飞行力学轨道动力学习题课20150603-wjh

飞行力学轨道动力学习题课20150603-wjh
飞行力学轨道动力学习题课20150603-wjh

飞行力学轨道动力学习题课

1. 地球回归轨道卫星参数需满足如下的方程式:

122j L L k π?+?=

其中

()12E

T

L rad rev T π

?=- ()

()2222

2

23cos 1e J R i L rad rev a e

π?=-

-

a) 地球回归轨道的主要特性是什么? b) 太阳同步轨道的主要特性是什么?

c) 推导同时满足地球回归和太阳同步轨道的卫星轨道周期表达式。 d) 计算地球回归轨道(43轨,3天)的轨道半长轴。 e) 计算相应轨道的轨道倾角。 数据:23564h m s E

T =;365.25days ES T =;32398600.4415Earth u km s =;

6378.137e R km =;62108210J -=?。

解:

a) 卫星地面轨迹在整数轨道和整数天之后重复。 b) 太阳矢量同卫星轨道的夹角保持不变。 c) 太阳同步轨道:()2

2ES L T π?=。得到

()()()11E ES E ES ES E T k j T kT T j T T ???

?=-=-????。 d) 6027.97158.74T s a km =→=。

e)

()098.53o e i =→=。

2. 考虑从185km 的停泊轨道开始进行轨道转移,到达800km 的目标轨道。(圆轨道,同一平面内)

a)计算初始和目标轨道上的轨道速度? b)计算转移轨道的半长轴和偏心率?

c)计算所需速度脉冲V ?(第一个速度脉冲,第二个速度脉冲)。 d)计算轨道转移时间。 数据:32398600.4415Earth u km s =,6378.137e R km =。

解: a) ,1857.793/c V km s =,,8007.452/c V km s =。

b)

6870.5a km =,0.045e =。

c)

10.173V km s ?=,20.169V km s ?=。

d) 283447.2min s =。

3. 如下的图形给出了国际空间站Mir (上图)和德国圆形卫星GFZ-1(下图)的轨道高度变化图。请根据这两幅图形(各自或者整体的)的4个特征,并进行详细的讨论。 数据:Mir 空间站的迎风面积2250Mir

m =;Mir

的质量为140000Mir kg =;GFZ-1

卫星的直径为22cm ,GFZ-1卫星的质量为22kg 。

解:

a) 两颗卫星的降轨速率基本相同,因为它们的轨道处在相同的高度,且它们的迎风面质比基本相同。

b) 在图示时间间隔内,开始和结束的太阳活动最剧烈,造成较快的降轨,在中间部分的降轨速度较慢。

c) Mir 是主动进行轨道维持的卫星,会经常进行轨道机动以维持轨道高度。GFZ-1为被动卫星,并没有轨道位置维持的能力。

d)Mir 空间站在任务后期有目的地进行了降轨,应该是为了配合货物仓同空间站的交会对接。

4. 考虑从轨高185km ,倾角5°的圆形停泊轨道到地球同步轨道的卫星轨道转移过程。(地球同步轨道:23564h m s T

=,0e =,0o i =)

。 a) 计算地球同步轨道轨高。

b) 计算初始圆轨道和目标圆轨道的速度。 c) 计算霍曼转移轨道的近地点和远地点速度。(假设初始和目标轨道是同平面的,实际上并不在同平面)。 d) 计算轨道高度抬升所需的总速度脉冲V ?,假设进行霍曼转移(同样,假设两个轨道是同平面的)。

e) 计算从初始轨道到目标轨道仅改变轨道倾角所需要的速度脉冲。

f) 计算总的速度脉冲,如果轨道机动的顺序是1)在初始轨道仅改变倾角,然后2),霍曼轨道转移到地球同步轨道。

g) 计算总的速度脉冲,如果轨道机动的顺序是1)先进行霍曼转移到地球同步轨道(不改变轨道倾角),然后2)在地球同步轨道改变轨道倾角。

h) 计算总的速度脉冲,如果倾角的改变是同霍曼转移轨道的第2个脉冲结合在一起的。 i) 讨论不同轨道转移策略的总速度脉冲情况(例如:f 到h 的速度脉冲情况)。 数据:32398600Earth

u km s =,6378.137Earth R km =。

解:

a) 242164.14GEO GEO T a r km =→==。

b) ,185,GEO 7.793, 3.075c c c V V km s V km s =→==

c) ()224363.64H

a p H a r r a km

=+→=。

()2..210.252, 1.596H per H apo V u r u a V km s V km s -=-→==。

d) 1

,,185 2.459H per c V V V km s ?=-=;2c,geo H,apo 1.479V V V km s ?=-=;

