合金元素对金属材料焊接性能影响

合金元素对金属材料焊接性能影响
合金元素对金属材料焊接性能影响

合金元素对金属材料焊接性能的影响

摘要本文研究了M n、C、Si、Mo 、Cr、N i、T i、N b 等合金元素对低合金钢和不锈钢焊接性能(包括焊缝的机械性能、耐蚀性、耐热性等)的影响。合金元素的含量对低合金钢焊接过程中组织的变化,及达到最佳性能是某些合金元素得到含量值;同时分析了合金元素对25-20 型奥氏体不锈钢、00Cr12NiTi 铁素体不锈钢、2205 双相不锈钢,超级马氏体不锈钢(SMSS)组织和性能的影响。分析结果表明:合金元素的加入, 对焊缝的组织及其性能具有明显的改善和提高的作用,为钢材在工程项目中的应用起到了关键作用。关键词: 合金元素焊接性能组织及性能Alloying elements on weldability of metallic materials Abstract This paper studies the M n, C, Si, Mo, Cr, N i, T i, N b and other alloying elements on the low-alloy steel and stainless steel welding performance (including the weld mechanical properties,corrosion resistance, heat resistance etc.) influence.Content of alloying elements during welding of low alloy organizational changes, and to achieve the best performance is the value of certain alloying elements to be content; Simultaneous analysis of alloy elements on the 25-20 type austenitic stainless steel, 00Cr12NiTi ferritic stainless steel, 2205 duplex stainless steel, super

martensitic stainless steel (SMSS) organization and performance. The results showed that: Alloy elements added, the performance of the weld and its obvious to improve and enhance the role of steel in the project application has played a key role. Keywords: Alloying elements Welding performance Organization and Performance 前言产品的技术条件中所规定的使用性能是根据产品的使用条件制定的。工作条件越苛刻(如高温、高压、与强腐蚀介质接触) , 对焊接接头质量要求越高, 满足这些条件的难度也随之增加, 致使对钢材性能的稳定和焊接技术提出了更新更高的要求, 这就要求不但有良好稳定的原始组织, 而且要具有良好的焊接性能。焊接性一直是人们所关注的一项重要性能,它在很大程度上决定了某种钢能否大量应用。要保证良好的焊接性能, 又要保证合金钢的实用价值,不可避免地要加入合金元素,而加入元素的选择则成了必须考虑的问题。先就将各种合金元素对焊接性能的影响分析如下: 1 合金元素对低合金钢焊接性能的影响1.1 锰(Mn)对焊接性能的影响在焊缝中增加锰的含量,增加了针状铁素体的数量,同时相应减少了先共析铁素体和层状组分的数量,细化了焊缝的针状铁素体和粗晶区、细晶区的纤维组织;改善组织和细化珠光体晶粒,提高焊缝的强度和淬透性,故可以降低脆性转变温度;增加0.1%Mn,焊

缝的屈服强度和抗拉强度约提高10MPa;含1.5%Mn 时焊态和消除应力状态下焊缝的冲击韧性为最佳;经应变时效焊缝的冲击韧性,在含锰量较高时达到最佳值;锰可以用来脱硫, 从而减少低熔点化合物在晶间的分布, 降低了焊缝金属的结晶裂纹敏感性。1.2 碳(C)对焊接性能的影响碳是合金钢中必不可少的元素, 但也是使焊接性恶化的元素, 焊缝中随着碳的含量增加, 焊缝的强度、硬度会有所增加, 同时, 焊缝的结晶裂纹和焊接接头的冷裂纹倾向都要增大,

因而在选用焊接材料时, 应控制焊材向焊缝中过渡的碳的数量。(1)碳在低强度焊缝中增加碳就增加了针状铁素体的数量,同时减少了先共析铁素体数量;细化了粗晶区、细晶区的组织;增加了细晶区的二次相数量;提高了硬度、屈服强度和抗拉强度;显著减少了冲击吸收功的分散度;当含碳量为0.07%~~0.09%时含 1.4%Mn 可获得最佳韧性。(2)碳在高强度焊缝中碳增加,增加针状铁素体的比例,减少晶界铁素体的数量;焊态下焊缝的硬度、屈服强度、抗拉强度匀随含碳量的增加(0.05%~~0.12%)而提高,焊口的冲击韧性随含碳量的增加而减小;含碳量为0.07%~~0.10%的焊缝在焊态和消除应力状态匀可得到良好的强度与韧性匹配。1.3 硅(Si)对焊接性能的影响硅会引起固溶强化和二次相系数增多,而导致焊缝金属变脆,所以从韧性考虑添加硅是有害的。但从防止焊缝气孔形成考虑,

焊缝金属中至少应含有0.2%Si,在冶金方面, 硅是良好的脱氧剂并可防止CO 气孔因此, 焊缝中应含有一定量的硅, 但应注意到脱氧产物很容易形成硅酸还将夹渣, 低熔点的硅

酸盐可能导致结晶裂纹, 此外, 硅酸盐还会增加熔渣和熔

化金属的粘度, 引起较严重的飞溅, 影响焊接量。随硅含量的增加焊缝的硬度、屈服强度、抗拉强度会呈非线性增加;韧性下降,其损坏程度与含锰量有关,当含锰量处在1.4%最佳时,含硅量可允许高达0.5%,则焊缝可具有所需的各项力学性能。1.4 钼(Mo)对焊接性能的影响钼是提高热强性有效元素, 能提高热影响区的淬硬倾向, 使裂纹敏感性增大。添加钼后由于焊缝金属固溶硬化,先共析铁素体量逐渐减少,针状铁素体比例开始时增多,随后减少,提高了柱晶区、粗晶区、细晶区和不完全相变区的硬度,并减少了这些不同区域之间硬度的差别。无钼焊缝和含1.1%Mo 焊缝之间的硬度相差40-50HV。钼对焊缝强度的影响比锰大,由于钼引起的固溶强化和碳化物析出所致,含钼量超过

0.5%的焊缝经消除应力后强度有所提高。对于焊缝的韧性,在焊态,一般认为W MO = 0、25- 0、50% , 既可强化金属, 又可改善韧性,W MO > 0、5%韧性开始恶化,为防止脆化,W MO 不超过0、65%。低锰时添加0.25%Mo 是有益的,在消除应力下添加钼匀有害。另外, 钼还可以提高焊缝的耐蚀性, 但只有当焊缝中钼的含量处于0、16%~0、

