典型环节的频率特性

典型环节的频率特性
典型环节的频率特性

第5章辅导

频率特性的基本概念

给系统输入一个正弦信号为

x r(t)=X rm sinωt

式中X rm——正弦输入信号的振幅;

ω——正弦输入信号的频率。

当系统的运动达到稳态后,比较输出量的稳态分量和输入波形时就可以发现,稳态输出的频率与输入频率相同,但输出量的振幅及相位都与输入量不同。

可以把系统的稳态输出量写成

式中的A(ω)和 (ω)分别为复变函数G(jω)的模和幅角。

A(ω)——G(jω)的模,它等于稳态输出量与输入量的振幅比,叫做幅频特性;

φ(ω)——G(jω)的幅角,它等于稳态输出量与输入量的相位差,叫做相频特性。例:电路的输出电压和输入电压的复数比为

式中

频率特性的求取方法

频率特性一般可以通过如下三种方法得到:

1.根据已知系统的微分方程,把输入以正弦函数代入,求其稳态解,取输出稳态分量和输入正弦的复数之比即得;

2.根据传递函数来求取; 3.通过实验测得。

线性系统,x r (t)、x c (t)分别为系统的输入和输出,G(s)为系统的传递函数。输入用正弦函数表示

x r (t)=Asin ωt

设系统传递函数为

重要结论:对正弦输入而言

系统的频率特性可直接由G(j ω)=X c (j ω)/X r (j ω)求得。只要把线性系统传递函数G(s)中的算子s 换成j ω,就可以得到系统的频率特性G(j ω)。即

ωωj s s G j G ==)()(

频率特性的表示方法

1. 幅相频率特性

设系统(或环节)的传递函数为

1

10

11)(a s a s a b s b s b s G n n n n m m m m ++++++=---- 令s=j ω,则其频率特性为

)()()()()()()(0

1

10

11ωωωωωωωjQ P a j a j a b j b j b j G n n n n m m m m +=++++++=---- 其中,P(ω)为G(j ω)的实部,称为实频特性;Q(ω)为G(j ω)的虚部,称为虚频特性。

)()(22)()()()(ω?ω?ωωωωj j e A e Q P j G =?+=

式中,A(ω)为频率特性的模,即幅频特性,

)()()(22ωωωQ P A +=;

?(ω)为频率特性的幅角或相位移,即相频特性,

)

()

(arctan

)(ωωω?P Q =。

2.对数频率特性

对数频率特性是将频率特性表示在对数坐标中。对数频率特性曲线又称为伯德(Bode )图,它包括对数幅频和对数相频两条曲线。

对式两边取对数,得

)(434.0)(lg lg )()(lg )(lg ω?ωω?ωωj A e j A j G +=+=

这就是对数频率特性的表达式。通常不考虑0.434这个系数,而只用相位移本身。

在实际应用中,频率特性幅值的对数值常用分贝(dB ,decibel)表示,其关系式为

dB A L )(lg 20)(ωω=

横坐标为频率ω,但按lg ω刻度。因此,频率每变化十倍,横坐标轴上就变化一个单位长度,称为“十倍频程”。

对数相频特性的纵坐标表示相位移,是线性刻度,单位是“度”。横坐标与幅频特性的横坐标相同。对数频率特性的坐标如图所示。

图对数坐标

典型环节的频率特性

一. 比例环节

比例环节的传递函数为

K s G =)(

以j ω取代s ,得其频率特性为

K j G =)(ω00j Ke j =+

比例环节的对数幅频特性和对数相频特性分别为

)(lg 20)(==ω?ωK

L

比例环节的频率特性

二. 积分环节

积分环节的传递函数为

s

s G 1)(=

其频率特性为

ωωω1

1)(j j j G -== 幅频特性为

ω

ω1

)(=

A

相频特性为

2

)(π

ω?-

=

对数幅频特性为

ωωωlg 20)(lg 20)(-==A L

图5-8 积分环节的幅相频率特性

积分环节对数幅频特性是一条斜率为-20dB /dec 的直线,它在ω=1这一点穿越零分贝线;相频特性与频率无关,在ω由0→∞时,其为平行于横轴的一条直线。

图 积分环节的对数频率特性

三. 惯性环节

惯性环节的传递函数为

1

1

)(+=

Ts s G

其频率特性为

1

1)(+=

ωωTj j G

1、幅相频率特性

幅频特性为

2

)