12 3.938H V V V km s ?=?+?=。

e)

()()2

221212,1852cos 0.680comb V V V VV i V km s ?=+-?→?=;

。 f) ,185 4.618total H comb V V V km s ?=?+?=

g) ,geo 0.268comb V km s ?=,, 4.206total H comb geo V V V km s ?=?+?=

h) 1

,,185 2.459H per c V V V km s

?=-=;

()

()2

22

2,c,geo ,,22cos 1.492H apo H apo c geo V V V V V i V km s ?=+-?→?=

12 3.951total V V V km s ?=?+?=

j) 在较高高度进行倾角改变比在较低高度要节省燃料。当轨道倾角改变同平面内机动结合

时会更省燃料。

5. 已知CW 方程解析解的形式为

()()()000002sin 3cos 22x y y x t nt x nt x n n n ???

?=

+--++ ? ????

? ()()()()000000022223sin cos 32y x x y t x nt nt nx y t y n n n ????

=++-++-+ ? ?????

()()()0

0sin cos z z t nt z nt n

=+

()()()()00032sin cos x t nx y nt x nt =++

()()()()()

00000232cos 2sin 32y t nx y nt x nt nx y =+--+()()()00cos sin z t z nt nz nt =-

a) 试证明相对运动在xy 平面内是一个长短半轴之比2:1的椭圆,并求椭圆中心坐标。

b) 将上述相对运动解写成状态转移矩阵的形式,例如:()()()0t t t =ΦX

X 。

c) 考虑两脉冲完成相对状态转移,第一次脉冲时间为1t ,脉冲为1ΔV ,施加脉冲前卫星相

对状态为()()()111,T

t X t X t ??=??X ,第二次脉冲的时刻为2t ,脉冲为2ΔV ,施加

脉冲后卫星相对状态为()()()222,T

t X t X t ??=??

X

。已知,()1t X

,()2t X ,1t 和2t ,

试求1ΔV ,2ΔV 的表达式。

解:

a) 基于XY 平面内相对运动的表达式,可求得

22

000003212c c x x y y x nt a a ????--++= ? ?????

其中:0

0042c x x y n =+;0002c y y x n =-;()()

22

000032a x n x y n =

++。

由此可知,在XY 平面内的相对运动轨迹是一个椭圆,椭圆长短半轴的比例为2:1,半长轴沿相对运动坐标系y 轴,短半轴沿相对运动坐标系x 轴;椭圆中心在()000,32c c c x y x nt -。

b) 相对运动状态转移方程可写为:

()()()0t t t =ΦX X

其中()()

()()()

()()T

t x t y t z t x t y t z t =????

X

()()()()()()()0000000T

t x t y t z t x t y t z t ??=??X

()()()()()11122122t t t t t φφφφ??

Φ=????

其中

()()1143cos 006sin 1000cos nt

t nt nt nt φ-????

=-+??????

()()()12sin 21cos 0121cos 34sin 000sin nt nt t nt nt nt n nt φ-????

=-+-+??????

()()213sin 0061cos 0000sin nt

t n nt nt φ????=-+????-??

()22cos 2sin 02sin 34cos 000cos nt

nt t nt nt nt φ????=--+??????

c) 基于脉冲轨道机动假设条件,即在施加速度脉冲后,相对位置不变,相对速度发生改变,即在施加第一次速度脉冲后,相对轨道状态改变为:

11111111X()X()0X()X()X()X()t t t t t V t V ξξ+????????=+=????????+?+?????????

其中

经过轨道转移时间2

1t t -,相对轨道状态改变为:

212121X()X()X()X()t t t t t t ξξξξ-+????

=-????-+????

Φ() 在施加完第二次速度脉冲后,

22222222X()X()0X()X()X()X()t t t t t V t V ξξξξ--????????

=+=????????-?-+?????????

两脉冲的大小和方向可表示为:

[]()1112212112111()()()()V t t X t t t X t X t φφ-?=----

2221210222111()()X()()X()V X t t t t t t t V φφ???=----+???

