浅谈对高分子材料成型加工的认识

浅谈对高分子材料成型加工的认识

一、高分子简单介绍

高分子定义:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的化合物。

高分子材料定义:以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。

高分子材料成型加工定义:是将高分子材料转变为所需形状和性质的实用材料或制品的工程技术,是获取高分子材料制品、体现材料特性和开发新材料的重要手段。

四川大学高分子学科:四川大学高分子学科是在1953年6月建立的我国高校中最早的高分子化合物专业(1954年更名为塑料工学专业)的基础上发展起来的,中科院院士徐僖教授是该学科的创始人。半个多世纪以来,我校高分子学科蓬勃发展。20世纪50年代,先后创建了皮革毛皮及鞣皮剂工学、塑料工学、化学纤维、合成橡胶四个本科专业,并于1957年开始在国内率先招收研究生。1964年成立了国内第一个高分子研究所(1984年经国家教育部审定)。1961年组建了国内第一个高分子化工系(1979年更名为高分子材料系)。1981年在全国首批获得高分子材料学科硕、博士学位授予权。

随着我校高分子学科的不断发展,1986年原高分子材料系分解重组并构成了四系一所(高分子材料系、塑料工程系、化学纤维系、皮革工程系、高分子研究所)的宏大学科体系。1991年建立高分子材料工程国家重点实验室。1998年,塑料工程系和高分子材料系合并成高分子材料科学与工程系。2001年7月学校决定以高分子材料科学与工程系、高分子研究所和高分子材料工程国家重点实验室为主体,归并原纺织工程学院的化学纤维专业方向和原化学工程学院的高分子化学与物理学教研室,组建成高分子科学与工程学院。

学院现有高分子材料工程国家重点实验室、高分子研究所、高分子科学系、高分子材料系、高分子材料加工工程系(塑料工程及机械研究所)、医用高分子材料及人工器官工程系、化学纤维研究所和高分子材料与工程专业实验室等教学科研机构。

学院以高分子材料和高分子材料加工工程学科为主体的学科群,研究领域覆盖了聚合物结构与性能、合成与改性、制备与成型(工艺、设备、新技术)、以及新材料的开发与应用。研究的材料种类包括:通用塑料、工程塑料、特种工程塑料、复合材料、化学纤维、精细高分子、功能高分子、天然高分子、医用高分子材料、组织工程材料及人工器官。研究成果在

农业、建筑、航空、航天、汽车、微电子、交通运输、轻工、纺织、医疗、环保、军工等领域得到了广泛的应用,为国民经济建设和国防事业的发展做出了积极的贡献。

学院科学研究成绩斐然,2001-2005年,承担国家项目(包括国家自然科学基金重大、重点和面上项目、"863"项目、"973"项目)和省部级项目87项,国际合作项目12项,军工和企业委托协作项目208项,进校科研经费达6278.5万元,获国家和省部级奖励11项,发表学术论文1000多篇(其中SCI收录280篇、EI收录221篇),获准授权发明专利97项、实用新型专利5项。学院十分重视学术交流与合作,同国内外许多著名企业、高校和科研机构建立了密切联系,在高分子材料科学与工程的前沿领域进行合作研究和人才培养。

进入新世纪,学院将抓住我国实施"科教兴国"和"西部大开发"战略的契机,为建设成为国内一流、国际知名的高水平研究型高分子科学与工程学院而努力奋斗。

二、高分子材料成型加工

高分子材料成型加工是将高分子材料转变为所需形状和性质的实用材料或制品的工程技术,是获取高分子材料制品、体现材料特性和开发新材料的重要手段。

以最低的成本、最省的能量消耗、最少产生废料和环境污染,实现最高的劳动生产率,获得最优质量的高分子材料制品,是人们孜孜以求的目标。然而,高分子材料制品的性能受到多方面因素制约。近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。

(一)、高分子材料成型加工技术发展概况

近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t /h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料

(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

(二)、高分子材料成型加工的特性

高分子材料具有许多优良性能,如质轻、电气绝缘性良好等,然而,在这许多优良性能中,一个突出优点就有可能使这些高分子材料的发展前景十分乐观。这个突出的有点就其奇异的加工性能,即能便易而且廉价的加工,采用简单操作就能生产出几何形状相当复杂的制品,加工成品很少超过材料的成本。

1.可挤压性:聚合物通过挤压作用形变时获得形状和保持形状的能力。材料处于黏流态才可挤压变形,挤压性质与聚合物的流变性、流动速率密切有关。如果挤压过程材料的黏度很低,虽有良好的流动性,但保持形状的能力较差、熔体的剪切黏度很高时则会造成流动和成型的困难。材料的挤压性质还与加工设备的结构有关

2.可模塑性:材料在温度和压力作用下形变和在模具中模塑成型的能力。具有可模塑性的材料可通过注射、模压和挤出等成型方法制成各种形状的模塑制品。可模塑性主要取决于材料的流变性、热性质和其它物理力学性质;对热固性聚合物还与聚合物的化学反应性能有关。模塑条件影响聚合物的可模塑性,且对制品的性能有影响。聚合物的热性能、模具的结构尺寸影响聚合物的模塑性。

3.可延性:表示无定形或半结晶固体聚合物在一个方向或二个方向上受到压延或拉伸时变形的能力。可延性为生产长径比(有时是长度对厚度)很大的产品提供了可能。利用聚合物的可延性,可通过压延或拉伸工艺生产薄膜、片材和纤维可延性取决于材料产生塑性形变的能力和应变硬化作用。

(三)现今高分子材料成型加工技术的创新研究

1、聚合物动态反应加工技术及设备

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连

续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。

2、以动态反应加工设备为基础的新材料制备新技术

(1)、信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

(2)、聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。

(3)、热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV 技术水平。

(四)、高分子材料成型加工技术的发展趋势

近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料

机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。

综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。

毋庸置疑,高分子给人类的生活带来了很大的利处,使我们的生活更加方便、灿烂了,高分子和我们之间密不可分,我们身上穿的衣服、手机上的材料、吃的饭、吃饭用的餐具、汽车的轮胎甚至我们本身等等,都是高分子。

高分子材料已经真正渗入到我们的生活中了,然而,只有材料,不通过加工,材料始终不能成为成品,不能受益于人们的生活。因此,高分子材料成型加工技术必不可少,在未来三年半的学习中,我将会认真踏实地学习高分子的相关知识,力争做一个优秀的高材人,相信,我们未来的生活会因为高分子的发展而更加丰富多彩。

学生:蔡鹏

班级:2013级5班

日期:2014.01.08

相关文档
最新文档