高中数学三角函数专题专项试(非常好)

高中数学三角函数专题专项试(非常好)
高中数学三角函数专题专项试(非常好)

高中数学三角函数专题专项试(非常好)

————————————————————————————————作者:————————————————————————————————日期:

【三角函数疑难点拔】 一、 忽略隐含条件

例3. 若01cos sin >-+x x ,求x 的取值范围。

正解:1)4sin(2>+πx ,由22)4sin(>+πx 得)(432442Z k k x k ∈+<+<+πππππ∴)(2

22Z k k x k ∈+

<<π

ππ

二、 忽视角的范围,盲目地套用正弦、余弦的有界性 例4. 设α、β为锐角,且α+β?=120,讨论函数βα22cos cos +=y 的最值。

错解

)cos(2

1

1)cos()cos(1)2cos 2(cos 211βαβαβαβα--=-++=++=y ,可见,当1

)cos(-=-βα时,

23max =

y ;当1)cos(=-βα时,2

1min =y 。分析:由已知得?<

1≤-<βα,∴当1)cos(=-βα,即?==60βα时,21

min =y ,最大值不存在。

三、 忽视应用均值不等式的条件

例5. 求函数)20,0(sin cos 2

222π

<<>>+=x b a x

b x a y 的最小值。 错解 )12sin 0(42sin 4cos sin 2sin cos )2()

1(2222≤<≥=≥+=x ab x ab x x ab x

b x a y Θ,∴当12sin =x 时,ab y 4min =

分析:在已知条件下,(1)、(2)两处不能同时取等号。正解: 2

222

222222222)(2)cot tan ()cot 1()tan 1(b a ab b a x b x a b a x b x a y +=++≥+++=+++=,

当且仅当x b x a cot tan =,即a

b x =

tan ,时,

2min )(b a y +=

【经典题例】

例4:已知b 、c 是实数,函数f(x)=c bx x ++2

对任意α、β∈R 有:,0)(sin ≥αf 且,0)cos 2(≤+βf

(1)求f (1)的值;(2)证明:c 3≥;(3)设)(sin αf 的最大值为10,求f (x )。

[思路](1)令α=2

π

,得,0)1(≥f 令β=π,得,0)1(≤f 因此,0)1(=f ;(2)证明:由已知,当11≤≤-x 时,,0)(≥x f 当31≤≤

x 时,,0)(≤x f 通过数形结合的方法可得:,0)3(≤f 化简得c 3≥;

(3)由上述可知,[-1,1]是)(x f 的减区间,那么

,10)1(=-f 又,0)1(=f 联立方程组可得4,5=-=c b ,所以45)(2+-=x x x f

例5:关于正弦曲线回答下述问题:

(1)函数

)43sin(log 2

1x

y ππ-=的单调递增区间是? Z k k x k ∈+<≤-]348328[;

(2)若函数x a x y 2cos 2sin +=的图象关于直线8

π

=x 对称,则a 的值是 1 ;

(3)把函数)4

3sin(π

+=x y 的图象向右平移8π个单位,再将图象上各点的横坐标扩大到原来的3倍(纵坐标不变),则所得

的函数解析式子是 )8

sin(π

-=x y ;

例6:函数

x

x x

x f cos sin 12sin )(++=

,(1)求f(x)的定义域;(2)求f(x)的最大值及对应的x 值。

[思路](1){x|x 2

22π

πππ-

≠-≠k x k 且 }Z k

∈(2)设t=sinx+cosx,则y=t-14

2,12max π

π+=-=k x y Z k ∈

例7:在ΔABC 中,已知B A C C A sin 2

3

2cos sin 2cos sin

22

=+(1)求证:a 、b 、c 成等差数列;

(2)求角B 的取值范围。 [思路](1)条件等式降次化简得

Λ

Λb c a B C A 2sin 2sin sin =+?=+(2)

Λ

ΛΘ,2

182682)(32)

2(

cos 22222=-≥-+=+-+=

ac ac ac ac ac c a ac c a c a B ∴……,得B 的取值范围]3

,

0(π

14.设ααsin cos +=x

,且0cos sin 33>+αα,则x 的取值范围是 ]2,0( ;

