微波测量实验 实验三

微波测量实验 实验三
微波测量实验 实验三

实验三复反射系数(复阻抗)测量

121180166 赵琛

一、实验目的

1、了解测量线的基本结构和调谐方法,掌握微波晶体检波律的校

准方法

2、了解驻波测量与阻抗测量的意义与相互关系,熟练掌握用测量

线测量反射系数,即复阻抗的基本方法。

3、熟悉Smith阻抗圆图的应用

4、了解阻抗调配器作用及阻抗调配方法

二、实验原理

参看序言 1.3有关部分,1.5.2谐振式波长计,讲义第四部分YM1124单频点信号发生器,YM3892/YM3892A选频放大器使用说明。测试框图:

三、实验要求与步骤

1 在测量线后接短路片。按仪器使用说明正确调试微波信号源,放大器等。在调试中,一般测量线的探针调节旋钮无需调动,将信号调至最大,并用波长计测出信号源工作频率f,由此计算导波长λg。

2 在测量线后接短路片,用交叉读数法测出各最小点位置Dmin,求导波长λg,并与上面计算得到λg做比较。

3 在测量线后接匹配负载,用直接法测出其驻波系数。

4 在测量线后接膜片+匹配负载,用直接法、二倍最小法、功率衰减法测量其驻波系数,并测出最小点位置,计算该负载的输入阻抗及输入导纳。功率衰减器的刻度通过查表得到衰减量。

5 取下负载,测量线开口,测一下此时驻波系数ρ及Dmin,计算终端开口时的等效阻抗值。

6 在测量线后接短路片,测量晶体检波律。

四、实验数据与实验分析

1 用频率计算λg。

波长计示数为8.45,波长计型号为9507,查表可得,此时

f=9.3735GHz

a=2.286cm,

λ

带入公式可求得,λg=44.7mm

2 短路法测导波长λg

最小读数法读数:(单位:mm)

λ

与计算得到λg对比:由数据可见,最小读数法测得的λg稍大于计算频率得到的λg,这个是符合预期的,因为这是由于测量线上开槽线的影响,使得在测量线中测得的导波长比不开槽的相同截面举行波导中的导波长要稍微长一点。因此,测量线测得的波长稍高于波长计测得的波长。

3 用直接法测阻抗匹配时的驻波系数:

ρ

分析:可以看出,由于此时阻抗匹配,ρ近似等于1。但是,由于ρ

很小,驻波场最大值和最小值区别不大,且变化不尖锐,导致不易测准。此外,直接法的测量还受到了检波晶体的噪声电平以及平方率检波准确性的影响。此时我们测量时默认晶体检波律是2,但这个数据并不一定准确,在后面分析我们可以看出,这个数据其实很不准确,直接影响了测量准确度。

4,用直接法、二倍最小法、功率衰减法测量不匹配阻抗的驻波系数以及输入阻抗、输入导纳、衰减量

驻波系数:

直接法:

ρ

2倍最小法:

ρ

功率衰减法:

衰减器型号:02

示数

衰减器刻度:6.12 衰减:

衰减器刻度:9.26 衰减:

Δ

ρ7.3

计算输入阻抗与输入导纳:

对于驻波系数ρ,根据后面对晶体检波律的分析,我们可以得出,由于对平方律的修正,取直接法和二倍最小法的修正后的平均,ρ应该为6.2。以下使用这个数据进行计算。

对于膜片+匹配负载,

Dmin1=132.3 Dmin2=130.2 Dmin=131.3(mm)

对于短路片,前面已经求得,=134.3

=Dmin-=-3(mm)

在精度要求不太高的时候,我们可以利用史密斯圆图求得阻抗。史密斯圆图见下。在Dmin左边,查图时按照顺时针旋转(朝向电源),先找到等ρ圆,圆心为=圆图中心,找到最小点Zmin=1/ρ,顺时针转过°。以圆点为矢径,与等ρ圆的交点即可得输入阻抗。

求得归一化阻抗=0.026+j0.45。

归一化导纳=0.13-j2.22

5计算终端开口时的驻波系数及等效阻抗终端开口时:

6测量晶体检波律

Dmin=111.6

相对

计算晶体检波律:

相对

相对

对其求平均值,=1.51,即认为检波律应该是1.51。

分析:由数据可见,检波律误差与平方律有一定偏差,这个会导致之前很多测量不够。检波律随着环境温度、湿度、时间、振动而变化,也即是说,检波律误差较大。若将K=1.51带入直接法和二倍最小法,分别测得ρ=6.43和ρ=5.97,则与功率衰减法测得的数据较为接近,符合常规。

五、注意

若驻波系数很小时,为何要求D1、D2不能太接近?