33%的范围内时, 随焊缝中钼含量的增加, 其SCC (抗应力腐蚀开裂)能力才有大幅度提高, 所以为了提高焊缝的SCC 抗力, 其理想钼的含量应为0、33%左右。 1.5 铬(Cr)对焊接性能的影响铬对提高焊缝的淬透倾向作用比较强裂, 焊态焊缝的金属的硬度随含铬量的增加而逐渐提高,且在低锰时基本上是呈线性的,并可以提高脆性转变温度, 因而从这点来讲, 对焊接是不利的, 铬可以提高焊缝的耐热性, 当焊缝中含一定铬时, 在氧化性介质中可在表面形成致密、稳定氧化膜, 从而提高其耐蚀性, 此外, 铬可以提高铁基固溶体的电极电位, 因此, 其耐蚀性能可以大大提高, 为保证铬的防腐蚀作用, 焊缝中必须控制碳的含量, 铬对焊缝组

织的改变表现在, 它可以使贝氏体转变曲线左移, 扩大贝氏体转变区。1.6 镍(N i)对焊接性能的影响对一般非热处理强化的低合金钢的焊接来说, 镍的加入可以起到提高焊缝的强度而基本上组织的角度来讲, 镍对焊接性能有利, 但当

镍的含量较高时, 可能与焊缝中的杂质(如硫)形成低熔点

化合物, 而使热裂纹敏感性明显增大。在含锰的低合金钢焊缝中增加镍后,焊态焊缝中先共析铁素体的比例减少,二针状铁素体曾多,在高锰焊缝中还出现马氏体,在粗晶区多边形铁素体的比例减少,针状铁素体增加,在含1.8%Mn 焊缝中出现马氏体岛,细晶区的等轴细晶逐渐改变,铁素体晶粒减少,含二次相的铁素体团增多,条带状显微组织

和化学不均匀性增加,使焊缝的硬度,屈服强度,抗拉强度匀有提高。在低锰时对抗解理断裂是有益的,而在高锰时有害的,在含0.6%Mn 时得到最佳韧性,消除应力处理对锰镍匹配的焊缝韧性几乎没有影响,但在镍与锰含量不匹配时产生严重脆性。1.7 钛(T i)对焊接性能的影响钛可以起到细化晶粒的作用, 钛控制在一定范围内时, 可以保证焊缝具有较高强度, 同时仍可获得较高的冲击韧性, 但钛含量过高, 则使韧性恶化, 这样证明了以微合金化取代镍等贵重

合金的可能性。此外, 在奥化体不锈钢焊缝中, 焊缝加入少量的钛作为稳定剂, 可改变碳化物的类型, 钛将优先与碳

结合从而避免形成碳化铬(钛与碳亲和力大于铬与碳亲和力) , 从而避免了贫铬层的产生, 这样保证了奥化体不锈钢焊缝抗晶间腐蚀的能力。 1.8 铌(N b)对焊接性能的影响70 年代以来, 铌作为合金化元素广泛于低碳合金钢生产中, 一般认为, 铌可以细化晶粒, 少量的铌可以提高基本钢焊

缝的屈服强度(Rs) , 由于含铌的母材稀释率较大(薄板焊接时, 稀释率可达70%以上) , 所以焊缝金属中的铌将由母材过渡,而含铌钢时焊接材料中一般不含铌。铌对低合金钢焊缝, 金属低温韧性有一定影响, 在C- M n 系焊缝中, 能促进焊缝金属侧板条铁素体组织的产生, 使焊缝金属韧性恶化, 而在C- M n- T i- B 系焊缝金属中, 铌促进焊缝金属细小均匀针状铁素体组织的产生, 从而提高焊缝金属的低温韧性。

除此以外, 还有许多微合金元素亦对焊缝性能有着不同的影响, 例如, 硼(B) 可以细化晶粒,并可提高焊缝的抗腐蚀开裂的能力: 钒(V )可以细化焊缝金属的铸态组织, 防止热影响

区晶粒过分长大。近年来, 在焊接材料中广泛应用的稀土元素可以细化晶粒, 并可提高焊缝组织的耐腐蚀能力。2 合金元素对不锈钢焊接性能的影响 2.1 对25-20 型奥氏体不锈钢焊接性的影响(1)Ni 的影响:Ni 是奥氏体化元素,是强烈形成热裂纹的元素;另外他与S、P 、Ti 、Nb 等易形成低熔点共晶体,在644℃时,可促进热裂纹的产生。(2)Mn 的影响:Mn 有脱S 的作用,可与S 形成MnS,从而减弱产生热裂纹的倾向;同时,在高Ni 纯奥氏体钢中,Ni 促使产生低熔点共晶NiS 2 ,形成焊接裂纹,若用部分Mn 代替Ni,可大大提高抗热裂纹性能。(3)C 的影响:当(C)在0.18%~0.2%时,热裂倾向增大,因消除了西格玛相之故,对于25- 20 钢,当焊缝金属中含Si 量不变时,若含 C 量增加,热裂倾向减弱并促使焊缝金属强度、塑性提高;但含(C)提高到0.2%~0.3%时,焊缝中会出现一次碳化物而使Cr25Ni20Si2 钢强度极限提高到72 kg/mm 2 ,延伸率降低到20%~25%,冲击值K 可达20~26 kg m/cm 2 当在700~900 下短时加热后,焊缝中二次碳化物析出,而使K 由24.9 kg m /cm 2 降到7.6 kg m /cm 2 所以,在25- 20 钢焊缝中,适当提高 C 含量对焊缝机械性

能利多而弊少。(4)Si 的影响:在 A 焊缝中,Si 是形成热裂纹的一个主要有害元素在Cr Ni 钢焊接时,Si 与其他元素易发生冶金反应而形成Ni- Si Fe- Si 低溶点共晶物,从而促进焊接裂纹的产生一般情况下,(Si)=0.3%~0.4%时,就会形成热裂纹。(5)P 的影响:P 对25- 20 钢焊缝的热裂纹影响最明显当用酸性渣或酸性焊条时,(P) 由0.015%~0.018%增到0.035%时,焊缝金属延伸率由40%降到20%;用碱性渣或碱性焊条时,(P)增到0.05%,焊缝金属的塑性才会显著降低,这说明碱性渣或碱性焊条抗裂

