放缩法

放缩法
放缩法

放缩法是指要证明不等式A

解释:A

属性:不等式的证明里的一种方法

其他方法:比较法,综合法

1、理论依据:

(1)不等式的传递性:如果A>C,C>B,那么A>B;

(2)等量加不等量为不等量;

(3)同分子(母)异分母(子)的两个分式大小的比较。

放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法。

2、常见技巧:

(1)舍掉(或加进)一些项。

(2)在分式中放大或缩小分子或分母。

(3)应用基本不等式放缩(例如均值不等式)。

(4)应用函数的单调性进行放缩。

(5)根据题目条件进行放缩。

(6)构造等比数列进行放缩。

(7)构造裂项条件进行放缩。

(8)利用函数切线、割线逼近进行放缩。

(9)利用裂项法进行放缩。

(10)利用错位相减进行放缩。

3、注意事项

(1)放缩的方向要一致。

(2)放与缩要适度。

(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。所以对放缩法,只需要了解,不宜深入。

4、放缩法的应用

对一个式子进行估值

例:求的整数部分。

解:设原来的式子为S。那么,故S的值介于90和90.95之间,显然其整数部分为90.

例:已知A=12345678910111213,B=312111123456789,求的小数点后前三位数字。解:因为,所以其小数点后前三位数字是395.

构造不等式

例:求证:

解:,故得证。【注】该题的证明过程是将原式的第二项开始放大,实际上,若从原式的第三项、第四项……开始放大,可以得到更精确的结果。

例:求使得m2+m+7是完全平方数的所有正整数m的值。

解:因为(依据条件,为正整数)如果有,那么便肯定不为完全平方数,因为两个相邻数的完全平方数之间没有其他完全平方数。所以,可能的条件必须

、解得然后一一查证得知,和符合条件。

例:已知p、q、、都是非负整数,且p>1,q>1,求p+q的值。

解:不妨设p≥q。则,故=1或0.

当=0时,q=0.5,舍。

当=1时,2q-1=p。又题意得q|(2p-1),将2q-1=p代入q|[2·(2q-1)-1]<=>q|4q-3<=>q|-3,

故q=3,p=2×3-1=5,那么p+q=5+3=8.

5总结:

放缩法是一种有意识地对相关的数或者式子的取值进行放大或缩小的方法。如果能够灵活掌握运用这种方法,对比较大小、不等式的证明等部分数学试题的解题能起到拔云见日的效果,尤其针对竞赛问题,是一种解决问题的很好方法,所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的"度",否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。

放缩法相关例题

[例1] 证明:1/2-1/(n+1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n (n=2,3,4...)

解:∵1/2^2+1/3^2+......1/n^2>1/2*3+1/3*4+......+1/n*(n+1)=1/2-1/3+1/3-1/4 +......+1/n-1/(n-1)=1/2-1/(n+1)即左侧

1/2^2+1/3^2+......1/n^2<1/1*2+1/2*3+......+1/(n+1)*n=1-1/2+1/2-1/3+......1/(n-1)

-1/n=1-1/n 即右侧

∴1/2-1/(n-1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg (5lg 3lg 2=<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 21k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):221 4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

第一轮复习 放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如: ),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数

高中数学放缩法公式

“放缩法”证明不等式的基本策略 1、添加或舍弃一些正项(或负项) 例1、已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的 值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f (x )= x x 414+,求证:f (1)+f (2)+…+f (n )>n + )(2 1 21*1 N n n ∈-+. 证明:由f (n )= n n 414+=1- 11 11422n n >-+? 得f (1)+f (2)+…+f (n )>n 2211221122112 1 ?- ++?- +?-Λ )(21 2 1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ. 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、逐项放大或缩小

用放缩法证明不等式的方法与技巧答案

用放缩法证明不等式的方法与技巧 一.常用公式 k(k +1) k(k -1) 2. _____________ w ___ £ ________ ____ k 2 2 >k (k > 4) k 4. 1 x 2x 3x”…X k >2 (k > 2) 丄凸丄 k ! 2 ( k _1)! b (待学) 二?放缩技巧 (1) 所谓放缩的技巧:即欲证 A < B ,欲寻找一个(或多个)中间变量 C ,使A < C < B , 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 若 t 〉0, a+t >"a,a — t ■7^^ = n 1 1 1 —— --- = -------- n n +1 n(n +1) (4) 2( J n +1 - >/n)= 1 1 11,^