答:若驻波系数很小,最大值和最小值之间距离本来就很小,如果此时仍然D1D2距离很近远小于最大最小之间距离,则D1D2距离会过近,导致误差会非常大。

六、思考题

1用测量线测微波阻抗应注意什么问题?为什么能用测等效参考面阻抗的方法确定待测阻抗?

答:阻抗测量设计相位测量,用测量线的方法测量微波阻抗,需要使用交叉读数法测量导波长,从俄国人测出驻波系数ρ,还需测量出从被测微波元器件的输入端口向信号源方向到达第一个波节点之间的距离。但由于受到测量线结构限制,探针难以到达距离实际输入端口,难以直接测量,因此需要在探针到达范围内选择等效截面,进而确定。

由于传输线每隔阻抗相等,因此可以再测量线探针到达范围内任选一个合适波节点,作为终端等效截面位置,从而测得待测阻抗。

2 能否从你的所测得数据求出膜片本身阻抗?能否考虑测膜片阻

抗其他方法?

答:第四步测量的时候相当于是膜片和匹配负载进行了串联,已知波导系数,并且知道了复反射系数情况下,可以求得膜片+匹配阻抗合成的阻抗,再求得膜片阻抗。

3 试比较实验中所用三种驻波系数测量方法。

答:直接法:应用条件是ρ≤6。优点是测量相对简单,但是依赖于晶体检波律的准确度,如果平方律不准则误差很大。应注意:1当ρ很小(小于1.5)时,最大和最小示数区别很小,导致直接法误差很大,此时要多测几组求平均。2 应让电表指针偏转在满刻度50%以上,从而提高测量精度。

等指示度法:应用条件:ρ>3-5;当ρ大于6的时候,驻波最大和最小电压相差很大,若驻波最小处电压有偏转,则最大处由于电压较大,会使晶体检波律偏离平方律,从而直接法测量时候会引入较大误差。

测量公式为ρ

因此宽度W和波导长λ的测量精度对于测量结果影响很大。在测量最小点时,应使用交叉读数法来减小误差。

功率衰减法:任意驻波比均可应用。这种测量方法的测量精度与晶体检波律、测量放大器的线性无关,而主要取决于衰减器校准精度和测

量电路的匹配情况,在测量精度要求高时,应先对电源方向进行匹配,并选用高精度衰减器。在测量中,由于要同时调节衰减器并保持放大器示数不变,因此受到了衰减器和测量电路两方面的误差,误差较大。

4测量线后不接负载(终端开口),ρ=∞吗?

答:此时ρ不会无穷大。因为在实际情况中,或多或少会有一些能量反射回去,从而不会使得驻波系数无穷大。

微波仿真理论基础

Basic BJT Circuit Figure 1 below shows the simplied ‘Pi’ model of a BJT. c Vin Vout Zin Vout B C Β.ib ib Figure 1 Transistor symbol and simplified ‘Pi’ model We can see that output consists of a current source –gm.Vbe to get the output voltage we multiply by the load resistance Rce ie Vout = -gm.Vbe.Rce (the negative sign denotes signal inversion). The input resistance of the circuit is given by: e temperatur room at (23.5mV)0.0235V ely approximat is and voltage thermal the as known is V (mS) ctance Transcondu gm Kelvin in e Temperatur T 1.6022x10 charge Electron q 1.3807x10 constant Boltzmans k where q k.T V ; V I gm where gm β R T 19-123-T T CQ IN =========?C JK The output resistance is given by: ge(V)EarlyVolta V Where I V rce R A CQ A OUT === The voltage gain (Av) is given by: T A CQ A T CQ be be IN OUT V V V I V .V I rce . V rce .V . V V A ==?=?== gm gm The current gain (Ai) is given by: β- i β.i - I I A b b IN OUT i ===