性强(6)其他元素的影响:W与Mo 对焊缝机械性能有利;Ti Al 在高Cr Ni 奥氏体焊缝中与Si 的作用相似;V 对焊缝抗热裂性能有利,但V 会形成莱氏体共晶,在25- 20 钢焊缝中加V 有损于高温抗氧化性能。 2.2 对00Cr12NiTi 铁素体不锈钢焊接性的影响铁素体不锈钢由于热膨胀系数与碳钢接近而比奥氏体小,并且S、P 等杂质元素在铁素体中溶解度大, Si、Nb 等又是铁素体形成元素,因此,焊缝结晶时不易形成低熔点共晶,热裂纹的倾向比奥氏体不锈钢小得多,同时焊接热影响区超过临界温度的区域形成的马氏体量也极少,比马氏体不锈钢的延迟裂纹的敏感性小。铁素体不锈钢在焊接中的主要问题是晶粒易于长大,形成粗大的铁素体晶粒,而脆化导致冲击韧度降低和475 ℃脆化问题。硅在不锈钢中的含量一般≤0. 8% ,随着硅含量的

增加,钢中σ、χ 等脆性相析出的敏感性增加,会降低钢材的塑性和韧度,耐蚀性下降,焊接性不良。但硅也使不锈钢具有优异的耐高温性能,在焊接加工时可降低对热裂纹的敏感性。锰在不锈钢中的有益作用是形成MnS,抑制S 的有害作用,提高了钢的热塑性。锰是一种弱奥氏体形成元素,在不锈钢中是一种脱氧剂。但锰在不锈钢中会促进σ 等脆性相的析出。钛和铌作为不锈钢中强烈形成碳、氮化合物的稳定化元素,主要是防止钢中铬与碳结合形成铬碳化合物而引起的贫铬所导致耐蚀性下降,特别是引起晶间腐蚀。在不锈钢中,由于钛和氮的亲合力要大于铌,铌和碳的亲合

力要大于钛,因此,钛和铌的同时存在可防止大量形成NbN,又可利用铌的固碳作用和强化作用,提高不锈钢的强度。它们可与镍形成金属间化合物,在钢中弥散析出,起到第二相强化的作用。不锈钢中钛和铌的复合加入称为双稳定化,可提高铁素体钢的抗疲劳性、冷成型性和焊接性。但钛和铌的氮化物Ti N 和NbN 是钢中的杂质,对不锈钢的性能有不利的影响。氮在铁素体不锈钢中是一种有害元素,应尽量降低。2.3 对2205 双相不锈钢焊接性的影响2205 双相不锈钢主要的合金元素是Cr、Ni、Mo 和N, 其质量百分比为~22% 的铬、~5%的镍、~3%的钼和~0.15%的氮。该材料一般以固溶处理状态交货, 在正常的交货状态下其显微组织为具有大约50%的铁素体和大约50%的奥

氏体双相组织, 图 1 为2205 DSS 板材典型的显微组织, 表 1 是其力学性能典型值。表 1 2205DSS 力学性能典型值图 1 2205DSS 板材典型的显微组织早期的双相不锈钢的焊接性很差, 也因焊接问题出现了许多质量事故。甚至直到现在, 对于双相不锈钢的焊接性仍有人担心。现代双相不锈钢具有最佳的铁素体- 奥氏体比例(各约50% ) , 并采用氮合金化使得现代双相不锈钢具有良好的焊接性, 因而在热影响区能够很好地重新形成奥氏体并获得力学性能和耐蚀性能良好的焊接接头。与奥氏体不锈钢相比, 2205 DSS 材料导热系数大, 线膨胀系数小, 又包含两种组织, 因此热裂倾向和变形小; 与低合金高强钢相比, 因组织中含有约50%的奥氏体, 因此冷裂纹倾向小。总的来说, 2205 DSS 可焊性良好, 一般焊前不需预热, 焊后不需热处理, 可与18-8 型奥氏体不锈钢或碳钢等异种钢焊接。双相不锈钢优良的性能是靠适当比例的两相组织来保证的。焊接工艺参数对焊缝的组织有很大的影响。焊接过程采用的线能量过低, 工件冷却速度过快, 焊缝及热影响区会产生过多的铁素体和氮化物, 从而降低焊接接头的腐蚀抗力和韧性;线能量过高, 工件的冷却速度过慢, 焊缝及热影响区可能析出金属间相, 也会使焊接接头的腐蚀抗力和韧性降低。可见, 合适的焊接工艺参数和一定的技术措施相结合才能保证焊缝及热影响区的组织和性能。图 2 是试验得到的焊接接头腐

蚀速率(VW) 和低温韧性(AKV- 40℃) 随线能量的变化曲线; 图 3 是工艺参数不当时焊缝产生的点蚀形貌。2.4 对超级马氏体不锈钢(SMSS)焊接性的影响由瑞士引入超级马氏体不锈钢这个概念,亦称软马氏体不锈钢

( SupermartensiticStainless Steel 简称SMSS) 。他是在传统马氏体的基础上通过降低碳含量(最高含碳量为0.

07 %) ,增加镍(3. 5 %~4. 5 %)和钼(1. 5 %~2. 5 %)的含量,使其强度、硬度提高的同时,改善韧性。此外,他还克服了传统马氏体在焊接过程中应力裂纹敏感性以及可焊性差等缺点。(1)Cr 和Ni 的影响由于碳强化作用的减弱, SMSS 的强度和硬度主要通过提高Cr、Ni 含量加以弥补。铬、镍含量的增加不仅可以提高SMSS 的强度和韧性,而且可以提高抗疲劳性能和抗磨损性能,这是因为材料在保持了马氏体为主要基体的基础上, 形成了稳定的逆变奥氏体。研究表明,由马氏体逆转变为高稳定性的奥氏体可用Ni 和Cr 的富集和相硬化来解释。需要注意的是,提高了铬含量会引起δ 铁素体的增加,为了抑制δ 铁素体的增加,要对

Cr/ Ni 当量比进行控制。正如舍夫勒相图给出的低碳马氏体不锈钢Cr/ Ni 当量与组织的关系,当铬当量在14 %左右,镍当量在8 %左右,图上的位置位于单相区和两相区的边界,其金相组织为回火马氏体+ 少量的逆变奥氏体。另外,铬和碳的相互作用使钢在高温时具有稳定的γ 或γ+α

