1.1.3竖直上抛 运动 1.位移S=V o t- gt 2 /2 2.末速度 V t = V o - gt (g=9.8≈10m/s 2 ) 3.有用推论V t 2 –V o 2= -2gS 4.上升最大高度H m = V o 2 /2g (抛出点算起) 5.往返时间t=2 V o /g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,

高中奥林匹克物理竞赛 微元法

微元法 方法简介 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 赛题精讲 例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。 解析:该题不能用速度分解求解,考虑采用“微元法”。 设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?' →?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶 端C 点做匀速直线运动. 例2:如图3—2所示,一个半径为R 的四分之一光滑球 面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不能 忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=? 由于每段铁链沿切线向上的拉力比沿切线向下的拉力大 △T θ,所以整个铁链对A 端的拉力是各段上△T θ的和, 即 ∑∑∑?=?=?=θρθρθcos cos L g Lg T T

高中物理公式大全

高中物理公式、规律汇编表 一、力学公式 1、胡克定律: F = Kx(x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、重力:G = mg(g 随高度、纬度、地质结构而变化) 3 、求 F 1、F2两个共点力的合力的公式: F=F2+ F2+ 2F F COS F2F 1212 合力的方向与F1成α角: αθ F2sin tgα= F1 F1+ F2cos 注意:(1)力的合成和分解都均遵从平行四边行法则。 (2)两个力的合力范围:?F1-F2? ≤F≤F1+F2 (3)合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0或∑F x=0∑F y=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 )有固定转动轴物体的平衡条件:力矩代数和为零. 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 )滑动摩擦力:f= μN 说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N无关. (2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围:O≤f静≤f m(f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的 方向或相对运动趋势的方向相反。d、静止的物体可以受滑动摩擦力的作用,运动的物体可以 受静摩擦力的作用。 6、浮力:F= ρVg(注意单位) 7、万有引力:F=G m1m2 r 2 (1).适用条件(2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量R 一天体半径 g 一天体表面重力 加速度) a 、万有引力=向心力 Mm = m V 22 4 2 G= m(R+h) =m(R+h) (R+h)2(R+h)2T 2 b、在地球表面附近,重力=万有引力 - 1 -

知识讲解 物理学中微元法的应用

物理学中微元法的应用 编稿:李传安 审稿:张金虎 【高考展望】 随着新课程的改革,微积分已经引入了高中数学课标,列入理科学生的高考考试范围,为高中物理的学习提供了更好的数学工具。教材中很多地方体现了微元思想,逐步建立微元思想,加深对物理概念、规律的理解,提高解决物理问题的能力,不仅需要从研究方法上提升学习能力,而且还要提高利用数学方法处理物理问题的能力。高考试题屡屡出现“微元法” 的问题,较多地出现在机械能问题、动量问题、电磁感应问题中,往往一出现就是分值高、难度较大的计算题。在高中物理竞赛、自主招生物理试题中更是受到命题者的青睐,成为必不可少的内容。 【知识升华】 “微元法”又叫“微小变量法”,是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的。微元可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题得到求解。利用“微元法”可以将非理想模型转化为理想模型,将一般曲线转化为圆甚至是直线,将非线性变量转化为线性变量甚至是恒量,充分体现了“化曲为直”、“化变为恒”的思想。 【方法点拨】 应用“微元法”解决物理问题时,采取从对事物的极小部分(微元)入手,达到解决事物整体的方法,具体可以分以下三个步骤进行:(1)选取微元用以量化元事物或元过程; (2)把元事物或元过程视为恒定,运用相应的物理规律写出待求量对应的微元表达式;(3)在微元表达式的定义域内实施叠加演算,进而求得待求量。微元法是采用分割、近似、求和、取极限四个步骤建立所求量的积分式来解决问题的。 【典型例题】 类型一、微元法在运动学、动力学中的应用 例1、设某个物体的初速度为0v ,做加速度为a 的匀加速直线运动,经过时间t ,则物 体的位移与时间的关系式为2 012 x v t at =+ ,试推导。 【思路点拨】把物体的运动分割成若干个微元,t ?极短,写出v t -图像下微元的面积的表 达式,即位移微元的表达式,最后求和,就等于总的位移。 【解析】作物体的v t -图像,如图甲、乙,把物体的运动分割成若干个小元段(微元),由于每一个小元段时间t ?极短,速度可以看成是不变的,设第i 段的速度为i v ,则在t ?时间内第i 段的位移为i i x v t =?,物体在t 时间内的位移为i i x x v t =∑=∑?,在v t -图像上则为若干个微小矩形面积之和。

高考物理专题汇编物理微元法解决物理试题(一)含解析

高考物理专题汇编物理微元法解决物理试题(一)含解析 一、微元法解决物理试题 1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F 的作用下从坐标原点O 开始沿x 轴正方向运动,F 随物块所在位置坐标x 的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x 0处时的动能可表示为( ) A .0 B . 1 2 F m x 0(1+π) C . 1 2F m x 0(1+2π) D .F m x 0 【答案】C 【解析】 【详解】 F -x 图线围成的面积表示拉力F 做功的大小,可知F 做功的大小W =1 2F m x 0+14 πx 02,根据动能定理得,E k =W =12F m x 0+14πx 02 =01122m F x π?? + ?? ?,故C 正确,ABD 错误。 故选C 。 2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为 m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均 为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂 直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m n 、和v 的关系正确的是( ) A . 21 6 nsmv B .2 13 nmv C . 21 6 nmv D .2 13 nmv t ? 【答案】B 【解析】 【详解】 一个粒子每与器壁碰撞一次给器壁的冲量2I mv ?=,如图所示,

以器壁上面积为S 的部分为底、v t ?为高构成柱体,由题设可知,其内有1 6 的粒子在t ?时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数1 6 N n Sv t = ??,t ?时间内粒子给器壁的冲量21·3I N I nSmv t =?=?,由I F t =?可得21 3 I F nSmv t ==?,21 3 F f nmv S ==,故选B . 3.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。设雨滴撞击伞面后无反弹,不计雨滴重力,雨水的密度为3 3 110kg/m ?,伞面的面积约为0.8m 2,据此估算当时雨水对伞面的平均撞击力约为( ) A .0.1N B .1.0N C .10N D .100N 【答案】B 【解析】 【分析】 【详解】 对雨水由动量定理得 Ft mv Shv ρ=?= 则 0.72N 1.0N Shv F t ρ= =≈ 所以B 正确,ACD 错误。 故选B 。

相关文档
最新文档