微波电路S参数测量实验报告

微波电路S参数测量实验报告 一、实验目的 掌握微波电路S参数的基本概念、测试的原理和方法。 二、实验内容 用矢量网络分析仪测试微波滤波器的二端口S参数。 三、基本原理 网络分析仪中最常用的应用是矢量网络分析仪,它是用来测量、分析各种微波器件和组件S参数的高精度仪器,在整个行业中使用率极高,作为重要仪器很多从事产品研发和测试的电子工程师都有可能需要使用。矢量网络分析仪的原理如图1所示。 图1 矢量网络分析仪的原理图 上图中各部分的功能如下: A、信号源:提供被测件激励输入信号,被测器件通过传输和反射对激励波作出响应,被测器件的频率响应可以通过信号源扫频来获取,由于测试结构需要考虑多种不同的信号源参数对系统造成的影响,故一般我们采用合成扫频信号源。 B、信号分离装置:含功分器和定向耦合器,分别提取被测件输入和反射信号,从而测量出它们各自的相位和幅度大小,测试装置可以单独也可以集成到分析仪的内部。 C、接收机:对被测件的反射、传输和输入信号进行测试;采用调谐接收机可以提供最好的灵敏度和动态范围,还能抑制谐波和寄生信号。 D、处理显示单元:对测试结果进行处理和显示,它作为多通道一起,需要有基准通道和测试通道,通过二者的比较才能知道测试的精准度,它的显示功能很强大并且灵活,如多种标记功能、极限线功能等,给系统和元器件的性能和参数测试带来很大的便利性。

矢量网络分析仪本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。而对于双端口测量,则还可以测量传输参数。 图2 利用网络分析仪测微波电路的S参数 微波滤波器可看作是一个二端口网络,具有选频的功能,可以分离阻隔频率,使得信号在规定的频带内通过或被抑制。 滤波器按其插入衰减的频率特征来分有四种类型:(1)低通滤波器:使直流与某一上限角频率ωC(截至频率)之间的信号通过,而抑制频率高于截至频率ωC的所有信号;(2)高通滤波器:使下限频率ωC以上的所有信号通过,抑制频率在ωC以下的所有信号;(3)带通滤波器:使ω1至ω2频率范围内的信号通过,而抑制这个频率范围外的所有信号。(4)带阻滤波器:抑制ω1至ω2频率范围内的信号,而此频率范围外的信号可以通过。 测试前需要特别注意的一点是,如果待测件是有源器件,连接待测件前一定先将网络分析仪的两个端口的输出功率降到-25dBm以下。否则不但不会得到正确的测试结果,而且还有可能将网络分析仪损坏。这一点是测量有源器件时需要特别注意的一点。 四、微波滤波器技术指标 工作频率:9.36GHz; 电压驻波比:<1.3; 插入损耗:< 1dB。 五、实验步骤 1、矢量网络分析仪开机; 2、矢量网络分析仪校准; 3、连接矢量网络分析仪与被测器件; 4、按下“PRESET”键,准备进行设置,并设置监视的频率范围:按下“FREQ”键,按下“CENTER”软键,使用数字键输入扫频段的中心频率,例如9360,然后按下“MHz”软键。同时按下“SPAN”软键,输入测量带宽,使用数字键输入“500”,然后按下“MHz”软键。

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

微波偏振实验报告

篇一:电磁场与微波实验六报告——偏振实验 偏振实验 1. 实验原理 平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。 2. 实验步骤 系统构建图 由于喇叭天线传输的是由矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。dh926b型微波分光仪的两喇叭天线口面互相平行,并与 地面垂直,其轴与偏振实验线在一条直线上。由于接收喇叭口天线是和一段旋转短波导 连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。 在主菜单页面点击“偏振实验”,单击“ok”进入“输入采集参数”界面。 本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。采集点数可根据提示选取。 顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。 终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。 注意事项: ①为避免小平台的影响,最好将其取下。 ②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。 ③转动接收喇叭天线时应注意不能使活动臂转动。 ④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。最好每隔一定读数读取电压值时,将螺丝重新拧紧。 ⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。 3. 实验结果