相区,铬可以降低奥氏体向铁素体和碳化物的转变速度,从而提高淬透性。在焊材中加入Ni 不仅增加SMSS 焊接接头强度,而且还可提高韧性,这是因为Ni 的加入可以使碳含量降得更低,由于碳含量很低,单一的铁素体组织将会减少但Ni 含量不能过高,否则由于Ni 扩大γ 相区和降低Ms 点温度的双重作用,将使钢成为单相奥氏体不锈钢,从而丧失淬火能力。(2)Mo 的影响钼也是SMSS 中加入的元素之一。为了提高焊缝抗腐蚀能力,在焊材中加入1. 5 %~2. 5 %的Mo 是有利的,因为Mo 的抗氢腐蚀性能比Cr 高 4 倍。同时钼也是铁素体形成元素,除改善接头的耐蚀性外,还可以提高接头的强度和硬度以及增强2 次硬化效应。(3)碳的影响众说周知,碳是影响焊接性能的重要因素,因此在设计钢的成分配比时,首先注意到碳的含量要低。当碳含量为0. 05 %~0. 06 %时,SMSS 可以在- 10 ℃环境下不预热补焊,或在室温下施焊。此外,由于Cr 是强碳化物形成元素,在不恰当的热处理温度

下,SMSS 焊接接头的晶界上会析出Cr 的碳化物,这种碳化物在较低温度下会使接头的韧性急剧下降;同时由于Cr 的碳化物的形成,还会使基体中的Cr 含量降低,当Cr 含量低于下限的时候,则钢的耐蚀性也会下降。超低碳可以减少这种Cr 的碳化物形成,因而有利于保持SMSS 焊接接头的韧性和耐蚀性。(4)氮的影响氮是促奥氏体形成

元素,可以提高焊缝的强度和耐腐蚀性。氮可以增加SMSS 的屈服强度,每增加0. 001 %氮,可增加约6MPa 的强度。而且焊接SMSS 时, 还可采取保护气体中添加氮的方法来提高焊接接头的质量。这是因为氮可以使焊缝金属中产生少量的残余奥氏体,弥散分布于马氏体中。可以显著提高焊缝金属的韧性,但氮含量过高,易导致产生热裂纹。SH. X. Wang 等人研究结果表明,焊缝中含0. 018 %N , 低氮SMSS 未出现中温回火脆性,这是由于焊缝中碳、氮含量极低,中温回火后沿晶界析出的碳或氮的化合物很少,韧性

基本保持不变。而含0. 054 %N 的高氮SMSS 有中温回火脆性出现,是由于晶界上出现了析出物。回火脆性不能通过热处理方法消除, 只有向钢中加入Mo、V 等元素减轻回火脆性,但经淬火和600 ℃高温回火后有良好的强韧性,其- 60 ℃低温韧性显著高于低氮SMSS。(5)Nb 元素的影响Nb 是SMSS 焊接接头中的有益元素之一。Nb 可以与碳形成稳定的碳化物,避免“贫铬” 现象产生。因而,可以提高焊接接头的抗腐蚀性能;同时, 由于Nb 具有固溶强化作用,还可以提高焊接接头的抗拉强度。焊缝在很低的温度退火时,Nb 可迅速渗透到基体中。因此,Nb 可以有效地提高钢的高温强度。在550 ℃和600 ℃回火时,SMSS 焊缝中有细小的Nb (C ,N)析出,还可提高焊缝的抗回火软化性。 3 结束语综上所述, 焊缝的性能可以通过向焊缝中

过渡不同的合金元素得到不同程度的提高, 从而更好地满

足技术条件规定的使用要求, 这样焊接结构不仅可以使用可靠, 而且还可以延长寿命, 所以, 通过焊缝合金化的深入研究, 不断研制出各种新型焊接材料, 对焊接技术的发展以

及推广必将起到积极而深远的作用。参考文献[1] 吴树雄,伊士科,李春范. 金属焊接材料手册[M]. 北京: 化工工业出版社, 2008.45-74. [2] 李为卫, 宫少涛, 熊庆人等.2205 双相不锈钢的焊接性及焊接技术.热加工工艺,2006 ,35(3):36-38. [3] 王家骏.浅谈炉卷Cr25Ni20Si2 钢的可焊接性及工艺性,山西:山西冶金出版社,2010. 4. [4] 张毅.浅析合金元素对焊缝性能的影响,内蒙古:内蒙古石油化工出版社,2000. [5] 王斌,栗卓新,李国栋.超级马氏体不锈钢焊接的研究进展,新技术新工艺[J] , 热加工工艺技术与材料研究.2008,( 5) :57-60.a [6] 张心保,王志斌.微合金元素对

00Cr12NiTi 铁素体不锈钢焊接接头HAZ 组织及力学性能的影响.生产应用焊接[J],山西,2 0 0 8,(6),38-41. [7] 唐伯钢,伊士科等.低碳钢与低合金高强刚焊接材料[M].北京:机械工业出版社,1987. [8] Kondo K, Ogawa K, Amaya H , et al . Development of Weldable Super 13Cr Martensitic Stainless Steel for Flowline [C ] . United States : International Society of Off shore and Polar Engineering , cupertino , 2002. [9] 薛松柏等.焊接材料手册[M].北京:机

械工业出版社,2006. [10] Ladanova E , Solberg J K, Eogne T. Carbide precipitation in HAZ of multipass welds in titanium containing and titanium f ree supermartensitic stainless steels Part -2-weld simulation studies [J ] . Corrosion Engineering , Science and Technology , 2006 , 41 (2) : 602152. [11] Wang Sh. X. Effect of Nit rogen on Mechanical Proper2 ties of Martensitic Stainless Steel

0Cr13Ni4Mo [ J ] . Special Steel ,2001 ,22 (5) : 23225.