19.已知)2

,

0(π

∈x ,证明不存在实数)1,0(∈m 能使等式cos x +msin x =m(*)成立;

(2)试扩大x 的取值范围,使对于实数)1,0(∈m ,等式(*)能成立; (3)在扩大后的x 取值范围内,若取3

3

=m ,求出使等式(*)成立的x 值。

提示:可化为1)42tan(>+=πx m (2))2

,2(ππ-∈x (3)6π-

=x

最值问题典型错例

例5. 求函数

y x

x

=

-s i n c o s 1342的最大值和最小值。

错解:原函数化为4902

y x x y s i n s i n -+=,关于s in x 的二次方程的判别式?=--??≥()144902y y ,即-≤≤112112y ,所以y y max min ==-112112

,。剖析:若取y =±112,将导致sin x =±32的错误结论,此题错在忽视了隐含条件|s i n |x ≤1。正解:原函数化为4

902

y x x y s i n s i n -+=,当y =0时,解得s i n x =0,满足s in x ≤1 当

y ≠0

时,解得

s i n x y y

=

±-1114482

,又

s i n |s i n |x R x ∈≤,1

,则有114401111448122

-≥-≤

+-≤?

??

?

?y y

y 或

114401111448122-≥-≤--≤????

?

y y

y ,解得-≤≤1131

13y ,所以y y max min =

=-1131

13

, 难点 化简与求值

【例】已知

2

π<β<α<

43π,cos(α-β)=13

12

,sin(α+β)=-53,求sin2α的值_________.

[例1]不查表求sin 220°+cos 2

80°+3cos20°cos80°的值.

解法一:sin 220°+cos 280°+3sin 2

20°cos80°=21 (1-cos40°)+2

1 (1+cos160°)+ 3sin20°cos80°

=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+2

1 (cos120°cos40°-sin120°

sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-4

1

cos40°-43sin40°+43sin40°-

2

3sin 2

20°

=1-

43cos40°-43(1-cos40°)= 4

1 解法二:设x =sin 220°+cos 280°+3sin20°cos80°,y =cos 220°+sin 2

80°-3cos20°sin80°,则

x +y =1+1-3sin60°=2

1

,x -y =-cos40°+cos160°+3sin100°=-2sin100°sin60°+3sin100°=0

∴x =y =41,即x =sin 220°+cos 2

80°+3sin20°cos80°=4

1.

[例2]关于x 的函数y =2cos 2

x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=2

1的a 值,并对此时的a 值求y 的最大值.

解:由y =2(cos x -2

a )2-22

42

+-a a 及cos x ∈[-1,1]得:

f (a )??

?

????≥-<<-----≤)2( 41)22( 122

)

2( 12a a a a a

a ,∵f (a )=21,∴1-4a =21?a =81?[2,+∞),故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +

21)2+2

1

,当cos x =1时,即x =2k π,k ∈Z ,y max =5. 难点训练

1.(★★★★★)已知方程x 2

+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,

π),则tan

2

β

α+的值是( )

A.

2

1

B.-2

C.

34 D. 2

1

或-2 3.设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=5

3,sin(43π+β)=135

,则sin(α+β)=_________.

4.不查表求值:

.10cos 1)

370tan 31(100sin 130sin 2?

+?+?+? 5.已知cos(4

π+x )=53,(

1217π

<x <4

7π),求x x

x tan 1sin 22sin 2-+的值.

7.扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.

8.已知cos α+sin β=

3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10

43

2log 2

1

++x x 的最小值,并求取得最小值时x 的值.

参考答案

难点磁场

解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<4

3π,∴sin(α-β)=.5

4)(sin 1)cos(,135)(cos 122

-=+--=+=--βαβαβα∴sin2α=sin [(α-β)+(α+β)]=sin(α-

β)cos(α+β)+cos(α-β)sin(α+β).65

56)53(1312)54(135-=-?+-?=。解法二:∵sin(α-β)=135

,cos(α+β)=-54,

∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-65

40

∴sin2α=65

56

)65406572(21-=--

难点训练

一、1.解析:∵a >1,tan α+tan β=-4a <0。tan α+tan β=3a +1>0,又α、β∈(-

2π,2π)∴α、β∈(-2π

,θ),则2

βα+

∈(-2π,0),又tan(α+β)=

342

tan 12tan

2)tan(,34)13(14tan tan 1tan tan 2

=β+α-β

+α=β+α=+--=βα-β+α又a a ,整理得2tan 222tan 32-β+α+β+α=0.解得tan 2

β+α=-2.答案:B 3.解析:α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=5

3

.