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

微波测量实验 实验三

实验三复反射系数(复阻抗)测量 121180166 赵琛 一、实验目的 1、了解测量线的基本结构和调谐方法,掌握微波晶体检波律的校 准方法 2、了解驻波测量与阻抗测量的意义与相互关系,熟练掌握用测量 线测量反射系数,即复阻抗的基本方法。 3、熟悉Smith阻抗圆图的应用 4、了解阻抗调配器作用及阻抗调配方法 二、实验原理 参看序言 1.3有关部分,1.5.2谐振式波长计,讲义第四部分YM1124单频点信号发生器,YM3892/YM3892A选频放大器使用说明。测试框图:

三、实验要求与步骤 1 在测量线后接短路片。按仪器使用说明正确调试微波信号源,放大器等。在调试中,一般测量线的探针调节旋钮无需调动,将信号调至最大,并用波长计测出信号源工作频率f,由此计算导波长λg。 2 在测量线后接短路片,用交叉读数法测出各最小点位置Dmin,求导波长λg,并与上面计算得到λg做比较。 3 在测量线后接匹配负载,用直接法测出其驻波系数。 4 在测量线后接膜片+匹配负载,用直接法、二倍最小法、功率衰减法测量其驻波系数,并测出最小点位置,计算该负载的输入阻抗及输入导纳。功率衰减器的刻度通过查表得到衰减量。 5 取下负载,测量线开口,测一下此时驻波系数ρ及Dmin,计算终端开口时的等效阻抗值。 6 在测量线后接短路片,测量晶体检波律。 四、实验数据与实验分析 1 用频率计算λg。 波长计示数为8.45,波长计型号为9507,查表可得,此时 f=9.3735GHz a=2.286cm, 带入公式可求得,λg=44.7mm 2 短路法测导波长λg

最小读数法读数:(单位:mm) 与计算得到λg对比:由数据可见,最小读数法测得的λg稍大于计算频率得到的λg,这个是符合预期的,因为这是由于测量线上开槽线的影响,使得在测量线中测得的导波长比不开槽的相同截面举行波导中的导波长要稍微长一点。因此,测量线测得的波长稍高于波长计测得的波长。 3 用直接法测阻抗匹配时的驻波系数: 分析:可以看出,由于此时阻抗匹配,ρ近似等于1。但是,由于ρ很小,驻波场最大值和最小值区别不大,且变化不尖锐,导致不易测

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北邮微波实验报告

信息与通信工程学院电磁场与微波技术实验报告 班级学号班序号亚东2011211116 2011210466 22

实验二微带分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 实验原理 1.支节匹配器 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+YY形式,即Y=Y0+YY,其中Y0=1/Y0 。并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为Y0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为?YY,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。 双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 2.微带线 微带线是有介质Y Y(Y Y>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质Y Y,可以近似等效为均匀介质填充的传输线,等效介质电常数为Y Y,介于1和Y Y之间,依赖于基片厚度H和导体宽度W。而微带线的特性阻抗与其等效介质电常数为Y Y、基片厚度H和导体宽度W有关。 实验容 已知:输入阻抗Zin=75Ω 负载阻抗Zl=(64+j35)Ω 特性阻抗Z0=75Ω 介质基片εr=2.55,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。