影响焊接质量的因素与解决方案

影响焊接质量的因素及解决方案 图1 油箱 近年来随着汽车、拖拉机、航空航天、建筑以及运输等工业的飞速发展,相应的工业设备在其产品结构、加工工艺及应用领域不断更新、发展,对产品的加工质量要求不断提高,电阻焊机已成为工业产品覆盖件及零部件加工的主要焊接设备。 电阻焊机在生产过程中可以对各种形状的覆盖件产品进行焊接加工,实现工件的缝焊、凸焊、对焊和点焊的加工过程。它的优点是速度快、深度大、变形小而且生产效率高,并可实现柔性化和智能化控制,可对低碳钢板、合金钢板、镀层钢板和不锈钢板等进行有效地焊接,凭借其高效、独特的加工方式在工业生产过程当中得到了广泛的应用。 电阻焊接过程较为复杂,包含了多种影响焊接质量的因素,如被焊材料、焊接电流、电极压力、焊接时间、设备冷却、电极材料、形状及尺寸、分流和工件表面状态等。如果操作人员在焊接生产过程中不能够掌握正确的焊接方法、技术参数和加工工艺,将给焊接质量控制带来较大的困难。

图2 缝焊机 影响焊接质量的因素 1.被焊材料对焊接质量的影响 被焊材料在实施焊接之前必须进行清洁处理,清理方法分机械清理和化学清理两种。常用的机械清理方法有喷砂、喷丸、抛光以及用纱布或钢丝刷等。被焊材料表面的油污和锈斑会使电极与工件之间的电阻增大、焊点不牢固及焊接过程中产生飞溅,使焊接质量下降。例如在缝合油箱(如图1)或暖气片之类要求密闭的工件时,更应将被焊材料的表面处理干净,因工件需要缝合焊接一周,如果有一处没有处理干净,就会在这一处出现缝合不牢,在工件试压过程中发生漏气现象。对于此类焊接要求较高的工件需用化学清理,用清洗设备配合高温清洗液将工件清洗干净才能够进行焊接生产。用于缝合油箱的缝焊机如图2所示。 2.焊接电流及时间对焊接质量的影响 整个焊接的加工过程由4个基本环节来控制:图3中控制箱面板上的1、2、3和4分别为加压、焊接、维持和休息4个程序,这4个环节循环工作,必要时可增加附加程序。焊接电流的参数调整对焊接质量的控制至关重要,采用递增的调幅电流可以减小挤出金属。被焊金属的性能和厚度是选择焊接电流的主要依据,电流大小和焊接时间、电极压力、维持时间、工件厚度及工件材质等密切相关。焊接时间由焊接电流和凸点刚度决定,焊接时间的调整以周波的整倍计算(一周为0.02s)。通电时间的长短直接影响电流输入热量的大小,由于电极是水冷却,电极上散失的热量往往是输入总热量的一半,要相互配合调整。在生产过程中,多台焊机的同时工作和电网电压的波动都会对焊接电流产生一定的影响,应考虑电网电压的补偿和采用恒电流方式

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

钢材中各元素对性能性的影响

钢材中各元素对性能性的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和 冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此 用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高 还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀; 此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢 含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就 算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度, 故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅, 强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀 性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具 有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低 钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢 中含锰0.30-0.50%,在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度, 提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点 高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性 能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,

使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求 钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降 低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性 能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改 善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐 磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐 腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍 对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但 由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬 钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高 温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发 生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以 抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化 晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18 镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶

金属材料焊接性知识要点(最新整理)

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性?焊接工艺条件对热影响区最高硬度有什么影响? 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

第一章--焊接质量控制

第一章焊接质量控制 教学目标: 一、了解焊前和焊接过程中的常规质量控制项目及其要求; 二、熟悉并掌握各种焊接方法中的焊缝外观质量检验项目及相关标准; 三、了解致密性试验方法的种类和适用条件。 一、任务导入: 随着现代焊接技术的迅猛发展、焊接生产水平的不断提高和国际焊接制品贸易的日益扩大,为了保证焊接产品的质量,有效地利用资源,保护用户的利益,焊接产品的质量管理逐步走上了规范化、标准化的道路。1987年3 月,国际标准化组织(ISO)正式发布了IS09000?9004关于质量管理和质量保证的标准系列。1994年和2000年,国际标准化组织两次修订IS09000族标准,使之更为简化、重点更加突出,更加科学、普适,并将质量保证体系提高到质量管理体系的水平。我国相应于2000年发布了等效采用该国际标准系列的GB/T19000:2000《质量管理体系》标准系列。 众所周知,焊接结构(件)在现代科学技术和生产中得到了广泛应用。随着 锅炉、压力容器、化工机械、海洋构造物、航空钪天器和原子能工程等向髙参数及大型化-方向发展,工作条件日益苛刻、复杂。显然,这些焊椟结构(件)必须是髙质量的,否则,运行中出现事故必将八成惨重的损失。诚然,迅速发展的现代焊接技术,已能在很大程度上保证其产品质量,但由于焊接接头为一性能不均匀体,应力分布又复杂,制造过程中亦作不到绝对的不产生焊接缺陷,更 不能排除产品在役运行中出现新的缺陷。因而为获得可靠的焊接结构(件)还必须走第二条途径,即采用和发展合理而先进的焊接检验技术。 现代质量管理认为,为使产品达到所要求的各项质量指标,应从生产的每一道工序抓起,通过控制和调整影响工序质量的因素来保证。而工序质量又要 通过工作质量,采取各种管理手段来实现。因此,在质量管理工作中,要以工 作质量来保证工序质量,用工序质量来保证产品质量。 可见为实现质量目标,就必须在管理体制上建立一套有效的、便于操作的质量管理体系。并且将这套体系应用于产品的整个制造过程中。

元素含量对奥氏体不锈钢性能的影响

元素含量对奥氏体不锈钢性能的影响奥氏体不锈钢含有较多的Cr、Ni、Mn、N等元素。与铁素体不锈钢和马氏体不锈钢相比,奥氏体不锈钢除了具有较高的耐腐蚀性外,还有许多优点。它具有很高的塑性,容易加工变形成各种型材,如薄板、管材等;加热时没有同素异构转变,即没有γ和α之间的相变,焊接性好;低温韧性好,一般情况下没有冷脆倾向;奥氏体不锈钢不具有磁性。由于奥氏体不锈钢的再结晶度比铁素体不锈钢的高,所以奥氏体不锈钢还可以用于550℃以上工作的热强钢。 奥氏体不锈钢是应用最广的不锈钢,约占不锈钢总产量的2/3。由于奥氏体不锈钢具有优异的不锈钢酸性、抗氧化性、高温和低温力学性能、生物相容性等,所以在石油、化工、电力、交通、航天、航空、航海、能源以及轻工、纺织、医学、食品等工业上广泛应用。 1.高钼(Mo>4%)奥氏体不锈钢 高钼奥氏体不锈钢的典型代表是:00Cr18Ni16Mo5和00Cr18Ni16Mo5N。因为含钼量高,所以在耐还原性酸和耐局部腐蚀方面性能有很大提高,可用于更加苛刻的腐蚀环境中。含氮00Cr18Ni16Mo5N钢,由于氮的加入,奥氏体更加稳定,由于铁素体的生成,σ(χ)等脆性相的析出受到一定抑制。 00Cr20Ni25Mo4.5Cu由于此钢含有更高的Cr、Ni、Mo等元素,加之Mo与Cu的复合作用,使00Cr20Ni25Mo4.5Cu既在含Cl离子的水介质中耐点蚀、缝隙腐蚀和应力腐蚀的能力有显著提高,图1~图4系在不同温度H2SO4、H3P O4和含F-50%H3P O4中

