环路声学共振多级行波热声发动机的机理研究

环路声学共振多级行波热声发动机的机理研究
环路声学共振多级行波热声发动机的机理研究

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

发动机振动测试技术研究

硕士研究生课程论文 发动机振动测试系统研究 任课教师:XXX 学生姓名:XXX 年级:2013级 学生编号: 专业:车辆工程 时间:2014年1月10日 发动机振动测试系统研究 摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。 关键词:发动机振动;振动测试;测试系统 Study on Engine Vibration Test System Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis. Key words:engine vibration;vibration test;test system

汽车发动机原理课后答案

第一章 1简述发动机的实际工作循环过程。 答: 2画出四冲程发动机实际循环的示功图,它与理论示功图有什么不同?说明指示功的概念和意义。 理论循环中假设工质比热容是定值,而实际气体随温度等因素影响会变大,而且实际循环中还存在泄露损失.换气损失燃烧损失等,这些损失的存在,会导致实际循环放热率低于理论循环。指示功时指气缸内完成一个工作循环所得到的有用功Wi,指示功Wi反映了发动机气缸在一个工作循环中所获得的有用功的数量。 4什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数PmeCm. 第二章

1为什么发动机进气门迟后关闭.排气门提前开启?提前与迟后的角度与哪些因素有关/ 答:进气门迟后关闭是为了充分利用高速气流的动能,从而实现在下止点后继续充气,增加进气量。排气门提前开启是由于配气机构惯性力的限制,若在活塞到下止点时才打开排气门,则在排气门开启的初期,开度极小,废弃不能通畅流出,缸内压力来不及下降,在活塞向上回行时形成较大的反压力,增加排气行程所消耗的功。在发动机高速运转时,同样的自由排气时间所相当的曲轴转角增大,为使气缸内废气及时排出,应加大排气提前角。 2四冲程发动机换气过程包括哪几个阶段,这几个阶段时如何界定的? 答:1)自由排气阶段:从排气门打开到气缸压力接近于排气管内压力的这个时期。 强制排气阶段:废气是由活塞上行强制推出的这个时期。 进气过程:进气门开启到关闭这段时期。 气门重叠和燃烧室扫气:由于排气门迟后关闭和进气门提前开启,所以进.排气门同时

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 GB/T 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 GB/T 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖20Hz~20000Hz的频率范围。 加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。传声器、加速度传感器在测量前必须进行标定。 测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 发动机状态 发动机不带空气滤清器和排气消声器,引出进、排气噪声。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

汽车发动机原理课后习题答案

第二章发动机的性能指标 1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化? 答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径 2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力 3.有利于分析比较发动机不同循环方式的经济性和动力性 简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化 2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程 3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。 2.简述发动机的实际工作循环过程。 四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么? 有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。 4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失

形成的原因。 答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换 2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失 3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失 4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。分隔式燃烧室,工质在主副燃烧室之间流进、流出引起节流损失 5.泄露损失活塞环处的泄漏无法避免 5.提高发动机实际工作循环效率的基本途径是什么?可采取哪些措施? 答:减少工质比热容、燃烧不完全及热分解、传热损失、提前排气等带来的损失。措施:提高压缩比、稀释混合气等 6.为什么柴油机的热效率要显著高于汽油机? 柴油机拥有更高的压缩比, 7.什么是发动机的指示指标?主要有哪些? 以工质在气缸内对活塞做功为基础,评定发动机实际工作循环质量的