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

直升机飞行力学复习题答案

Chapter One A helicopter of central articulated rotor makes a level flight with cruse speed. In this flight condition, the pitching attitude angle is 20, longitudinal cyclic pitching angle is B1 70, rotor longitudinal flapping angle is a1s 30. Assuming the tilted angle of rotor shaft is 00, please determining the following angles: Helicopter climb angle Fuselage attack angle Rotor attack angle s Rotor flapping due to forward speed a10 中心铰式旋翼直升机以巡航速度前飞。俯仰角-2 °,纵向周期变距7°,纵向挥舞角-3 °,旋翼轴前倾角0° 平飞,爬升角0° 机身迎角-2 ° 桨盘平面迎角-2 ° 吹风挥舞4°

Chapter Two 1. For the main/tail rotor configuration helicopter, the pilot applies which stick or rudder to control what kind of surfaces and corresponding aerodynamic forces? 2. Whythe gradient of control stick forces can' t be too large or small? 3. Co-axis, tandem and tilted-rotor helicopters have no tail rotor. How to change the direction in hover for these helicopters? 1. 操纵——气动面——响应P13 表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/ 后倒——前飞/后飞,俯仰 左推/ 右推杆——横向周期变距,桨盘侧倒——侧飞,滚转 油门/ 总距杆——改变总距——改变垂向速度脚蹬——改变尾桨总距——改变航向 2. 为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力,太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3. 共轴、纵列、倾转旋翼机如何悬停转弯?共轴——上下旋翼总距差动纵列——前后横向周期变距一个向左一个向右倾转旋翼——一侧后倒一侧前倒

航天飞行动力学作业及答案(2)

第四章 第二次作业及答案 1. 考虑地球为自转椭球模型,请推导地面返回坐标系及弹道坐标系(半速度坐标系)下航天 器无动力再入返回质心动力学方程和运动学方程,以及绕质心旋转动力学和运动学方程。 解答: (1)地面返回坐标系:原点位于返回初始时刻地心矢径与地表的交点处,ox 轴位于当地水平面内指向着陆点,oy 垂直于当地水平面向上为正,oz 轴形成右手坐标系。 地面返回坐标系下的动力学方程:与发射坐标系下的动力学方程形式相同,令推力为0即可得到。 (2)弹道(航迹,半速度)坐标系定义:原点位于火箭质心,2ox 轴与速度矢量重合,2oy 轴位于包含速度矢量的当地铅垂平面内,并垂直于2ox 轴向上为正,2oz 轴形成右手 坐标系。 由于弹道坐标系是动坐标系,不仅相对于惯性坐标系是动系,相对于地面返回坐标系也是动系,在地面坐标系下的动力学方程可以写为: 惯性系下:22222()=F=++m e e e d m m m m t dt t δδδδ=+?+??r r r ωωωr P R g 地面系下:22=++m -2-()e e e m m m t t δδδδ???r r P R g ωωωr 弹道系下:22=()=++m -2-()t e e e m m m m m t t t t δδδδδδδδ'=+????'r v v r ωv P R g ωωωr 式中,t δδ''v 表示速度矢量在弹道坐标系的导数,t ω表示弹道坐标系相对于地面坐标系的 旋转角速度,将上式矢量在弹道坐标系分解得到: 速度矢量00v ????=??????v ,角速度矢量=tx t ty tz ?? ???????? ωωωω 00cos 0sin 00sin =+=()001000sin 0cos 0cos t y L σσσθσσσσθσσθσθ?? --??????????????????????+=+=? ???????????????????????????????????ωθσ sin 0 cos 0=0cos 0sin 0cos cos 0sin 00t v v v v σθσθσσσθσθσθσθσ σθ σ????--?????? ????????????==????????????????? ???---??????????ωv 等式左边:()=cos t v m v t v δσθδσ? ? '??+???'??-?? v ωv 等式右边将所有力转换到弹道坐标系下,如果不方便直接转换,可以先转到地面系,然 后再转到弹道系。其中:

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

反应动力学习题及答案

反应动力学习题 一、 判断题: 1催化剂只能改变反应的活化能,不能改变反应的热效应。 ............. () 2、 质量作用定律适用于任何化学反应 ........................... () 3、 反应速率常数取决于反应温度,与反应物、生成物的浓度无关。 ........ () 二、 选择题: 1?若反应:A + B T C 对A 和B 来说都是一级的,下列叙述中正确的 ^是????( )。 (A)此反应为一 级反应; (B)两种反应物 中,当其中任一种的浓度增大2倍,都将使反应速 率增大2倍; (C)两种反应物 的浓度同时减半,则反应速率也将减半; (D)该反应速率 系数的单位为s -1。 2.反应 A + B T 3D 的 E a (正)=m kJ mol -1, E a (逆)=n kJ mol -1 ,则反应 的厶r H m = ....... ( )) 1 1 1 1 (A) ( m^n) kJ md ; (B) (n-m) kJ mol ; (C) (m-3n) kJ mol ; (D) (3 n-m) kJ mol 。 3. 下? 列关于讣 催化齐U 的 叙述中,错 误的是 ....................... .......... ()。 (A) 在 几 个 反 应 中,某 催化剂可选择地加快其中某- 「反应的反应 速 率; (B) 催 化 剂 使 正、 逆反 应速率增大 的倍数相同; (C) 催 化 剂 不 能 改变反应的始态和 终态; (D) 催 化 剂 可 改 变某一 -反应的正向 与逆向的反应速 率之比。 4. 当速率常数的单位为 mol -1 dm 3 s -1时,反应级数为 ........................... () (A ) 一级; (B )二级; (C )零级; (D )三级 5. 对于反应2A + 2B T C 下列所示的速率表达式正确的是 ....................... ( ) (C) 6. 反应2A + B T D 的有关 实验数据在表中给出,此反应的速率常数 k/mol -2dm 6min -1约 为 ...................................................................... ( ) 初始浓度 最初速率 -3 -3 -3 -1 [A] /mol dm [B]/mol dm v/mol dm min -2 0.05 0.05 4.2 >102 -2 0.10 0.05 8.4 10 -1 0.10 0.10 3.4 10 2 2 3 3 (A) 3.4 11 (B) 6.7 11 (C) 3.4 11 (D) 6.7 11 7. 催化剂是通过改变反应进行的历程来加速反应速率。这一历程影响 .......... ( ) (A )增大碰撞频率; (B )降低活化能; (C )减小速率常数; (D )增大平衡常数值。 8. ................................................................................................................................................ 下列叙 述中正确的是 ................................................................... ( ) (A) _2 " [B] =3 " t (D)

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

飞机气动力参数辨识技术的工程应用

飞机气动力参数辨识技术的工程应用 在介绍飞机气动参数辨识原理的基础上,论述了该技术在飞机气动设计、飞行品质鉴定、飞行模拟机的飞行动力学模型开发等方面的应用情况,提出了涉及飞机试飞、模型开发等技术应用场景中的相关注意事项。 标签:飞机;气动参数辨识;试飞;仿真 引言 目前,常用的飞机气动建模技术手段有三种[1]:流体力学、风洞试验和飞行试验。基于飞行试验数据的飞机气动力参数辨识技术作为最重要的手段之一,受到了越来越多的重视,并被广泛地应用于校正飞机气动参数的流体力学计算和风洞试验结果、飞行品质评价、飞行模拟机建模仿真等方面。本文结合飞机/飞行模工程研制工作,详细介绍该技术的具体应用现状,并提出相关注意事项。 1 气动参数辨识原理 飞机气动力参数辨识作为飞机动力学系统辨识中发展最为成熟的一个分支,是系统辨识理论在飞行动力学系统方面的具体应用。该辨识通过测量飞机的发动机推力(测算)、舵面偏转和飞行状态数据,以飞机气动模型和飞机飞行动力方程作为状态方程,以上述测量得到的数据作为状态量和观测量,以此建立作用于飞机的空气动力(矩)与飞机运动状态参数和控制输入之间的解析关系式[2]。在图1所示的辨识基本原理 中,激励信号、辨识模型、参数估计和结果验证是辨识结果可信度的四大影响因素。 图1 飞机气动力参数辨识的基本原理 激励信号设计是通过舵偏操纵信号的优化设计,充分激励飞机的运动特性,确保飞机的运动模态信息尽可能多地包含在飞机试飞数据中[3]。辨识模型建立是基于空气动力学的先验知识初步确定模型的结构,将模型辨识问题转化为参数估计问题。辨识方法应用是选取合适的参数寻优准则和算法,通过飞机真实响应与模型仿真响应之间的差异进行模型参数的优化。辨识结果验证是确保建立的数学模型能够合理、精确地表征飞机的飞行动力学特性。 2 在飞机气动设计中的应用 在飞机的工程研制中建立准确的飞机气动模型,是飞行控制律参数调整、工程模拟机仿真等工作的前提和基础。而在飞机的初步/详细设计阶段,飞机气动模型的建立通常通过流体力学计算和风洞试验两种技术手段实现,但其模型的精度往往与真实飞机存在明显的差异。因此,飞机制造商多在飞机的研发试飞中开