耐全面腐蚀和在氯化物水介质中耐应力腐蚀的实验结果。可以看出00Cr20Ni25Mo4.5Cu 比18-12-2型不锈钢的耐蚀范围有所扩大。 图1 00Cr20Ni25Mo4.5Cu 在H 2SO 4中的腐蚀 图2 00Cr20Ni25Mo4.5Cu 在H 3PO 4 中的腐蚀(≤0.1mm/a) 图3 00Cr20Ni25Mo4.5Cu 在50℃含HF 的50%P 2O 5溶液中的腐蚀

SMT焊接质量影响因素及控制方法

SMT焊接质量影响因素及控制方法随着经济和科技的发展,电子应用技术趋于智能化、多媒体化和网络化,这使得人们对电子电路组装技术提出了更高的要求,即要能满足高密度化、高速化及标准化,于是电子装联装配技术全面转向SMT。特别是近年来,中国电子信息产品制造业加快了发展步伐,每年都以20%以上的速度高速增长,成为国民经济的新兴的支柱产业,整体规模连续三年居全球第2位。与此同时,中国的SMT技术及产业也同步迅猛发展,取得了不少成就,但是坦率来说还是存在很多问题,主要体现在规模小、技术含量水平不高、高水平技术人才和管理人才缺乏、制造服务能力不全面等方面。虽然在一些方面存在不足,但是市场的竞争却越来越激烈,出现了相互压价,相互贬低,甚至低于合理成本接单等不正当竞争行为。提供SMT服务的组装厂要在如此激烈的竞争环境中立于不败之地,就必须从降低生产成本和提高焊接质量两方面来入手。一方面,降低成本的最有效方式就是优化生产流程以提高生产效率,各焊接厂也都在不断的摸索和改进,逐步形成了比较成熟的生产模式和流程。另一方面,对从事SMT加工服务的企业来说,优质的焊接质量才是立足之本,才是与别人竞争的资本和筹码,因此焊接质量的保证显得尤为重要。以下将从SMT过程的各相关方面来分析影响焊接质量的主要因素和控制方法。 提到SMT的焊接质量,我们首先可能都会想到回流焊的工艺和控制,这是没错的,回流焊确实是SMT关键工序之一,表面组装的质量直接体现在回流焊的结果之中,但SMT焊接质量问题却不完全是回流焊工艺造成的。SMT焊接质量除了与回流工艺(温度曲线)有直接关系外,还与PCB设计、网板设计、元件可焊性、生产设备状态、焊膏质量、加工工序工艺控制以及操作人员素质和车间管理水平都有密切关系一、 PCB设计和网板设计SMT的焊接质量与PCB的可制造性设计有直接的、十分重要的关

元素对焊接性能的影响

元素对焊接性能的影响 碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(SI):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有-%的硅。如果钢中含硅量超过硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入-%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(MN):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰-%。在碳素钢中加入%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,

如16MN钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于%,优质钢要求小于%。在钢中加入的硫,可以改善切削加工性,通常称易切削钢。 6、铬(CR):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(NI):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。

各种材料的焊接性能

金属材料的焊接性能 (1)焊接性能良好的钢材主要有: 低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。 (2)焊接性能一般的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18) (3)焊接性能较差的钢材主要有: 中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。 (4)焊接性能不好的钢材主要有: 中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。 焊条和焊丝选择的基本要点如下: 同类钢材焊接时选择焊条主要考虑以下几类因素: 考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能; 考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。 异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况: 一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。 焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。 ###15CrMoR的换热器的热处理工艺 ***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。 *** 15CrMoR焊接性能良好。手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。自动焊丝用H13CrMoA和焊剂250等。 ###压力容器用钢的基本要求 压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。 改善钢材性能的途径:化学成分的设计,组织结构的改变,零件表面改性。 本节对压力容器用钢的基本要求作进一步分析。 一、化学成分 钢材化学成分对其性能和热处理有较大的影响。 1、碳:碳含量增加时,钢的强度增大,可焊性下降,焊接时易在热影响区出现裂纹。 因此压力容器用钢的含碳量一般不应大于0.25%。2、钒、钛、铌等:在钢中加入钒、钛、铌等元素,可提高钢的强度和韧性。

各元素对焊接的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入 0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。

焊接工艺规范参数对焊接产品质量影响因素的分析

焊接工艺规范参数对焊接产品质量影响因 素的分析 第22卷第9期 2006年9月 甘肃科技 GansuScienceandTechnology V o1.22 Se. No.9 2006 焊接工艺规范参数对焊接产品质量影响因素的分析 谢庆生,王迎君 (1.甘肃省锅炉压力容器检验研究中心,甘肃兰州730030;2.兰州石油化工机械厂,甘肃兰州730050) 摘要:本文重点阐述焊接工艺各规范参数对焊接质量的影响,主要从焊缝形状尺寸与焊接工艺规 范参数的关系,焊缝与熔池的关系延伸到焊接工艺各规范参数与焊接质量的关系进行了详细的分 析,揭示了焊接质量的关键在于焊接热输入的控制. 关键词:焊缝成形系数;焊接质量;焊接工艺规范参数;焊接热输入 中图分类号:TH49 锅炉压力容器是广泛应用于国民经济各部门和 人们生活设施中的,具有爆炸危险的特种设备.它 不但要承受压力,温度和强腐蚀性介质的作用,还要 经受易燃,易爆,剧毒,放射性充装物的考验,工作条 件非常苛刻.通常锅炉压力容器均为焊接结构,所 以焊接质量的好坏,直接关系到产品质量和工程质