(11)()(ωωωT j G A +=

=

相频特性为

ωωω?T j G arctan )()(-=∠=

惯性环节的对数频率特性

四. 振荡环节

振荡环节的传递函数为

1

21

)(2

2++=

Ts s T s G ? 式中,T 为时间常数;ζ为振荡环节的阻尼比(0<ζ<1)。 其频率特性为

ω

?ωωTj T j G 211

)(22+-=

振荡环节的对数幅频特性为

2222)2()1(lg 20)(lg 20)(ω?ωωωT T A L +--==

在低频段,ωT<<1(即ω<

1

)时,L(ω)≈-20log1=0dB 。这是一条与横轴重合的直线,即低频渐近线。

在高频段,当ωT>>1,即 ω>>

T

1

,)lg(40lg 20)(22ωωωT T L -=-≈ 这说明高频渐进线是一条斜率为-40dB /dec 的直线。

两条渐进线在ω=T

1

=ωn 点相交,故振荡系统的固有频率就是其转角频率。 在

振荡环节的对数频率特性

五. 微分环节

微分环节的传递函数为

s s G =)(

其频率特性为

ωωj j G =)(

对数幅频特性为

ωωωlg 20)(lg 20)(==A L

微分环节的频率特性

六.一阶微分环节

其传递函数为

1)(+=s s G τ

频率特性为

1)(+=ωτωj j G

对数幅频特性为

2)(1lg 20)(τωω+=L

一阶微分环节的对数频率特性

最小相位系统

凡是在s 右半平面上没有极、零点的系统,称为最小相位系统,否则称为非最小相位系统。从频率特性的角度看,具有相同幅频特性的一些系统,可以有不同的相频特性,其中在任意大于零的频率下,相位滞后都是最小的系统,称为最小相位系统。

控制系统的开环对数频率特性

一个复杂系统的开环传递函数G (s)往往由几个典型环节串联而成,即

其频率特性为

)

()()(2)(121)()()()()

()()()(21ω?ω?ω?ω?ωωωωωωωωj j n j j n e A e A e A e A j G j G j G j G n =?== 式中

)()()()(21ωωωωi A A A A =

)()()()(21ω?ω?ω?ω?i +++=

对数幅频特性为

)(lg 20)(lg 20)(lg 20)(lg 20)(21ωωωωωi A A A A L +++==

)()()(21ωωωi L L L +++=

绘制系统的开环对数频率特性曲线(波德图)的步骤为:

1) 把系统的开环传递函数化为标准形式——典型环节的传递函数之积,并分析各环节。 2) 求出各转角频率ω1, ω2, ?等等,并按大小将它们标在频率轴上。

3) 在ω= l 处垂直向上量出幅值201ogK(dB),得到a 点,这里K 为开环放大系数。通过a 点画出L(ω)的低频渐近线,其斜率为-20ν(dB /dec)。这里 ν为系统含有积分环节的个数。

4) 以后每遇到一个转角频率,就改变一次渐近线斜率。遇到(l+Tj ω)±1,斜率改变±20dB /dec ;遇到[1+ζT(j ω)+(Tj ω)2]±1,斜率改变±40dB /dec 。

5) 对渐近线进行修正,便可画出精确的对数幅频特性曲线L(ω)。

6) 画出系统每个组成环节的对数相频特性曲线,然后将它们在各个相同频率下相加。即得系统的开环对数相频特性曲线?(ω)。

用频率特性分析系统的稳定性

例:某系统的开环传递函数为

绘其开环奈奎斯特曲线,并判别其闭环系统的稳定性。 【解】该系统开环频率特性为

上面这两个特殊点确定了奈氏曲线的变化趋势。再计算几个对应不同ω值的G k (j ω)值,便能绘制出如图 所示的奈奎斯特图。

当K 增大时,G k (j ω)曲线将成比例地向外扩张,但形状不变,并且不会包围(-1,j0)点,已知开环传递函数中没有右极点。因此,该闭环系统总是稳定的。

对数频率特性稳定判据

【例】 已知系统的开环传递函数为

)

1002(300

)()(2

++=

s s s s H s G 试用对数稳定判据判别系统的稳定性。

【解】 绘制系统对数频率特性曲线,如图 所示

系统对数频率特性曲线

因为振荡环节的阻尼比为0.1,在转折频率处的对数幅频值为

1

20lg20lg20.114 2dB

?