汽车发动机原理课本总结

汽车发动机原理 一、发动机实际循环与理论循环的比较 1.实际工质的影响 理论循环中假设工质比热容是定值,而实际气体比热是随温度上升而增大的,且燃烧后生成CO2、H2O等气体,这些多原子气体的比热又大于空气,这些原因导致循环的最高温度降低。加之循环还存在泄漏,使工质数量减少。实际工质影响引起的损失如图中Wk所示。这些影响使得发动机实际循环效率比理论循环低。 2.换气损失 为了使循环重复进行,必须更换工质,由此而消耗的功率为换气损失。如图中Wr所示。其中,因工质流动时需要克服进、排气系统阻力所消耗的功,成为泵气损失,如图中曲线rab’r 包围的面积所示。因排气门在下止点提前开启而产生的损失,如图中面积W所示。 3.燃烧损失 (1)非瞬时燃烧损失和补燃损失。实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失. (2)不完全燃烧损失。实际循环中会有部分燃料、空气混合不良,部分燃料由于缺氧产生不完全燃烧损失。 (3)在高温下,如不考虑化学不平衡过程,燃料与氧的燃烧化学反应在每一瞬间都处在化学动平衡状态,如2H2O=2H2+O2等,由左向右反应为高温热分解,吸收热量。但在膨胀后期及排气温度较低时,以上各反应向左反应,同时放出热量。上述过程使燃烧放热的总时间拉长,实质上是降低了循环等容度而降低了热效率。 (4)传热损失。实际循环中,汽缸壁和工质之间始终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线而造成的损失。 (5)缸内流动损失。指压缩及燃烧膨胀过程中,由于缸内气流所形成的损失。体现为,在压缩过程中,多消耗压缩功;燃烧膨胀过程中,一部分能量用于克服气流阻力,使作用于活塞上做功的压力减小。 二、充量系数 衡量不同发动机动力性能和进气过程完善程度的重要指标;定义为每缸每循环实际吸入气缸的新鲜空气质量与进气状态下计算充满气缸工作容积的空气质量的比值。 影响因素: 1.进气门关闭时缸内压力Pa 2.进气门关闭时缸内气体温度Ta 3.残余废气系数 4.进排气相位角 5.压缩比 6.进气状状态 提高发动机充量系数的措施 1.降低进气系统阻力 发动机的进气系统是由空气滤清器、进气管、进气道和进气门所组成。减少各段通路对气流的阻力可有效提高充量系数。(1)减少进气门处的流动损失1)进气马赫数M 不超过0.5受气门大小、形状、升程规律、进气相位等因素影响2)减少气门处的流动损失增大气门相对通过面积,提高气门处流量系数以及合理的配气相位是限制M值、提高充量系数的主要方法。增大进气门直径可以扩大气流通路面积;增加气门数目;改进配气凸轮型线,适当增加气门升程,在惯性力容许条件下,使气门开闭尽可能快;改善气门处流体动力性能。(2)减少进气道、进气管和空气滤清器的阻力

振动理论练习题.doc

第1章练习题 题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题1.2图题1.3图 题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题1.4图题1.5图 题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。 题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。 题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。 题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。 题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题1.10图 题1.11图 题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o 光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少? 题1.13图 题1.14图 题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1 )(000 t t t t t t x t x n n n n s -+--=ωωωω。

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

发动机振动理论分析a

发动机隔振 1 发动机振动的常用分析方法 发动机工作时,由于自身和来自地面的干扰,引起多种复杂的振动。发动机作为一般机械,分析其振动可用如下几种方法。 拉格朗日方程 对于振动,如果能用函数形式写出其势能及动能的表达式,可以用拉格朗日方程。 设由n 个质点组成的系统,其n 个独立的广义坐标为1q ,2q ,……n q 若系统的约束条件式定常的,则系统的动能可表示为: ∑∑===n r n s s r rs q q m T 11 21 (1) 系统的势能可表示为: ∑∑===n r n s s r rs q q k V 11 21 (1) 如果写成矩阵形式,为: ~ {}??? ???????????=n q q q q 21广义坐标阵列 (3) []?? ??? ?????=nn n n m m m m M 1111质量矩阵 (4) []?? ?? ? ?????=nn n n k k k k K 1111刚度矩阵 (5) 则有: {}[]{}q M q T T 2 1= (6)

{}[]{}q M q V T 2 1= (7) 令V T L -=表示质点系的动能与势能之差,成为拉格朗日函数,于是有: 0d d =??? ???????-??????????j j q L q L t (8) 这就是保守系统的拉格朗日方程。 由拉格朗日方程,得: ( []{}[]{}0=+q K q M (9) 上列方程就是无阻尼多自由度系统的运动微分方程一般形式。 对于有阻尼系统利用表征系统阻尼性质的物理量耗散函数{}[]{}q C q T 2 1= Φ来考虑线性阻尼的影响,在利用拉格朗日方程,可得到有阻尼多自由度系统振动运动微分方程的一般形式: []{}[]{}[]{}{}f q K q C q M =++ (10) 式中:[]M ——质量矩阵; []C ——阻尼矩阵; []K ——刚度矩阵; {}f ——激振力。 有限元法 计算机技术的发展,为复杂结构的振动的分析提供了新的途径,发展了另一 种更为使用而先进的方法——有限元法。 ; 有限元法的基本思想是把连续体视为有有限个基本单元在结点处彼此相连接的结合体,把具有无穷多个自由度的连续结构振动问题变成为有限多个自由度的振动问题。有限元法的分析过程为 模态分析法 如果复杂构件难以离散化就要利用模态分析技术来建立振动系统的数学模型。 通过模态分析的方法求解出振动系统的模态参数,即系统的固有频率、振型及阻尼,从而建立起分析模型。模态分析的一般过程如下: (1)、求解广义坐标下多自由度系统的质量矩阵和刚度矩阵;