微波测量实验报告一

近代微波测量实验报告一 姓名:学号: 学院:时间:年月 一实验名称 频谱仪的使用及VCO测量 二实验目的 了解频谱仪原理,熟悉频谱仪的参数设置及使用方法;掌握信号频率、功率、相位噪声和谐波的测试方法。 三实验内容 1、点频信号测试 测试信号源输出点频信号1GHz的二次和三次谐波抑制比(输出功率分别为-20dBm和20dBm),测试信号的相噪(@10KHz、@100KHz、@1MHz),考察仪器分辨力带宽、视频带宽等设置对测试结果的影响; 2、VCO测试 测试VCO的输出频率范围、输出功率(包括对应的控制电压),测试某频率点的相噪(@1MHz)和二次、三次谐波抑制比。 四实验器材 RS公司SMBV信号源、FSL6频谱仪、APS3005S直流稳压电源、VCO、微波同轴电缆、微波转接头。 五实验原理及实验步骤 相位噪声:在频域内,一个理想正弦波信号的表现是一个单谱线;实际信号除了主信号之外还包括一些离散的谱线,它们是随机的幅度和相位的抖动,在正常信号的左右两边以边带调制的形式出现。在频域内信号的所有不稳定度总和表现为载波两侧的噪声边带,边带噪声是一个间接的测量与射频信号功率频谱相关噪声功率的指标。边带噪声可以表述为调频边带噪声和调幅边带噪声。大多数的被相位噪声测试系统测量信号的调幅边带功率相对调频边带功率来说都很小,所以对大多数信号来说测量的边带噪声就是调频边带噪声(即相位噪声也称单边带相位噪声)。它的定义为1Hz带宽内相位调制边带的功率和信号总功率的比值,

单位为dBc/Hz。在信号频谱分析仪上,边带噪声是相位噪声和幅度噪声的总和,通常当已知调幅噪声远小于相位噪声时(小于10dB以上),在频谱仪上读出的边带噪声即为相位噪声。 实验步骤 a)设置矢量信号源,分别产生产生频率为1GHz,功率为20dBm和-20dBm 的正弦信号; b)连接信号源与频谱仪; c)设置频谱分析仪,设置中心频率为1GHz,通过调整Res BW和Video BW, 显示被测信号; d)测试在偏离信号10KHz、100KHz、1MHz时的相位噪声; e)调整频谱仪起始、终止频率或带宽使得屏幕足够显示频率为1GHz信号 的二次和三次谐波; f)通过Mkr键选择Delta设置,测量并标示出二次谐波和三次谐波抑制比; g)关闭矢量信号源,连接直流稳压电源、VCO及频谱分析仪; h)通过调节直流稳压电源的电压大小,在频谱仪上观察信号的频率和输出 功率的变化,记录下最大和最小功率,可得VCO的输出频率范围; i)选定频率点:控制电压7.4V,输出功率14.38dBm,频率1.502817GHz, 测试该频率点的相噪(@1MHz)和二次、三次谐波抑制比。 六实验结果 1、点频信号测试数据及图片 数据图片: a)输入功率为20dBm时 二次、三次谐波抑制比

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

北邮微波工程基础ADS仿真实验报告

微波工程基础仿真 实验报告 学院:电子工程学院 班级:2012211xxx 学号:201221xxxx 姓名:xxxx 班内序号:xx

一、实验题目 实验一 1.了解ADS Schematic的使用和设置 2.在Schematic里,分别仿真理想电容20pF和理想电感5nH,仿真频率为(1Hz-100GHz),观察仿真结果,并分析原因。 3.Linecalc的使用 a)计算中心频率1GHz时,FR4基片的50Ω微带线的宽度 b)计算中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的横截面 尺寸(中心信号线宽度与接地板之间的距离) 4.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长开路CPW线的性能参数,中心工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith 圆图变化,分析原因。 5.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长短路CPW线的性能参数,中心工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith 圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。6.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长开路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变

化原因。 7.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长短路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变化原因。 8.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长开路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变化原因。 9.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长短路线的性能参数,工作频率为1GHz。仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。扩展仿真频率(500MHz-50GHz),分析曲线变化原因。 实验二 10.用一段理想四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz。 11.用一段FR4基片上四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz,比较分析题1和题2的结果。

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

实验一、微波测量基础知识实验报告

实验一、微波测量基础知识 班级:核32 姓名:杨新宇学号:2013011806 同组成员:杨宗谕一、实验目的 (1)了解和掌握信号发生器使用及校准。 (2)了解微波测量系统的基本组成和工作原理。 (3)掌握常用微波测量系统各器件的调整和使用方法。 (4)频率计(波长表)校准。 (5)了解和掌握测量线使用方法 二、实验原理及系统组成 1、微波信号源 图1是微波信号源的基本框图。通常由微波信号源、微波测量装置和指示器三部分组成。 它负责提供一定频率和功率的微波信号。同低频信号源一样,其信号可以是连续波也可以是调制波,工作方式有点频、扫频两种状态工作。微波信号源被广泛应用的类型主要有以下两种: (1)标准信号发生器 标准信号发生器其输出信号的频率、功率和调制系数可在一定范围内调节(有时调制系数可以固定不变),并能准确读数且屏蔽良好。它能做到输出微波信号准确已知,并能精细调节,特别是能将信号功率连续衰减到毫瓦、微瓦级电平,根据不同用途可具有不同的调制方式。 (2)扫频信号发生器 扫频信号发生器是能产生扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或者记录仪上立即显示出所需要的频率特性曲线。