量.本文通过分析焊接工艺各规范参数对焊接质量的影响,来探讨焊接工艺与焊接质量之间的关系. 1焊接工艺规范 焊接工艺是承压设备焊接的规定性工艺文件, 带有一定的强制性,其一般要求是: 1)正确性:焊接工艺的正确性是指焊接工艺本 身的各项要求,如坡口形式及尺寸,焊接方法选用, 焊材选择,焊接顺序,焊接工艺参数,预热温度,焊后消氢,焊后热处理,工艺装备,操作要点等,均应符合焊接的基本规则,符合工厂的生产实际. 2)完整性:焊接工艺的完整性有两层含义,一是 对某一产品而言,应包含受压元件之间的焊缝,与受压元件相焊的焊缝均应制定焊接工艺,否则就认为不完整.另一含义是对某一工艺卡而言,对某个节 点所需的焊接工艺参数,施焊要点,工艺装备等均应列出. 3)有效性:焊接工艺有效性,就是能够指导焊接 施工,在施焊过程中得到贯彻. 以上的焊接工艺的一般要求均建立在材料焊接 工艺性的基础之上.焊接工艺性指一种金属可以在很简单的工艺条件下焊接而获得完好的焊接接头, 能够满足使用要求.这里的使用要求主要指焊接接头的强度,韧性等要求,也就是焊接质量的要求. 影响材料焊接工艺性的主要参数有:焊接电流, 焊接电压及焊接速度等,它们对焊接过程的稳定性, 稀释率,焊道形状和熔敷效率,焊缝化学成分及组织的稳定性有直接影响. 如何提高产品的焊接质量?首先我们了解一下 焊缝形状尺寸及其与焊缝质量的关系.

焊料性质对焊接的影响

焊料性质对焊接的影响 1.前言 目前各种形式的合金焊料,其最权威的国际规范为J-STD-006。此文献之最新版本为1996.6的Amendment 1,由于资料很新,故早已取代了先前甚为知名的美国联邦规范QQ-S-571。IPC还有一份重要的焊接手册IPC-HDBK-001其中之4. 1,曾定义“熔点”在430℃以下为“软焊”(Soldering),也就是锡焊。另熔点在430℃以上称为“硬焊”(Brazing),系含银之高温高强度焊接。早期欧美业界,亦称熔点600℉(315℃)以下者为软质焊锡,800℉(427℃)以上者为硬质焊锡。原文Solder定义为锡铅含金之焊料,故中译从金旁为“焊锡”,而利用高热能进行熔焊之Soldering(注意此一特定之单字,并非只加ing而已),则另从火旁用字眼的“焊接”,两者涵义并不完全相同。 2.共熔(晶)焊锡 焊锡焊料(Solder)主要成分为锡与铅,其它少量成分尚有银、铋、铟等,各有不同的熔点(M.P.),但其主要二元合金中以Sn63/Pb37之183℃为最低,由于其液化熔点(Liquidus Point)与固化熔点(Solidus Point)的往返过程中,均无过渡期间的浆态(pasty)出现,也就是已将较高的“液化熔点”与较低的“固化熔点”两者合而为一,故称为“共熔合金”。且因其粗大结晶内同时出现锡铅两种元素,于是又称为“共晶合金”。此种无杂质合金外表很光亮之“共熔组成”(Eute ctic Composition)或“共熔焊锡”(Eutectic Solder),其固化后之组织非常均匀,几无粒子出现。其合金比例之不同将影响到熔点变化,该变化之“平衡相图(Ph ase Diagram)”,图请参考第12期TPCA会刊。 另一种组成接近共熔点的Sn60/Pb40合金,则在电子业界中用途更广,主要原因是Sn较贵,在焊锡性(Solderability)与焊点强度(Joint Strength)几无差异下,减少了3﹪的支出,自然有利于成本的降低。与前者真正共熔合金比较时,此60/40者必须经历少许浆态,故其固化时间稍长,外观也较不亮,但其焊点强度并无不同。不过后者若于其固化过程中受到外力震动时,将出现外表颗粒粗麻之“扰焊”现象(Disturbed)之焊点,甚至还可能发生“缩锡”(Dewetting)之不良情形。

材料焊接性

《材料焊接性》(专科)学案 第一章绪论 二、本章习题 1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。 2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同? 第2章材料焊接性及其试验方法 1. 了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。 影响因素:材料因素、工艺因素、结构因素、使用条件。 2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题? 冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化

3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。 有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。 金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好| 第3章低合金结构钢的焊接 1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。 热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接 2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

燃气管道施工过程中焊接质量的影响因素初探 郝晓硕

燃气管道施工过程中焊接质量的影响因素初探郝晓硕 摘要:随着我国城市化建设的开展,燃气管道施工在安全性上具有较高的要求,因此,本文对燃气管道施工过程中焊接质量的影响因素进行了分析,提出了提高 焊接质量的具体策略,希望为关注此话题的人提供有效的参考。 关键词:燃气管道;施工过程;焊接质量 燃气管道焊接处质量的把控与管理,需要完善的进行燃气管道焊接、焊接处 的质量检测等,如施工人员不能充分地把握焊接质量的影响因素,将导致燃气管 道在使用中出现燃气泄露现象,影响人们的生命安全。 一、燃气管道施工过程中焊接质量的影响因素 (一)焊接技术的滞后 现阶段,大多数燃气管道施工过程中,仍然采用相对较为落后的焊接技术, 施工团队不重视焊接技术的更新,更是忽略了新型焊接技术在燃气管道施工中的 应用,使得现阶段大多数的燃气管道焊接技术仍然处于滞后状态,施工人员无法 提高焊接的水平与标准。 (二)焊接工艺不协调 燃气管道施工中焊接工艺设计只是整个管道施工的一部分,但如若焊接工艺 的设置与其他施工工艺的开展呈现不协调的状态,将影响燃气焊接施工的质量, 造成管道焊接处的不完善,最终影响燃气管道的使用,严重时会导致燃气管道泄露。 (三)施工管理不完善 燃气管道施工过程中,需要对施工过程进行充分的管理,当施工管理人员对 焊接施工的管理不够完善时,在焊接过程、焊接处检测过程中如若出现差错,将 影响管道焊接处的质量,为管道的使用带来不良影响,为燃气管道应用带来安全 隐患。 二、提升燃气管道施工过程中焊接质量的具体策略 (一)提高焊接人员的技术水平 焊接技术是一项对操作要求较为严格的技术应用,尤其是燃气管道焊接即将 应用与燃气的运输,如若燃气管道焊接不完善,将影响燃气管道的使用效率,有 必要提高焊接技术人员的专业素质与技术水平。一方面,在施工人员的选择上, 要求焊接人员具备专业的焊接知识与焊接经验,并具备一定的焊接资质,具有相 关的焊接证件,要求焊接施工人员具备专业的施工水准。另一方面,加强对燃气 施工中焊接人员的技术培训,要求焊接行业的专家对焊接技术人员的相关操作进 行现场指导,提高焊接技术人员的技术水平,促进燃气管道焊接施工的质量得到 充分的技术保障。 (二)加强焊接施工管理 燃气管道施工的管理人员应当加强对焊接施工的管理,为焊接工作的开展提 供质量保障。首先,加强对焊接材料的监管,把握燃气管道焊接的材料是否符合 质量标准,焊接的机械设备是否完善,检查焊接材料的型号、数量、质量等是否 准备妥善,并检测焊接设备应用的有效性,确保焊接施工的完善性。其次,加强 对焊接工作开展前准备工作的检查与监督,焊接施工之前需要对焊接口处进行清理,并对焊接的角度、速度等位置进行划分,严格把控焊接施工的精准性。最后,在实际的焊接施工过程中,把握焊接技术的应用质量,对焊接残渣及时进行清理,确保焊接的质量符合施工要求。