(完整版)电动力学习题集答案

电动力学第一章习题及其答案 1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普 适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y y ')j (z z ')k 为从源点指向场点的矢 量 , E 0 , k 为常矢量,则 (r 2 a ) =(r 2 a ) (r a 2r a , )a ) ddrr 2 r a 2r r r 2 r i j k (x x ') (y y ') (z z ') i j y-y' k rr x y z 2 2 2 x-x' r z-z' r r 2(x x ') (x x ') ,同理, x (x x ') 2 (y y ') 2 (z z ') 2 r 2 (x x ')2(y y ')2(z z ') 2 (y y ') (x x ') (y y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') 2 , z 2 2 (z z ') r r e e e x x x r (x-x') r (y-y') y (z-z') 3 z , x y z x x ' y y ' z z ' 0, x (a r ) a (r ) 0 , ) r r r r 2r r r 0 r rr ( r 1 1 3 r a , , ( ) [a x (x -x' )] [ a y (y - y')] j [a z (z -z')] a r i k x y z r r r r 1 r 1 r r 3 r 2 3 r , ( A ) __0___. r r [E 0 sin(k r )] k E cos(k r ) __0__. (E 0e ik r ) , 当 r 0 时 , (r / r 3) ik E 0 exp(ik r ) , [rf (r )] _0_. [ r f ( r )] 3f (r ) r df (r ) dr s 3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散 度,以及该矢量在边界上的切向或法向分量,则 在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满 足 4. 电荷守恒定律的微分形式为 J t J 0 . 5. 场强与电势梯度的关系式为, E .对电偶极子而言 ,如已知其在远处的电势为

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P =?,EI 483 =δ。将它们代入上式,并注意到y m I -=,y c R -=,得 )(48)(38453 4y c y m EI t q EI y --+= 图16-7 经整理后可得 )(t P ky y c y m E =++ 式中,3EI 481k =δ= ,)(8 5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

动力学(1)习题

第七章化学动力学(1)练习题 一、判断题: 1.在同一反应中各物质的变化速率相同。 2.若化学反应由一系列基元反应组成,则该反应的速率是各基元反应速率的代数和。3.单分子反应一定是基元反应。 4.双分子反应一定是基元反应。 5.零级反应的反应速率不随反应物浓度变化而变化。 6.若一个化学反应是一级反应,则该反应的速率与反应物浓度的一次方成正比。7.一个化学反应进行完全所需的时间是半衰期的2倍。 8.一个化学反应的级数越大,其反应速率也越大。 9.若反应A + B Y + Z的速率方程为:r=kc A c B,则该反应是二级反应,且肯定不是双分子反应。 10.对于一般服从阿累尼乌斯方程的化学反应,温度越高,反应速率越快,因此升高温度有利于生成更多的产物。 11.若反应(1)的活化能为E1,反应(2)的活化能为E2,且E1 > E2,则在同一温度下k1一定小于k2。 12.若某化学反应的Δr U m < 0,则该化学反应的活化能小于零。 13.对平衡反应A Y,在一定温度下反应达平衡时,正逆反应速率常数相等。 14.平行反应,k1/k2的比值不随温度的变化而变化。 15.复杂反应的速率取决于其中最慢的一步。 16.反应物分子的能量高于产物分子的能量,则此反应就不需要活化能。 17.温度升高。正、逆反应速度都会增大,因此平衡常数也不随温度而改变。 二、单选题: 1.1.反应3O 22O 3 ,其速率方程 -d[O 2 ]/d t = k[O3]2[O2] 或 d[O 3 ]/d t = k'[O3]2[O2],那么k与k'的关系是:(A) 2k = 3k' ; (B) k = k' ; (C) 3k = 2k' ; (D) ?k = ?k' 。 2.有如下简单反应a A + b,已知a < b < d,则速率常数k A、k B、k D的关系为: (A) ; (B) k A < k B < k D; (C) k A > k B > k D; (D) 。