65

56

)sin(.

6556

13554)1312(53)43sin()4sin()43cos()4cos()]

43()4cos[(]2

)43()4sin[()sin(.

13

12

)43cos(,135)43sin().,43(43).4,0(,54)4sin(=

β+α=?+-?-=β+π?π-α+β+π?π-α-=β+π

+π-α-=π

-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即答案:

65

56

三、4.答案:275285

3)54(25

7)

4cos()

4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54

)4sin(,2435,471217.

25

7

)4(2cos 2sin ,53)4cos(:.522=-?=++=-+=

-

+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x

x x x x x x x x x x x x x x x x x ππ

ππππππππ又解Θ

7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则

|PS |=sin θ.直线OB 的方程为y =

3x ,直线PQ 的方程为y =sin θ.联立解之得Q (

3

3

sin θ;sin θ),所以|PQ |=cos θ-33sin θ。于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2

θ)=33(2

3sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<6

5π.∴21<

sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6

π

,点P 为的中点,P (21,23).

8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2

≤1,-1≤u ≤1.即D =[-

1,1],设t =

3

2+x ,∵-1≤x ≤1,∴1≤t ≤

5.x =2

32-t ..2

1,232,2,258log 2log 82log ,0log .8

2

,2,42.

8

2

24142142104325.05.05

.0min 5.0max 2-==+==-==∴>=====≤+=+=++=

∴x x t y M M y M t t

t t

t t t x x M 此时时时是减函数在时即当且仅当Θ

[提高训练C 组]

一、选择题 5 已知sin sin α

β>,那么下列命题成立的是( ) A 若,αβ是第一象限角,则cos cos αβ> B 若,αβ是第二象限角,则tan tan αβ> C 若,αβ是第三象限角,则cos cos αβ> D 若,αβ是第四象限角,则tan tan αβ>

二、填空题

1 已知角α的终边与函数)0(,0125≤=+x y

x 决定的函数图象重合,α

ααsin 1

tan 1cos -

+

的值为_________

2 若α是第三象限的角,β是第二象限的角,则

2

β

α-是第 象限的角

4 如果,0sin tan <αα且,1cos sin 0<+<αα那么α的终边在第 象限

5 若集合|,3A x k x k k Z ππππ??

=+≤≤+∈????

,{}|22B x x =-≤≤,则B A I =_______________________ 三、解答题

1 角α的终边上的点P 与

),(b a A 关于x 轴对称)0,0(≠≠b a ,角β

的终边上的点Q 与A 关于直线x y =对称,求

β

αβαβαsin cos 1tan tan cos sin +

+值 3 求66

44

1sin cos 1sin cos αααα

----的值

参考答案

一、选择题

5 D 画出单位圆中的三角函数线 二、填空题

1 77

13

-

在角α的终边上取点1255(12,5),13,cos ,tan ,sin 131213

P r ααα-==-

=-= 2 一、或三 111222

322,(),222,(),22

k k k Z k k k Z ππππαππαππ+<<+∈+<<+∈ 1212()()422k k k k παβπππ--+<<-+

4 二 2sin tan sin 0,cos 0,sin 0cos α

ααααα

=<<>

三、解答题

1 解:22

22

(,),sin ,cos ,tan b a b P a b a

a b a b ααα--=

=

=-

++ 22

22

(,),sin ,cos ,tan a b a Q b a b

a b a b βββ==

=

++ 222

22

sin tan 110cos tan cos sin b a b a a

ααββ

αβ+∴++

=--+= 3 解:66224224

44221sin cos 1(sin cos )(sin sin cos cos )1sin cos 1(12sin cos )αααααααααααα---+-+=---- 22

221(13sin cos )31(12sin cos )2

αααα--==--

【练习】

一、选择

1、函数 的值域是( )

A. [-1,1]

B.[-2,2]

C. [0,2]

D.[0,1]

5、

二、填空

3、已知f (x )=asinx -bcosx 且x = 为f (x )的一条对称轴,则a :b 的值为 .