化学元素对金属材料性能的影响

化学元素对金属材料性能的影响 C: 碳含量越高,钢的硬度越高,耐磨性越好,但塑性及韧性越差。 钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 S: 硫是钢中的有害杂质,含硫较多的钢在高温下进行压力加工时,容易脆裂,这种现象通常称为热脆性。 硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 P: 磷能使钢的塑性及韧性明显下降,特别是低温时影响更为严重,这一现象称为冷脆性。 在优质钢中,硫和磷的含量应严格控制。但从另一方面来看,在低碳钢中含有较高的硫和磷时,能使切削时切削易断,对改善钢的可切削性是有利的。 在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 Mn: 锰能提高钢的强度,消除或削弱硫的不良影响,并能提高钢的淬透性。含锰量很高的高合金钢(高锰钢)具有良好的抗磨性及其他物理性能。 在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。 在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn 钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 Si: 硅含量增加可使钢的硬度增加,但塑性及韧性下降。电工用钢中含一定量的硅能改善软磁性能。

影响高频焊接的主要因素有以下八个方面

影响高频焊接的主要因素有以下八个方面: 第一,频率 高频焊接时的频率对焊接有极大的影响,因为高频频率影响到电流在钢板内部的分布性。选用频率的高低对于焊接的影响主要是焊缝热影响区的大小。从焊接效率来说,应尽可能采用较高的频率。100KHz的高频电流可穿透铁素体钢0.1mm, 400KHz则只能穿透0.04mm,即在钢板表面的电流密度分布,后者比前者要高近2.5倍。在生产实践中,焊接普碳钢材料时一般可选取350KHz~450KHz的频率;焊接合金钢材料,焊接10mm以上的厚钢板时,可采用50KHz~150KHz那样较低的频率,因为合金钢内所含的铬,锌,铜,铝等元素的集肤效应与钢有一定差别。国外高频设备生产厂家现在已经大多采用了固态高频的新技术,它在设定了一个频率范围后,会在焊接时根据材料厚度,机组速度等情况自动跟踪调节频率。 第二,会合角 会合角是钢管两边部进入挤压点时的夹角。由于邻近效应的作用,当高频电流通过钢板边缘时,钢板边缘会形成预热段和熔融段(也称为过梁),这过梁段被剧烈加热时,其内部的钢水被迅速汽化并爆破喷溅出来,形成闪光,会合角的大小对于熔融段有直接的影响。 会合角小时邻近效应显著,有利提高焊接速度,但会合角过小时,预热段和熔融段变长,而熔融段变长的结果,使得闪光过程不稳定,过梁爆坡后容易形成深坑和针孔,难以压合。会合角过大时,熔融段变短,闪光稳定,但是邻近效应减弱,焊接效率明显下降,功率消耗增加。同时在成型薄壁钢管时,会合角太大会使管的边缘拉长,产生波浪形折皱。现时生产中我们一般在2°--6°内调节会合角,生产薄板时速度较快,挤压成型时要用较小的会合角;生产厚板时车速较慢,挤压成型时要用较大的会合角。有厂家提出一个经验公式:会合角×机组速度≮100,可供参考。 第三,焊接方式 高频焊接有两种方式:接触焊和感应焊。 接触焊是以一对铜电极与被焊接的钢管两边部相接触,感应电流穿透性好,高频电流的两个效应因铜电极与钢板直接接触而得到最大利用,所以接触焊的焊接效率较高而功率消耗较低,在高速低精度管材生产中得到广泛应用,在生产特别厚的钢管时一般也都需要采用接触焊。但是接触焊时有两个缺点:一是铜电极与钢板接触,磨损很快;二是由于钢板表面平整度和边缘直线度的影响,接触焊的电流稳定性较差,焊缝内外毛刺较高,在焊接高精度和薄壁管时一般不采用。 感应焊是以一匝或多匝的感应圈套在被焊的钢管外,多匝的效果好于单匝,但是多匝感应圈制作安装较为困难。感应圈与钢管表面间距小时效率较高,但容易造成感应圈与管材之间的放电,一般要保持感应圈离钢管表面有5~8 mm的空隙为宜。采用感应焊时,由于感应圈不与钢板接触,所以不存在磨损,其感应电流较为稳定,保证了焊接时的稳定性,焊接时钢管的表面质量好,焊缝平整,在生产如API等高精度管子时,基本上都采用感应焊的形式。第四,输入功率 高频焊接时的输入功率控制很重要。功率太小时管坯坡口加热不足,达不到焊接温度,会造成虚焊,脱焊,夹焊等未焊合缺陷;功率过大时,则影响到焊接稳定性,管坯坡口面加热温度大大高于焊接所需的温度,造成严重喷溅,针孔,夹渣等缺陷,这种缺陷称为过烧性缺陷。高频焊接时的输入功率要根据管壁厚度和成型速度来调整确定,不同成型方式,不同的机组设备,不同的材料钢级,都需要我们从生产第一线去总结,编制适合自己机组设备的高频工艺。 第五,管坯坡口

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23% 超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳 量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷 脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过 0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和 抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1- 4%的 低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30 — 0.50%。在碳素钢中加入0.70%以上时就算锰钢”较一般钢量的钢不但有足够的韧性,且有较高的强 度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11 -14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低 塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于 0.055%,优质钢要求小于 0.040%。在钢中加入 0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr ):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能 力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。& 钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和 抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性 能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧齐購它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬 18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐 蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于 0.50%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧齐叽钢中加入少量的铝,可细化晶粒,提高冲击韧性,女口 作深冲薄板的08AI钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加

相关文档
最新文档