《科技论文写作》试卷

《科技论文写作》试卷
《科技论文写作》试卷

二、下面是关于一维无机纳米材料及其合成方法的中文概述,请将其翻译成英文。(本题计

40分)

由于纳米微粒的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等使得它们在磁、光、电、敏感等方面呈现出常规材料不具备的特性。因此, 纳米微粒在电子材料、光学材料、催化、磁性材料、生物医学材料、涂料等方面有广阔的应用前景。纳米材料的基本单元按空间维数可以分为三类:(1)零维,指在空间三维尺度均在纳米尺寸范围,如纳米尺度颗粒、原子团簇、人造超原子、纳米尺寸的孔洞等;(2)一维,指在空间有两维处于纳米尺度范围,如纳米线、纳米棒、纳米管、纳米带等;(3)二维,指在三维空间中有一维在纳米尺度, 如超薄膜、多层膜、超晶格等。

一维纳米材料由于具有独特的结构特性和奇异的物理及化学性质,有着很大的基础研究价值和潜在的应用价值, 引起了物理、化学、材料、生物等学科研究者的浓厚兴趣, 并得到了广泛的研究。探索发展一维纳米材料的合成技术, 以实现对其化学组成、直径、长度以及电学、光学等性质的合理调控,具有重要的意义。近年来,采用模板法合成一维纳米材料引起人们广泛的关注, 模板法也因而发展成为最重要的一维纳米材料合成方法。所谓模板合成(template synthesis)法就是将具有纳米结构、价廉易得、形状容易控制的物质作为模板(template),通过物理或化学的方法将相关材料沉积到模板的孔中或表面, 而后移去模板,得到具有模板规范形貌与尺寸的纳米材料的过程。模板法同湿化学法(沉淀法、水热合成法等)、气相化学法、溶胶-凝胶法、分子束外延、射线照射法等相比具有诸多优点,主要表现在:(1)多数模板不仅可以方便地合成, 而且其性质可在广泛范围内精确调控;(2)合成过程相对简单,很多方法适合批量制备;(3)具有较高的稳定性和良好的空间限域作用,能严格地控制纳米材料的大小、形貌和分散稳定性;(4)特别适合一维纳米材料,,如纳米线、纳米管和纳米带的合成。

Due to the small size effect, surface effect, quantum size effect and macroscopic quantum tunneling effect and so on of nanoparticles , they are magnetic, optical, electrical, and other aspects of sensitive conventional materials exhibit features not available. Therefore, the nanoparticles have broad application prospects in electronic materials, optical materials, catalysis, magnetic materials, biomedical materials, paint and so on. The basic unit of nanomaterials by spatial dimensions into three categories: (1) zero-dimensional, three-dimensional scale refers to the space are in the nanometer size range, such as nano-sized particles, atomic clusters, artificial super atom, nano-sized holes, etc.; (2) a one-dimensional, two-dimensional space means in the nanoscale range, such as nanowires, nanorods, nanotubes, nanoribbons; (3) two-dimensional, three-dimensional space means there is one dimension in the nanoscale, such as ultra- films, multilayer films, superlattice and so on.

Because One-dimensional materials have unique structural characteristics and bizarre physical and chemical properties,there has a great basic research value and potential applications which have aroused researchers great interests in physics, chemistry, materials, biology and other disciplines and have got extensive study. Exploring the development of one-dimensional nanomaterials synthesis technology to achieve a reasonable regulation of its chemical composition, diameter, length and electrical, optical and other properties, it has important significance. In recent years, one-dimensional nanomaterials synthesis using template method aroused widespread concern and

template method has thus become the most important one-dimensional nanomaterials synthesis. The so-called template synthesis method is to have a nanostructure, cheap, easy to control the shape of the material as a template by physical or chemical methods to make related material depositing into the pores of the template or the surface, then shift template to obtain standardized processes with template morphology and size of nanomaterials. compared to wet chemical method (precipitation method, hydrothermal synthesis method, etc.), gas chemistry, sol - gel, molecular beam epitaxy, irradiation method , template has many advantages, mainly in: (1) the majority of template not only can be easily synthesized, but also its properties can be precisely regulated over a wide range; (2) synthesis process is relatively simple and many methods are fit for batch preparation; (3) high stability and good spatial confinement effect can be strictly control the size, morphology and dispersion stability of nano-materials; (4) particularly suitable for one-dimensional nanomaterials such as nanowires, nanotubes and synthetic nanoribbons.

三、下面是关于材料表征方面的英文概述,请将其翻译成中文。(本题计30分)

Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. The scope of the term often differs; some definitions limit the term's use to techniques which study the microscopic structure and properties of materials, while others use the term to refer to any materials analysis process including macroscopic techniques such as mechanical testing, thermal analysis and density calculation. The scale of the structures observed in materials characterization ranges from angstroms, such as in the imaging of individual atoms and chemical bonds, up to centimeters, such as in the imaging of coarse grain structures in metals.

While many characterization techniques have been practiced for centuries, such as basic optical microscopy, new techniques and methodologies are constantly emerging. In particular the advent of

the electron microscope and Secondary ion mass spectrometry in the 20th century has revolutionized the field, allowing the imaging and analysis of structures and compositions on much smaller scales than was previously possible, leading to a huge increase in the level of understanding as to why different materials show different properties and behaviors. More recently, atomic force microscopy has further increased the maximum possible resolution for analysis of certain samples in the last 30 years.

表征,在材料科学中使用时,指的是广泛和一般过程,即通过一种材料的结构和性能进行探测和测量。它是在材料科学领域最基本的处理,没有它,工程材料没有可以确认的科学认识。这个词的范围往往不同;一些定义限制术语在材料的微观结构和性能的技术研究方面的使用,而其他人使用这个词来指代任何材料分析过程,包括如机械测试,热分析和密度计算宏观技术。在材料特性中观察到的结构的比例的范围达到埃,如在单个原子和化学键的成像方面,高达厘米,又比如粗晶粒结构的金属的成像。

虽然许多表征技术已经实行了几百年,如基本的光学显微镜和新的技术和方法不断涌现。特别是在20世纪的电子显微镜和二次离子质谱的出现,彻底改变了该领域,和以前的可能性相比,可以在更小的尺寸上对结构和组成进行成像和分析,使得人们在关于为什么不同的材料显示出不同的性能和行为这个问题的认识方面有了巨大水平的提升。最近,原子力显微镜为过去30年来某些样品的分析进一步增加了可能的最大分辨率。

相关主题
相关文档
最新文档