4、若函数

答案与解析 一、选择题:

1、选B.,当x≥0时,-2≤2sinx≤2即-2≤y≤2;当x<0时,y=0包含于[-2,2].于是可知所求函数

值域为[-2,2],故应选B. 5、选C.解析:由f(x)在区间[-, ]上递增及f(x)为奇函数,知f(x)在区间[-, ]上递增,该区间长度应小于或等于f(x)的半个周

期.,应选

二、填空题

3、答案:a:b=-1。解析:由题设得,又x=为f(x)的一条对称轴,∴

当x=时f(x)取得最值,∴即

,∴a:b=-1。

4、答案:,解析:,∴由

①,注意到

,由①得:②,再注意到当且仅当

于是由②及得

高考数学二轮复习:三角函数专题

高考数学二轮复习:三角函数的专题(附参考答案) 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。 A .21 B .21- C .41 D .4 1-

高中数学三角函数知识点(复习)

三角函数知识点复习 §1.1.1、任意角 1、正角、负角、零角、象限角的概念. 2、 与角终边相同的角的集合: . §1.1.2、弧度制 1、把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 . 3、弧长公式:. 4、扇形面积公式:. §1.2.1、任意角的三角函数 1、设是一个任意角,它的终边与单位圆交于点,那么: 2、 设点为角终边上任意一点,那么:(设),,, 3、 ,,在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、特殊角0°,30°,45°,60°, 1、平方关系:. 2、商数关系:. 3、倒数关系: §1.3、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”) 1、 诱导公式一: (其中:)

2、 诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大 最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. 在上的五个关键点为:

§1.4.3、正切函数的图象与性质 图表归纳:正弦、余弦、正切函数的图像及其性质

图象

定 义 域 值 域 [-1,1][-1,1] 最 值 周 期 性 奇 偶 性 奇偶 单调性在上单调递增 在上单调递减 在上单调递增 在上单调递减 对称性对称轴方程: 对称中心 对称轴方程: 对称中心

1、记住正切函数的图象: 2、记住余切函数的图象:

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

高中数学三角函数知识点总结(非常好用)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈°=57°18ˊ. 1°= 180 π≈(rad ) 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: x y + O — — + # x y O — + + — + y O ) | — + + —

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:αα cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ' ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高中数学三角函数公式总结

平方关系:sin^2α+cos^2α=1 商的关系:sinα/cosα=tanα 直角三角形ABC中, 角A 的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, [1]三角函数恒等变形公式两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanαtanβ-tanβ·tanγ-ta nγ·tanα) 辅助角公式:Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式:sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式:sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 推导公式1+cos2α=2cos2α 1-cos2α=2sin2α 1+sinα=(sinα/2+cosα/2)2 其他:

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学三角函数

三角函数常见题 1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A 解:1+cos2A-cos2B-cos2C=2sinBsinC 2cos2A-1-2cos2B+1+2sin2C=2sinBsinC cos2A-cos2B+sin2(A+B)=sinBsinC cos2A-cos2B+sin2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC cos2A-cos2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC 2cos2AsinB+2sinAcosAcosB=sin(180-A-B) 2cosA(cosAsinB+sinAcosB)-sin(A+B)=0 Sin(A+B)(2cosA-1)=0 cosA=1/2 A=60 2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα <===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)2 <===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa <===>0=0恒成立 以上各步可逆,原命题成立 证毕 3、在△ABC中,sinB*sinC=cos2(A/2),则△ABC的形状是? sinBsin(180-A-B)=(1+cosA)/2 2sinBsin(A+B)=1+cosA 2sinB(sinAcosB+cosAsinB)=1+cosA sin2BsinA+2cosAsin2B-cosA-1=0 sin2BsinA+cosA(2sin2B-1)=1 sin2BsinA-cosAcos2B=1 cos2BcosA-sin2BsinA=-1 cos(2B+A)=-1 因为A,B是三角形内角 2B+A=180 因为A+B+C=180 所以B=C 三角形ABC是等腰三角形 4、求函数y=2-cos(x/3)的最大值和最小值并分别写出使这个函数取得最大值和最小值的x的集合 -1≤cos(x/3)≤1 -1≤-cos(x/3)≤1 1≤2-cos(x/3)≤3 值域[1,3] 当cos(x/3)=1时即x/3=2kπ即x=6kπ时,y有最小值1此时{x|x=6kπ,k∈Z} 当cos(x/3)=-1时即x/3=2kπ+π即x=6kπ+3π时,y有最小值1此时{x|x=6k π+3π,k∈Z} 5、已知△ABC,若(2c-b)tanB=btanA,求角A [(2c-b)/b]sinB/cosB=sinA/cosA 正弦定理c/sinC=b/sinB=2R代入