----- ,一 < ---- b b+m b b 1 “1 + 1 . . 1 n! 2 22 2n 」 1 1 1 1 + …c 1 +(1 —一) +(— 一一) n 2 2 3 + 1 3! 1 (7) (8) =2(V n - J n -1) J 2! 1 + — + — 22 32 1 1 1 --)(因为—< -------------- ) n n (n-1) n 丄+丄+丄1 n +1 n +2 n +3 或丄十丄十丄 n +1 n +2 n +3 1 +丄+丄+…+丄 …亠丄 2n n +1 ,丄」 2n A 丄+丄+… 需T n +丄 n +1 十丄+ 2n 2n ?+丄 T n "丄 n +1 2n —<1 n +1 _ n _ 1 —2n — 2 -n = V n 等等。 v n 三?常见题型 (一).先求和再放缩: 1?设 s, =! + 1+ 丄+■- + 2 6 12 n(n+1) 1 ,求证:Si <1 1 M 2 .设0=— ( n 匸N ),数列{b n b n^}的前n 项和为T n ,求证: n

数学归纳法知识点大全

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高中数学方法讲解之放缩法

高中数学方法讲解之放 缩法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、 )1111(21)1)(1(11 112 2+--=+-=- c b a d d b a d c c a c b a b d c b a a m

2=+++++++< c d d d c c b a b b a a m ∴1 < m < 2 即原式成立 例2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??? ???++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证: 21 3121112222<++++n 【巧证】:n n n n n 1 11)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b 巧练一:【巧证】: y y x x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9?lg11 < 1 巧练二:【巧证】: 122299lg 211lg 9lg 11lg 9lg 2 2 2 =?? ? ??

数学归纳法

数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.7 易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. 1.利用数学归纳法证明问题时有哪些注意事项? 剖析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立?n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明. (2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析. 2.运用数学归纳法时易犯的错误有哪些? 剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错. (2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了. (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性.

【自主练习】 1.已知f (n )=1n +1n +1+1n +2+…+1 n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+1 3 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1 4 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1 3 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1 4 2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1= 2? ???1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2)

高中数学方法讲解之放缩法

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶ 利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、)1 1 11(21)1)(1(11112 2+--=+-=-< k k k k k k ; (程度小)

例1.若a , b , c , d ∈R +,求证: 21<+++++++++++< c a d d b d c c a c b b d b a a 【巧证】:记m =c a d d b d c c a c b b d b a a +++ ++++++++ ∵a , b , c , d ∈R + ∴ 1=+++++++++++++++> c b a d d b a d c c a c b a b d c b a a m 2=+++++++ 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??????++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证:21 3121112222<++++n 【巧证】:n n n n n 111)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

数学归纳法经典例题及答案

数学归纳法(2016421) 、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确. 综合(1)、( 2), 注意:数学归纳法使用要点: 两步骤,一结论 、题型归纳: 题型1.证明代数恒等式 用数学归纳法证明: 当n=k+1时. k 1 2k 3 由①、②可知,对一切自然数 n 等式成立. 证明:①n=1时,左边 ②假设n =k 时, 2n 1 1 2n 1 n 2n 1 1 3 等式成立,即: -,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k 2k 1 2k 1 2k 1 2k 1 2k 3 2k 1 2k 1 2k 3 2k 2 2k 1 3k 1 2k 3 2k 1 k 1 2k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,

题型2.证明不等式 11 1 _ 例2 ?证明不等式1 2打(n € N ). V 2 <3 V n 证明:①当n=1时,左边=1,右边=2. 左边 <右边,不等式成立. 那么当n=k+1时, 2 .k 2k 1 2.k 1 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数 n 都成立. 说明:这里要注意,当 n=k+1时,要证的目标是 1 1 1 1 ---------------------------------------- 1 — — — ------------ 2 \ k 1,当代入归纟纳假设后,就是要证明: ■. 2 3 . k 、k 1 2、、k 1— 2 k 1 . -k 1 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *). (1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值. a 2 十 ⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1) 3 . 解:(1) 当 n = 5 时, 原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1 .3 1 . 2 1 ■- 3

放缩法技巧全总结(非常精辟-是尖子生解决高考数学最后一题之瓶颈之精华!!)

例析放缩法在数列不等式中的应用 孙卫 (安徽省芜湖市第一中学 241000) 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1(2008 辽宁21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如:),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2(2008 安徽21.节选)设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数 (Ⅰ)证明:[0,1]n a ∈对任意* n N ∈成立的充分必要条件是[0,1]c ∈;

相关文档
最新文档