=-?=

由于开环有一个积分环节,需要在相频曲线ω=0+处向上补画π/2角。根据对数判据,在L(ω)≥0的所有频率范围内,相频?(ω)曲线在-1800线有一次负穿越,且正负穿越之差不为零。因此,闭环系统是不稳定的。

典型环节频率特性分析实

实验三 典型环节频率特性分析 一.实验目的 1. 学习频率特性分析仪的使用; 2. 掌握频率特性测试方法; 3. 掌握由对象频率特性求传递函数的方法。 二.实验设备及简介 1. 实验设备 TD4011A 频率特性分析仪,微计算机,打印机。 2. TD4011A 频率特性分析仪简介 数字键区 信号发生器输出 图2 TD4011A 频率特性分析仪面板图 TD4011A 分析仪如图1所示,由信号发生器和分析器组成。其面板图如图2所示。主要按键功能: ⑴.上档键 — DELAY — 延迟时间。分0.1s 、1s 、10s 三档。每按一次,循环改变一次。 CYCLE — 积分周数。分 1、10、100、1000三档。每按一次,循环改变一次。积分周数大精度高。 AMPL — 信号发生器输出电压值。 FREQ — 信号发生器输出频率值。 F MAX — 扫频(即频率按顺序变化)频率上限。 F MIN — 扫频频率下限。 D LOG — 对数扫频增量(每倍频程扫频步数) D LIN — 线性扫频增量(单位:Hz ) PROGRAM — 前后面板输入选择。0为前面板输入,1为后面板输入。用数字键区 ※ 以上功能设定,均由 图1 TD4011A 频率特性分析仪

⑵.下档键— 下档功能中AUTO、30mV、300mV、3V、30V、300V为输入量程选择; ; ※下档键功能均为灯亮有效。 ⑶.中档键— RECYCLE —发生器输出连续扫频信号; SINGLE —发生器输出单步扫频信号; STOP —测量停止。只有此键灯亮时才能对面板状态进行设定; HOLD —将发生器信号保持在扫频范围内的某一频率上; LOG↑—对数上扫(即发生器信号频率按对数规律由F MIN至F MAX变化); LIN↑—线性上扫;LOG↓—对数下扫;LIN↓—线性下扫; OFF —关断扫频; LOCAL —与计算机进行通讯; PRINT —打印,实验中此功能不用;PROGRAM —信号源停止时的相位设置。 ※按键位于中档键标识处,特别提醒上档和下档功能设定时,均要按在中档位置。 ⑷.数字键区 Select —选择键; RESET —复位键,强迫进入初始状态; CLEAR —发生器显示清零,不清内存; ENTER —确认键。 三.实验内容及步骤 1. 已知环节1,测试其频率特性。 ⑴实验前准备内容 ①环节1网络如图3所示,K R200 1 =,K R2 2 =,F Cμ1 =。求 出环节传递函数及频率特性。 ②绘制环节的对数幅频渐近线,并进行修正;绘制其对数相频特性; 由对数频率特性确定实验频率f的最佳范围(注意:π ω2 = f仪器允许频率范围0.001 ~1000Hz)。 ⑵实验步骤 ①打开计算机,进入WIN98操作系统,将软件狗插入USB接口。

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

控制系统典型环节性能分析

控制系统典型环节性能分析 题目: 熟悉Matlab 软件Simulink 的基本使用方法,利用Simulink 建立各典型环节的仿真模型,并通过仿真得到各典型环节的单位阶跃响应曲线,给出各典型环节相关参数变化对典型环节动态性能的影响。 解答: 1.比例环节 1.1比例环节1)(1=s G 图1_1_1 比例环节simulink 仿真模型 图1_1_2 比例环节阶跃响应曲线 1.2比例环节2)(1=s G 图1_2_1 比例环节simulink 仿真模型 图1_2_2 比例环节阶跃响应曲线

分析:比例环节使得输出量与输入量成正比,比例系数越大,输出量越大。 2.积分环节 2.1积分环节s s G 1)(1= 图2_1_1 积分环节simulink 仿真模型 图2_1_2 积分环节阶跃响应曲线 2.2积分环节s s G 5.01 )(2= 图2_2_1 积分环节simulink 仿真模型 图2_2_2 积分环节阶跃响应曲线 分析:积分环节的输出量反映了输入量随时间的积累,时间常数越大,积累速度越快。 3.微分环节

微分环节s s G =)(1 图3_1_1 微分环节simulink 仿真模型 图3_1_2 微分环节阶跃响应曲线 4.惯性环节 4.1惯性环节1 1)(1+= s s G 图4_1_1 惯性环节simulink 仿真模型 图4_1_2 惯性环节阶跃响应曲线 4.2惯性环节1 5.01 )(2+= s s G