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

高中数学三角函数知识点

高中数学第四章-三角函数知识点汇总 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:2 11||2 2 s lr r α= = ?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =α sin ; r x = αcos ; x y = α tan ; y x = α cot ; x r = α sec ;. y r = α csc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \C O S 三角函数值大小关系图 1、2、3、4表示第一、二、三、四象限一半所在区域 (3) 若 o

人教版高中数学三角函数全部教案

人教版高中数学三角函数 全部教案 This model paper was revised by the Standardization Office on December 10, 2020

三角函数 第一教时 教材:角的概念的推广 目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角” “终边相同的角”的含义。 过程:一、提出课题:“三角函数” 回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义 的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。 二、角的概念的推广 1.回忆:初中是任何定义角的(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘” 2.讲解:“旋转”形成角(P4) 突出“旋转”注意:“顶点”“始边”“终边” “始边”往往合于x轴正半轴 3.“正角”与“负角”——这是由旋转的方向所决定的。 记法:角α或α ∠可以简记成α

4.由于用“旋转”定义角之后,角的范围大大地扩大了。 1角有正负之分如:=210=150=660 2角可以任意大 实例:体操动作:旋转2周(360×2=720)3周(360×3=1080) 3还有零角一条射线,没有旋转 三、关于“象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角 角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限) 例如:是第Ⅰ象限角30060是第Ⅳ象限角 5851180是第Ⅲ象限角2000是第Ⅱ象限角等 四、关于终边相同的角 1.观察:390,330角,它们的终边都与30角的终边相同 2.终边相同的角都可以表示成一个0到360的角与) k∈个周角的和 k (Z 390=30+360)1 k (= 330=30360)1 (= k = (- k30=30+0×360)0

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

高中数学三角函数知识点及试题总结

高考三角函数 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α x y + O — — + x y O — + + — + y O — + + —

5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:α α cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

高中数学三角函数各地历年高考真题汇编(附答案)

三角函数历年高考题汇编 一.选择题 1、(2009)函数22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π 的偶函数 2、(2008)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为 2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( ) 4.(2009山东卷文)将函数sin 2y x =的图象向左平移4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A. 22cos y x = B. 22sin y x = C.)4 2sin(1π + +=x y D. cos 2y x = 5.(2009江西卷文)函数()(13tan )cos f x x x =+的最小正周期为 A .2π B . 32π C .π D .2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(,0)3 π 中心对称, 那么φ的最小值为

A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( ) 二.填空题 1.(2009宁夏海南卷文)已知函数()2sin()f x x ωφ=+的图像如图所示,则 712 f π ?? = ??? 。 2.(2009年上海卷)函数22cos sin 2y x x =+的最小值是_____________________ . 3.(2009辽宁卷文)已知函数()sin()(0)f x x ω?ω=+>的图象如图所示,则ω =

高中三角函数公式和计算公式整合

两角和公式倍角公式 sin(A+B) = sinAcosB+cosAsinB Sin2A=2SinA?CosA sin(A-B) = sinAcosB-cosAsinB Cos2A = Cos^2 A--Sin^2 A cos(A+B) = cosAcosB-sinAsinB =2Cos^2 A—1 cos(A-B) = cosAcosB+sinAsinB =1—2sin^2 A tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan2A = 2tanA/(1-tan^2 A) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式 a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2; 公式一:

相关文档
最新文档