汽车发动机原理名词解释

123发动机理论循环:将非常复杂的实际工作过程加以抽象简化,忽略次要因素后建立的循环模式。 循环热效率:工质所做循环功与循环加热量之比,用以评定循环经济性。 指示热效率:发动机实际循环指示功与所消耗的燃料热量的比值。 有效热效率:实际循环的有效功与所消耗的热量的比值。 指示性能指标:以工质对活塞所作功为计算基准的指标。 有效性能指标:以曲轴对外输出功为计算基准的指标。 指示功率:发动机单位时间内所做的指示功。 有效功率:发动机单位时间内所做的有效功。 机械效率:有效功率与指示功率的比值。 平均指示压力:单位气缸工作容积,在一个循环中输出的指示功。 平均有效压力 me p :单位气缸工作容积,在一个循环中输出的有效功。 有效转矩:由功率输出轴输出的转矩。 指示燃油消耗率:每小时单位指示功所消耗的燃料。 有效燃油消耗率:每小时单位有效功率所消耗的燃料。 指示功:气缸内每循环活塞得到的有用功。 有效功:每循环曲轴输出的单缸功量。 示功图:表示气缸内工质压力随气缸容积或曲轴转角的变化关系的图像。p V -图即 为通常所说示功图, p ?-图又称为展开示功图。 换气过程:包括排气过程(排除缸内残余废气)和进气过程(冲入所需新鲜工质,空气或者可燃混合气)。 配气相位:进、排气门相对于上、下止点早开、晚关的曲轴转角,又称进排气相位。 排气早开角:排气门打开到下止点所对应的曲轴转角。 排气晚关角:上止点到排气门关闭所对应的曲轴转角。 进气早开角:进气门打开到上止点所对应的曲轴转角。 进气晚关角:下止点到进气门关闭所对应的曲轴转角。 气门重叠:上止点附近,进、排气门同时开启着地现象。 扫气作用:新鲜工质进入气缸后与缸内残余废气混合后直接排入排气管中。 排气损失:从排气门提前打开,直到进气行程开始,缸内压力到达大气压力前循环功的损失。 自由排气损失:因排气门提前打开,排气压力线偏离理想循环膨胀线,引起膨胀功的减少。 强制排气损失:活塞将废气推出所消耗的功。 进气损失:由于进气系统的阻力,进气过程的气缸压力低于进气管压力(非增压发动 机中一般设为大气压力),损失的功成为进气损失。 换气损失:进气损失与排气损失之和。 泵气损失:内燃机换气过程中克服进气道阻力所消耗的功和克服排气道阻力所消耗的功的代数和。不包括气流对换气产生的阻力所消耗的功。 充量系数:实际进入气缸内的新鲜空气质量与进气状态下理论充满气缸工作容积的空气质量之比。 进气马赫数M :进气门处气流平均速度与该处声速之比,它是决定气流性质的重要参数。M 反映气体流动对充量系数的影响,是分析充量系数的一个特征数。当M 超过一定数值时,大约在0.5左右,急剧下降。应使M 在最高转速时不超过一定数值,M 受气门大小、形状、生成规律、进气相位等因素影响。 增压比:增压后气体压力与增压前气体压力之比。 增压:利用增压器提高空气或可燃混合气的压力。 增压度:发动机在增压后增长的功率与增压前的功率之比。 4抗爆性:汽油在发动机气缸内燃烧时抵抗爆燃的能力,用辛烷值表示。 干点:汽油蒸发量为100%时的温度。 自然点:柴油在没有外界火源的情况下能自行着火的最低温度。 凝点:柴油失去流动性而开始凝固的温度。 热值:单位量(固体和液体燃料用1kg ,气体燃料用1)的燃料完全燃烧时所发出的热量。当生成的水为液态时,成为高热值,气态时为低热值。无论是汽油机还是柴油机,燃料在气缸中生成的水均为气态,所用热值均为低热值。 理论空气量:1kg 燃料完全燃烧时所需的最少空气量。 过量空气系数:燃油燃烧实际供给的空气量(L )与完全燃烧所需理论空气量()的比值。 空燃比:燃油燃烧时空气流量与燃料流量的比。 5喷油器的流通特性:喷孔流通截面积与针阀升程的关系。 喷射过程:从喷油泵开始供油直到喷油器停止喷油的过程。 供油规律:供油速率随凸轮轴转角(或时间)的变化关系。 喷油规律:喷油速率随凸轮轴转角(或时间)的变化关系。 喷油提前角:燃油喷入气缸的时刻到活塞上止点所经历的曲轴转角。 燃油的雾化:燃油喷入燃烧室内后备粉碎分散为细小液滴的过程。 燃烧放热规律:瞬时放热速率和累积放热百分比随曲轴转角的变化关系。 瞬时放热速率:在燃烧过程中的某一时刻,单位时间内(或曲轴转角内)燃烧的燃油所放出的热量。 累积放热百分比:从燃烧开始到某一时刻为止已经燃烧的燃油与循环供油量的比值。