图4_2_1 惯性环节simulink 仿真模型 图4_2_2 惯性环节阶跃响应曲线 分析:惯性环节使得输出波形在开始时以指数曲线上升,上升速度与时间常数有关,时间常数越大,上升越快。 5.导前环节 导前环节1)(1+=s s G 图5_1_1 导前环节simulink 仿真模型 图5_1_2 导前环节阶跃响应曲线 分析:比例作用与微分作用一起构成导前环节,输出反映了输入信号的变化趋势,波形也与时间常数有关。 6.振荡环节 6.1振荡环节4 s s 4 )(2 1++= s G (ξ=0.25)

实验一 控制系统典型环节的模拟实验

实验一控制系统典型环节的模拟实验 一、实验目的 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 二、实验内容 1.对表一所示各典型环节的传递函数设计相应的模拟电路(参见表二)

2.测试各典型环节在单位阶跃信号作用下的输出响应。 3.改变各典型环节的相关参数,观测对输出响应的影响。 三、实验内容及步骤

1.观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。 ①准备:使运放处于工作状态。 将信号发生器单元U1的ST端与+5V端用“短路块”短接,使模拟电路中的场效应管(K30A)夹断,这时运放处于工作状态。 ②阶跃信号的产生: 电路可采用图1-1所示电路,它由“阶跃信号单元”(U3)及“给定单元”(U4)组成。 具体线路形成:在U3单元中,将H1与+5V端用1号实验导线连接,H2端用1号实验导线接至U4单元的X端;在U4单元中,将Z端和GND端用1号实验导线连接,最后由插座的Y端输出信号。 以后实验若再用阶跃信号时,方法同上,不再赘述。 实验步骤: ①按表二中的各典型环节的模拟电路图将线接好(先接比例)。(PID先不接) ②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。 ③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。改变比例参数,重新观测结果。 ④同理得积分、比例积分、比例微分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线参见表三。 2.观察PID环节的响应曲线。 实验步骤:

典型环节和系统频率特性地测量

课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论 一、实验目的 1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。 二、实验原理 1.系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m 由式①得出系统输出,输入信号的幅值比相位差 )() (ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2.频率特性的测试方法 2.1 沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(= = ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22log 20)(log 20)(==ωω (d B ) 其测试框图如下所示:

图5-1 幅频特性的测试图(沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )sin()(φω+=t Y t Y m (5-2) 对应的沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )sin()0(φm Y Y = 于是有 m m Y Y Y Y 2) 0(2sin )0(sin )(1 1--==ωφ (5-3) 同理可得 m X X 2) 0(2sin )(1 -=ωφ (5-4) 其中: )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2) 0(2sin 180)(1 0--=ωφ 或 m X X 2)0(2sin 180)(10--=ωφ

第三章 系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

控制系统的典型环节

关于我们控制理论教学制冷机仿真热工设备仿真论坛博客联系我们 主页 习题演练控制系统实验控制理论教程学生作业档案教师办公室典型作业展示常见问题 第一章自动控制的基本概念 第二章控制系统的数学描述 第三章控制系统的时域分析 第四章控制系统的频域分析 第五章过程控制 2.3 控制系统的典型环节 2.3 控制系统的典型环节 自动控制系统是由不同功能的元件构成的。从物理结构上看,控制系统的类型很多,相互之间差别很大,似乎没有共同之处。在对控制系统进行分析研究时,我们更强调系统的动态特性。具有相同动态特性或者说具有相同传递函数的所有不同物理结构,不同工作原理的元器件,我们都认为是同一环节。所以,环节是按动态特性对控制系统各部分进行分类的。应用环节的概念,从物理结构上千差万别的控制系统中,我们就发现,他们都是有为数不多的某些环节组成的。这些环节成为典型环节或基本环节。经典控制理论中,常见的典型环节有以下六种。 2.3.1 比例环节 比例环节是最常见、最简单的一种环节。 比例环节的输出变量y(t)与输入变量x(t)之间满足下列关系 (2.24) 比例环节的传递函数为

(2.25) 式中K为放大系数或增益。 杠杆、齿轮变速器、电子放大器等在一定条件下都可以看作比例环节。 例10 图2.10 是一个集成运算放大电路,输入电压为,输出电压为,为输入电阻, 为反馈电阻。我们现在求取这个电路的传递函数。 解从电子线路的知识我们知道这是一个比例环节,其输入电压与输出电压的关系是 (2.26) 按传递函数的定义,可以得到 (2.27) 式中,可见这是一个比例环节。如果我们给比例环节输入一个阶跃信号,他的输出同样也是一个阶跃信号。阶跃信号是这样一种函数 (2.28) 式中为常量。当时,称阶跃信号为单位阶跃信号。阶跃输入下比例环节的输出如图2.11 所示。比例环节将原信号放大了K倍。