本实验采用的微波源是YM1123 标准信号发生器,工作在等幅模式下。 2、微波测量装置 微波测量装置如图2 所示。主要包括驻波测量线、调配元件、待测元件和辅助元件(如短路器、衰减器、匹配负载、移相器等)。 3、指示器部分 指示器是用于显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计、频率计(波长表)等。 4、元件基本原理及作用 信号源:本次实验采用YM1123标准信号发生器作为信号源,测量时工作在等幅模式,非测量时工作在其他模式,具体原理见本节第一部分。 数字频率计:由于信号源显示的频率不准,所以要用一个数字频率计来进行频率校准。后面的频率值均为数字频率计的示数。 同轴波导转换:将同轴线和后面的矩形波导连接起来,将同轴线中的TEM波转变成要测量的微波信号。 隔离器:隔离器是单向通过的,可以屏蔽反射波,保护信号源。 可变衰减器:用一个薄片插入波导,可以吸收微波的能量,衰减微波的功率,通过调节薄片插入深度来调整吸收能量的大小,在实验开始时将其调至最大值,保护后面的元件。实验过程中用来将微波功率衰减到适合测量的值(大约10-20mV)。 波长表:用来测量微波信号频率,本次实验用的波长表是吸收式波长表,当波长表的谐振腔与信号源谐振时,主波导中一部分能量被耦合到波长表谐振腔内,因此电表指示明显下降。电表指示最小时,波长表所对应的频率为信号源工作频率。 波导型晶体检波器:将波导中的微波信号转变成电流信号或电压信号,方便测量,本次实验中将信号转变成电压信号,再用万用表进行测量。 万用表:测量波导型晶体检波器输出的电压信号,从而得到微波功率。

北邮电磁场与微波实验5.3微波单元项目

邮电大学 电子工程学院 电磁场微波测量实验 5.3微波实验单元项目 组员: 2015-5-3 执笔:

目录 5.3.1频谱分析仪的使用 (1) 一、实验目的 (1) 二、实验设备 (1) 三、实验原理 (1) 四、实验容 (2) A. 单载波信号的频谱测量 (2) B. 带载波信号的杂散测量 (3) C. 相位噪声测量 (4) D. 幅频特性测量 (5) 5.3.2衰减器的特性测量 (7) 一、实验目的 (7) 二、实验仪器 (7) 三、实验容 (7) 5.3.3定向耦合器特性测量 (8) A. 耦合度测量 (8) B. 插入损耗测量 (9) C. 定向耦合器的隔离度测量 (10) 5.3.4滤波器的特性及测量 (11) 实验总结 (12)

5.3.1频谱分析仪的使用 一、实验目的 1.了解频谱分析仪的工作原理,熟悉它的使用方法 2.了解微波信号发生器的使用方法 二、实验设备 1.频谱分析仪 2.微波信号发生器 三、实验原理 频谱分析系统主要的功能是在频域里显示输入信号的频谱特性。频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT或液晶等显示仪器上进行显示,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限于频宽围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。

微波实验报告

之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对, 还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己 做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~ 实验2 微带分支线匹配器 一.实验目的: 1.熟悉支节匹配的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二.实验原理: 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达GHz以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 本次实验主要是研究了微带分支线匹配器中的单支节匹配器和双支节匹配器,我都采用了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,用附加的反射来抵消主传输线上原来的反射波。 单支节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。然后,此短截线的电纳选择为-JB,然后利用Smith圆图和Txline,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,比单支节匹配器增加了一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配,但需要注意的是,由于双支节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。 2.微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H 为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE 波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 3.微带线的模型

相关文档
最新文档