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

振动噪声测试过程设置

第一步,开启服务器后,选择signature testing-advanced,打开测试软件 第二步,打开软件后,选择新建工程按钮

第三步,打开空白的工程后的页面如下

第四步,进入channel setup 界面,开始设置通道 一般情况下,tacho1设为转速信号通道,只需点选其前面单选框就可以,其他在后面的tracking setup里面设置。 噪声通道设为1-6,首先要把channelgroup选为acoustic。然后,将每个点的位置用汉语拼音标注出来,如1通道为前面测点,写为qian,如此类推。方向不用设置。Inputmode选择为ICP.其余不用在这里改动,后面calibration过程会更改一写这里的参数。 其余7-16设为振动信号,振动为三向传感器,所以每个传感器有3个通道,三个振动测点共占用9个通道。首先要把channelgroup选为vibration。然后,将每个点的位置用汉语拼音标注出来,如7通道为前面油底壳1测点+x方向,写为油底壳1,direction选择+X,如此类推。振动传感器的灵敏度系数直接通过输入的方式进行标定,单位为mv/g。传感器类型选择ICP. 设置完以上步骤的界面如下图所示。

第五步,进行声压传感器的标定。 具体设置为:单位:pa,频率:1000HZ, LEVEL: 94dB(rms),标定时间:10s。 然后,手持麦克风标定器将传感器夹持住后,点击界面的check,如果正常,点击start按钮开始标定,过程中,左侧窗口会出现信号曲线,稳定状态需要保持10s,方能完成标定,数值稳定后,如果两次标定结果相差小于2%,接受这个通道的标定数据,如果两次结果相差较大,需要重新检查标定。

发动机表面结构振动与辐射噪声的关系

第3章发动机表面振动与辐射噪声关系的系统研究 所谓发动机噪声除了进、排气噪声和风扇噪声外,主要是指由发动机外表面辐射出来的噪声,而辐射噪声与发动机表面结构振动有着密切的关系。系统地研究发动机表面振动与辐射噪声之间的关系,对于发动机噪声源预测和降低辐射噪声有着极其重要的意义。 3.1内燃机的表面振动 结构的表面振动和辐射噪声之间的关系非常复杂,通常无法确定。通过对噪声和单源振动测定的比较研究可知,大约有50%没有确切的关系。声场环境的影响、声的传播方向、结构振动的频率和相位的不均匀性,以及精确的数学模型极为复杂等因素导致精确的解析分析不可能实现。随机因素的影响和影响因素的随机性使得研究人员转而采用统计分析的方法来完成对振动和噪声辐射之间关系的研究[77-81]。 发动机结构振动可用其模态振型来表示,发动机结构振动的模态振型是由发动机设计所决定的,发动机质量分布、刚度和阻尼决定了其模态频率及其各阶模态之间的频率间隔。 柴油机是一种结构复杂、变工况运行的动力机械。柴油机的表面振动特性决定了其辐射噪声特性。为此,作者对一典型的直列柴油机-CY6102BZQ型柴油机的表面振动进行了实验测试与研究。实验框图如下:

实验仪器如下: 测点布置如下:

图3-1 发动机表面法向振动速度测点布置图测试结果如下:

图3-2机体表面各层法向平均振动速度均方根值 图3-3其它附件表面平均法向振动速度均方根值 图3-4 不同工况下全部测点总的平均振动速度均方根值 由以上试验结果可知,发动机表面各部位的平均振动速度的模式比例基本保持相同,但其振幅随发动机转速升高而增大。这说明,发动机外表面各部位的振动功率大小比例分布基本保持恒定,如果知道了各部位(部件)的表面积,就可预测发动机表面各部件对幅射噪声贡献的大小。这也是表面振动速度法进行噪声源识别的基本原理。

整车振动理论

发动机激励的整车振动 Motorerregte Fahrzeugschwingungen 车辆行驶在平坦的路面上或怠速运转时,只有发动机本身是激振振源.在发动机中,准确地说是在往复活塞式发动机中,由于反复做上下运动的活塞和燃烧过程,产生了附加力和扭矩,它们通过动力总成悬置(主要是橡胶元件)激发汽车底盘的振动。由此产生的振动和噪声将对车箱内乘员产生不利影响。 下面首先介绍激振源和激励振动的成因,接着是激励振动的影响,最后讲述连接作用在发动机和底盘之间的动力总成悬置,见图1.1。作用在发动机上的主要激振力为Fz和围绕曲轴中心线的力矩Mx,有时也存在垂直方向的激振力矩My,但是激振力Fx和Fy以及激振力矩Mz根本不存在或很少发生。 图1.多缸发动机的激振力和激振力矩 如图所示,X轴与曲轴中心线相同,对于发动机纵向布置在整车上的车辆来说,该轴与车辆的纵轴方向一致。对大多数的前轮驱动车辆来说,X轴相当于车辆的横轴。对发动机来说,Z轴方向与直列发动机的汽缸中心线相一致,与V型发动机汽缸中心线角分线相一致。当发动机斜置时,发动机的Z轴与车辆的Z轴不一致.

-----------------------------------------------(1.3) 发动机激励可分为惯性和燃烧激励。下面先介绍单缸机,然后介绍多缸机. 1.单缸发动机激励 1.1.曲柄机构运动 见图1.2a ,对于曲柄机构的运动,可以用连杆大头长度l 和曲柄半径 r(冲程s=2r)建立曲轴转角 α和活塞行程Sk 的运动关系式: 角 α和 β之间的关系可由距离BD=lsin β =rsin α,再将下式代入其中: λp=r/l 这样可以得到: 代入连杆比λp =r/l,展开平方根后可得: 忽略4阶以上的各项,活塞行程可以由下式描述: 假如曲轴角速度ω 对式(1.2)求导,可得到活塞速度方程式: -----------------------------------------------(1.2)