典型环节(或系统)的频率特性测量

典型环节(或系统)的频率特性测量 一·实验目的 1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。 2.学习根据实验所得频率特性曲线求取传递函数的方法。 二·实验要求 1.用实验方法完成一阶惯性环节的频率特性曲线测试。 2.用实验方法完成典型二阶系统开环频率特性曲线的测试。 3.根据测得的频率特性曲线求取各自的传递函数。 4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。 三·实验原理 掌握改变正弦波信号幅值和频率的方法。利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路(如用U9+U8连成)或“两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。 四·实验所用仪器 PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线 五·实验步骤和方法 1.用实验方法完成一阶惯性环节的频率特性曲线测试。 2.用实验方法完成典型二阶系统开环频率特性曲线的测试。 3.根据测得的频率特性曲线求取各自的传递函数。 4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。 具体步骤: 1.熟悉实验箱上的信号源,掌握改变正弦波信号幅值和频率的方法。利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路(如用U9+U8连成)或“两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。 2.利用实验设备完成一阶惯性环节的频率特性曲线测试。 无上位机时,利用实验箱上的信号源单元U2所输出的正弦波信号作为环节输入,即连接箱上U2的“正弦波”与环节的输入端(例如对一阶惯性环节即图1.5.2的Ui)。然后用示波器观测该环节的输入与输出(例如对一阶惯性环节即测试图1.5.2的Ui和Uo)。注意调节U2的正弦波信号的“频率”电位器RP5与“幅值”电位器RP6,测取不同频率时环节输出的增益和相移(测相移可用“李沙育”图形),从而画出环节的频率特性。 有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。仍以一阶惯性环节为例,此时将Ui连到实验箱 U3单元的O1或O2(D/A通道的输出端,这个是通过上位机选择其中的一路输出),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),然后再将你选择的D/A输出通道测试信号O1(如果选择的是O1)连接到这组A/D输入的另一采集输入端I2,然后连接设备与上位机的USB通信线。接线完成,

控制系统的频率特性分析

实验六 控制系统的频率特性分析 1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出:

F=50时 输入:输出: (2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。 提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/(0.2*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on

3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([0.456,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

控制系统的典型环节的模拟实验报告修订版

控制系统的典型环节的 模拟实验报告修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

课程名称:控制理论乙指导老师:成绩:实验名称:控制系统典型环节的模拟实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉超低频扫描示波器的使用方法 2.掌握用运放组成控制系统典型环节的电子电路 3.测量典型环节的阶跃响应曲线 4.铜鼓哦是暗夜男了解典型环节中参数的变化对输出动态性能的影响 二、实验内容和原理 以运算放大器为核心元件,由其不同的RC输入网络和反馈网络组成的各种典型环节,如下图所示。

右图中可以得到: 由上式可求得有下列模拟电路组成的典型环节的传递函数及其单位阶跃响应 1.积分环节 连接电路图如下图所示 和第一个实验相同,电源为峰峰值为30V 的阶跃函数电源,运放为LM358型号运放。在这次实验中,R2并不出现在电路中,所以我们可以同时调节R1的值和C 的值来改变该传递函数的其他参量值。具体表达式为: 式中:RC T = 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求积分环节的传递函数需要达到(1)s s G 1)(1=(2)s s G 5.01)(2= 2.比例微分环节 连接电路图如下图所示 在该电路中,实验器材和第一次实验与第二次实验不变,R2仍然固定为1M 不改变。R1与C 并联之后与运算放大器的负端相连,R2接在运放的输出端和负输入端两端,起到了负反馈调节作用。具体表达式为: 式中,12R R K = ,C R T 1= 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像

控制工程基础考卷带答案复习资料

控制工程基础考卷带答案复习资料

一、填空题:(每空1分,共20分) 1.对控制系统的基本要求一般可归结为_________稳定性,准确性,快速性____、____________、___________。 2.自动控制系统对输入信号的响应,一般都包含两个分量,即一个是瞬态响应分量,另一个是____________响应分量。 3.在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为_________________。 4.若前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则闭环传递函数为__________________ 。 5 函数f(t)=的拉氏变换式是 _________________ 。 6 开环对数频率特性的低频段﹑ 中频段﹑ 高频段分别表征了系统的 稳定性,动态特性,抗干扰能力 ﹑ ﹑ 。 7.Bode 图中对数相频特性图上的-180°线对应于奈奎斯特图中的___________。 8.已知单位反馈系统的开环传递函数为: 20 ()(0.51)(0.041) G s s s = ++求出系统在单位阶跃输入时的稳 态误差为 。 9.闭环系统稳定的充要条件是所有的闭环极点 t e 63-