第十章 噪声与振动

第十章 噪声与振动 第一节 声学基础 声音(包括噪声)的形成,必须具备三个要素,首先要有产生振动的物体,即声源,其次要 有能够传播声波的媒介,最后还要有声的接受器,如人耳、传声器等。 一、声音的基本性质 声音(sound )是由物体振动产生的,而振动在弹性介质中的传播形式就是声波,处于一定 频率范围内(20~20000Hz )的声波作用于人耳就产生了声音的感觉。 当人们用手拨动琴弦,弦即振动并同时发出声音,这里琴弦的振动是产生声音的根源。通常 我们把振动发声的物体,称为声源(sound source )。声源不一定都是固体,液体和气体的振动也会产生声音,如海上的浪涛声和火车的汽笛声。 如果将一个发声物体置于一个真空的罩子内,声音则传不出来,因此声音的产生除了要有振 动的物体外,还必须要有传播声音的媒介物质,它可以是空气、水等流体也可以是钢铁、玻璃等固体。 物体振动是产生声音的根源,但并不是物体产生震动后一定会使人们得到声音的感觉。因为 人耳能感觉到的声音频率范围只是在20~20000Hz 之间,这个频率范围的声音称可听声,频率低于20Hz 的声音称为次声(infrasound ),频率高于20000Hz 的声音称为超声(ultrasound )。次声和超声对于人耳来说都是感觉不到的。 描述声音高低的物理量是频率,描述声音强弱的物理量有:声压、声强、声功率以及各自相 应的级,描述声音大小的主观评价量是响度、响度级。 1. 1. 声压与声压级 声源的振动以声波的形式在介质中传播,传播所涉及的区域称为声场(sound field )。当声 波在空气中传播时,声场中某一点的空气分子在其平衡位置沿着声波前进的方向发生前后振动,使平衡位置处空气的密度时疏时密,引起平衡位置处空气的压力相对于没有声音传播时的静压发生变化。我们将该点空气压强相对于静压强的差值定义为该点的声压(sound pressure )。在连续介质中,声场中任一点的运动状态和压强变化均可用声压表示。 声压是用来度量声音强弱的物理量。声音通过空气传入人耳,引起耳内鼓膜振动,刺激听觉 神经,产生声音的感觉,声压越大,耳朵鼓膜受到的压力越大,感觉到的声音越强。因为声波作用引起声场中某点介质压缩或膨胀,所以声压有正有负。声压可用瞬时声压和均方根声压(亦称有效声压)表示。声场介质中某点在某瞬时相对于静压强的单位面积上的声压变化即瞬时声压()p t (instantaneous sound pressure );瞬时声压在某一时间周期内的均方根值,即均方根声压rm s p (root mean square sound pressure)。 rm s p 按下式计算: 12122201()()T rms p p p t dt T ??==????? (Pa ) (10-1) 公式中符号上部横线表示对时间加权平均,而T 是测量的时间周期。 以下未注明的声压p 均指均方根声压rm s p 。人耳刚能听到的声压定义为听阈声压,其值为 0p =2×10-5Pa ,也称基准声压;使人耳感觉疼痛的声压定义为痛阈声压,其值为p =20Pa ,两者之间相差100万倍,一般声音介于两者之间。由于常用的声音大小相差悬殊,为了度量与记录,采用级的概念,即用声压的倍比关系的对数量来表示,单位为分贝( decibel ,dB),对于均方根声 压为p 的声波,其相应的声压级(sound pressure level )p L 为: 020lg(/)p L p p = (dB ) (10-2) 常见的声压级范围如图10-1所示。

(汽车行业)汽车发动机振动噪声测试系统

(汽车行业)汽车发动机振动噪声测试系统

附件1 汽车发动机振动噪声测试系统 用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 设备技术要求及参数 设备系统配置 数据采集系统壹套; 数据测试分析软件壹套; 传声器2个; 加速度计2个; 声强探头1套; 声级校准器1个; 笔记本电脑壹台 数据采集、控制系统技术要求 主机箱壹个;供电采用9~36V直流和200~240V交流; 便携式采集前端,适用于实验室及现场环境; 整机消耗功率<150W; 工作环境温度:-10?C~50?C; 中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 输入通道数:4个之上,其中2个200V极化电压输入通道、不少壹个转速输入通道; 输入通道拥有Dyn-X技术,动态范围160dB; 每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 系统留有扩充板插槽,根据需要能够进壹步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 采集前端的数据传输具备二种方式之壹:①通过10/100M自适应以太网传输至PC;②通过无线通讯以太网技术传输至PC,通信距离在100米之上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级; 多分析功能:对同壹信号可同时进行FFT和CPB分析和显示处理;对同壹信号也可同时设置不同的分析带宽进行分析; 输入通道采用至少24位的A/D; 自动检测带传感器电子数据表的传感器(即插即用) 数据测试分析软件系统技术要求 多通道输入测量信号且行采集、处理和存储;根据需要能够进壹步扩充; 多通道实时在线显示; 能测量传递函数、自功率谱、互功率谱、自相关函数、互相关函数、能测量相干函数、概率密度函数、脉冲相应函数、倒频谱、时域波形,能进行动态信号的微积分、四则运算、编辑等;系统具有自动报告生成功能。测试报告模板可根据用户需求定制,用户可从Word中自动得到实时更新的测量曲线和数据等; 函数可用各种图形类型显示,包括:瀑布图、彩色等高线图、条状图、线状图、曲线图、阶

相关文档
最新文档