均位于s 平面的______半平面。 10.设单位反馈控制系统的开环传递函数为 10()1 G s s = +,当系统作用有x i (t ) = 2cos(2t - 45?)输入 信号时,求系统的稳态输出为_____________________。 11.已知传递函数为2 ()k G s s =,则其对数幅频特性 L (ω)在零分贝点处的频率数值为_________ 。 12 在系统开环对数频率特性曲线上,低频段部分主要由 环节和 决定。 13.惯性环节的传递函数11+Ts ,它的幅频特性的数学式是__________,它的相频特性的数学式是____________________。 14.已知系统的单位阶跃响应为()1t t o x t te e --=+-,则 系统的脉冲脉冲响应为__________。 一、填空题 (每空1分,共20分): 1 稳定性,准确性,快速性;2 稳态;3 反馈; 4 ) ()(1) (s H s G s G ±;5 3 ()6 F s s = + 6 稳定性,动态特性,抗干扰能力; 7 负实轴; 8 1 21 9 右半平面; 10

实验 4 系统的频率特性分析

实验 4 系统的频率特性分析 一、实验目的 (1)为学习和掌握利用MATLAB 绘制系统Nyquist 图和Bode 图的方法。 (2)为学习和掌握利用系统的频率特性分析系统的性能。 二、实验原理 系统的频率特性是一种图解方法,运用系统的开环频率特性曲线,分析闭环系统的性 能,如系统的稳态性能、暂态性能。常用的频率特性曲线有Nyquist 图和Bode 图。在MATLAB 中,提供了绘制Nyquist 图和Bode 图的专门函数。 1. Nyquist 图 nyquist 函数可以用于计算或绘制连续时间LTI 系统的Nyquist 频率曲线,其使用方法如下: nyquist(sys) 绘制系统的Nyquist 曲线。 nyquist(sys,w) 利用给定的频率向量w 来绘制系统的Nyquist 曲线。 [re,im]=nyquist(sys,w) 返回Nyquist 曲线的实部re 和虚部im,不绘图。 2. Bode 图 bode 函数可以用于计算或绘制连续时间LTI 系统的Bode 图,其使用方法如下: bode(sys) 绘制系统的Bode 图。bode(sys,w) 利用给定的频率向量w 来绘制系统Bode 图。 [mag,phase]=bode(sys,w) 返回Bode 图数据的幅度mag 和相位phase,不绘图。 3. 幅值裕度和相位裕度计算 margin 函数可以用于从频率响应数据中计算出幅值裕度、相位裕度及其对应的角频率,其使用方法如下: margin(sys) margin(mag,phase,w) [Gm,Pm,Wcg,Wcp] = margin(sys) [Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) 其中不带输出参数时,可绘制出标有幅值裕度和相位裕度的Bode 图;带输出参数时,返回幅值裕度Gm、相位裕度Pm 及其对应的角频率Wcg 和Wcp。

实验五典型环节和系统频率特性的测量

实验五 典型环节和系统频率特性的测量 一、实验目的 1. 了解典型环节和系统的频率特性曲线的测试方法; 2. 根据实验求得的频率特性曲线求取传递函数。 二、实验设备 同实验一。 三、实验内容 1. 惯性环节的频率特性测试; 2. 二阶系统频率特性测试; 3. 无源滞后—超前校正网络的频率特性测试; 4. 由实验测得的频率特性曲线,求取相应的传递函数; 5. 用软件仿真的方法,求取惯性环节和二阶系统的频率特性。 四、实验原理 1. 系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m ① 由式①得出系统输出,输入信号的幅值比和相位差 )()(ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωφω=∠j G (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2. 频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(== ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22log 20)(log 20)(==ωω (dB ) 其测试框图如下所示:

图5-1 幅频特性的测试图(李沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(李沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5.1) 则其输出为 )sin()(φω+=t Y t Y m (5.2) 对应的李沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5.2)得 )sin()0(φm Y Y = 于是有 m m Y Y Y Y 2) 0(2sin )0(sin )(1 1--==ωφ (5.3) 同理可得 m X X 2) 0(2sin )(1 -=ωφ (5.4) 其中 )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5.3)、(5.4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2) 0(2sin 180)(1 0--=ωφ 或 m X X 2)0(2sin 180)(10--=ωφ

陈sir-实验五 典型环节和系统频率特性的测量

姓名:陈,H 学号:XXXXXXXX 班级:电气 实验五 典型环节和系统频率特性的测量 一、实验目的 1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。 二、实验设备 1.THBDC-1型 控制理论·计算机控制技术实验平台; 2.PC 机一台(含“THBDC-1”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。 三、实验内容 1.惯性环节的频率特性测试; 2.二阶系统频率特性测试; 3.无源滞后—超前校正网络的频率特性测试; 4.由实验测得的频率特性曲线,求取相应的传递函数; 5.用软件仿真的方法,求取惯性环节和二阶系统的频率特性。 四、实验原理 1.系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m 由式①得出系统输出,输入信号的幅值比相位差 ) () (ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2.频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(== ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22l o g 20)(log 20)(==ωω (dB ) 其测试框图如下所示:

图5-1 幅频特性的测试图(李沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(李沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )s i n ()(φω+=t Y t Y m (5-2) 对应的李沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )s i n ()0(φm Y Y = 于是有 m m Y Y Y Y 2)0(2sin )0(sin )(1 1 --==ωφ (5-3) 同理可得 m X X 2)0(2s i n )(1 -=ωφ (5-4) 其中: )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2)0(2sin 180 )(1 --=ωφ 或 m X X 2)0(2s i n 180 )(1 --=ωφ 下表列出了超前与滞后时相位的计算公式和光点的转向。

一二阶系统频率特性测试与分析

广西大学实验报告纸 姓名: 指导老师:胡老师 成绩: 学院:电气工程学院 专业:自动化 班级:121 实验内容:零、极点对限性控制系统的影响 2014年 11月 16 日 【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下:

被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8 012- = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=??? ? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。

控制系统的典型环节的模拟实验报告.docx

课程名称:控制理论乙指导老师:成绩: 实验名称:控制系统典型环节的模拟实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉超低频扫描示波器的使用方法 2.掌握用运放组成控制系统典型环节的电子电路 3.测量典型环节的阶跃响应曲线 4.铜鼓哦是暗夜男了解典型环节中参数的变化对输出动态性能的影响 二、实验内容和原理 以运算放大器为核心元件,由其不同的RC输入网络和反馈网络组成的各种典型环节,如下图所示。 右图中可以得到: 由上式可求得有下列模拟电路组成的典型环节的传递函数及其单位阶跃响应 1.积分环节 连接电路图如下图所示 和第一个实验相同,电源为峰峰值为30V的阶跃函数电源,运放为LM358型号运放。在这次实验中,R2并不出现在电路中,所以我们可以同时调节R1的值和C的值来改变该传递函数的其他参量值。具体表达式为: 式中: 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求积分环节的传递函数需要达到(1)(2) 2.比例微分环节 连接电路图如下图所示 在该电路中,实验器材和第一次实验与第二次实验不变,R2仍然固定为1M不改变。R1与C并联之后与运算放大器的负端相连,R2接在运放的输出端和负输入端两端,起到了负反馈调节作用。具体表达式为: 式中,, 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求惯性环节的传递函数需要达到(1)(2) 3.惯性环节 连接电路图如图所示 在该图中,电源由控制理论电子模拟箱中的阶跃响应电源来代替,电源的峰峰值为30V;在模拟电子箱中,运算放大器采用LM358型号的运算放大器。在控制理论电子模拟箱中,R2是一个固定值,固定为1MΩ,所以我们可以调整R1和C来改变阶跃响应

控制系统典型环节与系统的模拟实验报告

汕头大学实验报告 一、实验目的 1、熟悉数字存储示波器及控制理论实验箱的使用方法。 2、掌握用运算放大器组成控制系统典型环节的电子模拟电路。 3、测量典型环节的阶跃响应曲线。 4、通过本实验了解典型环节中参数的变化对输出动态性能的影响。 二、实验仪器 1、TKKL-1控制理论实验箱1台 2、TDS1001B数字存储示波器1台 3、万用表1只 4、U盘1只(学生自备,4G以下) 三、实验原理 1、以运算放大器为核心,由其不同的输入R-C网络和反馈R-C网络构成控制系统的各种典型环节,用数字存储示波器测量各环节的阶跃响应曲线。 2、数字存储示波器的工作原理及使用方法请参考《TDS1001B数字存储示波器用户手册》。 3、操作过程注意事项。 A、接通TKKL-1实验箱的电源总开关。 B、接通TKKL-1实验箱上的直流电源开关。

C、接通TKKL-1实验箱上的阶跃信号发生器电源开关。 D、电位器顺时针调节时,电阻值增大。 E、示波器探头接地端要与实验箱的地端牢固连接。 四、实验内容与步骤 1、分别画出比例、积分、惯性、微分和振荡环节的电路原理图比例环节 惯性环节 积分环节

震荡环节 微分环节 2、按所设计的电路原理图接线,并在各电路的输入端输入阶跃信号,在电路的输出端观察并记录其单位阶跃响应的输出波形。 比例电路波形图,G(s)=1

比例环节,G(s)=2 惯性环节,G(s)=1/(Ts)其中T=RC 当R=200k,C=0.1uF时,G(s)=1/(Ts)=50波形图如下

当R=1M,C=1uF时,G(s)=1/(Ts)=10波形图如下 积分环节,G(s)=1/(Ts+1),其中T=RC 当R=1M,C=1uF时,波形图如下

控制系统的典型环节

登录注册 主页关于我们控制理论教学制冷机仿真热工设备仿真论坛博客联系我们 您当前的位置:主页 > 控制理论教学 > 控制理论教程 > 第二章 > 习题演练控制系统实验控制理论教程学生作业档案教师办公室典型作业展示常见问题 第一章自动控制的基本概念 第二章控制系统的数学描述 第三章控制系统的时域分析 第四章控制系统的频域分析 第五章过程控制 控制系统的典型环节 控制系统的典型环节 自动控制系统是由不同功能的元件构成的。从物理结构上看,控制系统的类型很多,相互之间差别很大,似乎没有共同之处。在对控制系统进行分析研究时,我们更强调系统的动态特性。具有相同动态特性或者说具有相同传递函数的所有不同物理结构,不同工作原理的元器件,我们都认为是同一环节。所以,环节是按动态特性对控制系统各部分进行分类的。应用环节的概念,从物理结构上千差万别的控制系统中,我们就发现,他们都是有为数不多的某些环节组成的。这些环节成为典型环节或基本环节。经典控制理论中,常见的典型环节有以下六种。 2.3.1 比例环节 比例环节是最常见、最简单的一种环节。 比例环节的输出变量y(t)与输入变量x(t)之间满足下列关系

比例环节的传递函数为 式中K为放大系数或增益。 杠杆、齿轮变速器、电子放大器等在一定条件下都可以看作比例环节。 例10 图是一个集成运算放大电路,输入电压为,输出电压为,为输入电阻,为反馈电阻。我们现在求取这个电路的传递函数。 解从电子线路的知识我们知道这是一个比例环节,其输入电压与输出电压的关系是 按传递函数的定义,可以得到 式中,可见这是一个比例环节。如果我们给比例环节输入一个阶跃信号,他的输出同样也是一个阶跃信号。阶跃信号是这样一种函数 式中为常量。当时,称阶跃信号为单位阶跃信号。阶跃输入下比例环节的输出如图所示。比例环节将原信号放大了K倍。

典型环节和系统频率特性的测量

实验报告 课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生姓名:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论 一、实验目的 1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。 二、实验原理 1.系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m 由式①得出系统输出,输入信号的幅值比相位差 )() (ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2.频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(= = ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22log 20)(log 20)(==ωω (d B ) 其测试框图如下所示:

实验名称:典型环节和系统频率特性的测量 装订线 图5-1 幅频特性的测试图(李沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(李沙育图形法) 令系统(环节)的输入信号为:t X t X m ω sin )(=(5-1) 则其输出为) sin( ) (φ ω+ =t Y t Y m (5-2) 对应的李沙育图形如图5-2所示。若以t为参变量,则)(t X与) (t Y所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0 )0(= X由式(5-2)得 ) sin( )0(φ m Y Y= 于是有 m m Y Y Y Y 2 )0( 2 sin )0( sin ) (1 1- -= = ω φ(5-3) 同理可得 m X X 2 )0( 2 sin ) (1- = ω φ(5-4) 其中: )0( 2Y为椭圆与Y轴相交点间的长度; )0( 2X为椭圆与X轴相交点间的长度。 式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2 )0( 2 sin 180 ) (1 0- - = ω φ 或 m X X 2 )0( 2 sin 180 ) (1 0- - = ω φ 下表列出了超前与滞后时相位的计算公式和光点的转向。

相关文档
最新文档