高等飞行动力学试题解答

考试科目:高等飞行动力学课程编号:016011 说明:所有答案必须写在答题册上,否则无效。共20页第1页 目录 1.请推导飞机小扰动运动方程,并分析其使用条件。 (2) 2.什么是驾驶员操纵期望参数,分析其含义。 (13) 3.请列写敏捷性尺度并对其含义进行分析说明。 (14) 4.试说明评估飞机飞行性能的基本内容和基本方法。 (18)

考试科目:高等飞行动力学课程编号:016011 说明:所有答案必须写在答题册上,否则无效。共20页第2页 1.请推导飞机小扰动运动方程,并分析其使用条件。 一、小扰动法简介 (1)基本概念 研究飞行器的稳定性和操纵性问题时,一般把飞机运动分为基准 运动和扰动运动。基准运动(或称未扰动运动)是指在理想条件下, 飞行器不受任何外界干扰,按预定规律进行的运动,如定直平飞、定常盘旋等。基准运动参数用下标“*”表示,如 V、*α、*θ等。 * 由于各种干扰因素,使飞行器的运动参数偏离了基准运动参数, 因而运动不按预定的规律进行,这种运动称为扰动运动。受扰运动的参数,不附加任何特殊标记,例如V、α、θ等。与基准运动差别甚小的扰动运动称为小扰动运动。 (2)基本假设 在小扰动假设条件下,一般情况就能将飞行器运动方程进行线性 化。但为了便于将线性扰动运动方程组分离为彼此独立的两组,即纵 向和横侧小扰动方程组,以减少方程组阶次而解析求解,还需要做下 列假设: 1)飞行器具有对称平面(气动外形和质量分布均对称),且略去机体内转动部件的陀螺力矩效应。 2)在基准运动中,对称平面处于铅垂位置(即0 φ=),且运动所在平

考试科目:高等飞行动力学 课程编号:016011 说 明:所有答案必须写在答题册上,否则无效。 共20页 第 3页 面且运动所在平面与飞行器对称平面相重合(即0β=)。 在满足上述条件下,可以认为,在扰动运动中,纵向气动力和力矩只与纵向运动参数有关,而横侧向气动力和力矩也只与横侧运动参数有关。有了这些推论,就不难证明扰动运动方程可以分离为彼此独立的两组。其中一组只包含纵向参数,即飞行器在铅垂平面内作对称飞行时的运动参数,,,,,,,,,g g e p u w q x z αθγδδ等,称为纵向扰动运动方程组;另一组只包含横侧参数,即飞行器在非对称平面内的运动参数 ,,,,,,,,,,g a r v p r y βψχφμδδ等,称为横侧向扰动运动方程组。 (3)线性化方法 飞行器的任何一个运动方程可以表示成如下的一般形式: ()12,,,0n f x x x = (1.1) 式中变量(1,2,...,)i x i n =可以是运动参数或它们的导数。根据前述,运动参数可以表示成基准运动参数*i x 和偏离量i x ?之和: *i i i x x x =+? 于是方程式(1.1)可写成 ()1*12*2*,,,0n n f x x x x x x +?+?+?= (1.2) 在基准点()1*2**,,,n x x x 处展开成Taylor 级数,并根据小扰动假设,略去二阶及以上各阶小量,得到 ()1*2**1212*** ,,,...0n n n f f f f x x x x x x x x x ?????????+?+?++?= ? ? ?????????? (1.3) 显然,基准运动也应满足运动方程式(1.1),即

动力学 练习题(一)

动力学 练习题(一) (231B 1.3810 J K k --=?? 346.62610 J s h -=??) 一、填空和简答题 1. 生物死亡后,因为不再吸收放射性碳原子,相应的放射性也逐渐降低。现测定一木 乃伊的14 6C 放射性,发现为正常人的56.2%,已知146C 的半衰期为5568年。问此木乃伊有多少年了? 2. 某反应的活化能是33 kJ·mol -1,当T = 300 K 时,温度增加1K ,反应速率常数增加的百分数约为多少? 3. 双分子气相反应A + B = D ,其阈能为40 kJ·mol -1,有效碰撞分数是6 × 10-4,该反应进行的温度是多少? 4. 已知两同级平行反应下列动力学数据,通过简单分析说明,在一般温度范围内升高温度,哪一个反应速率变化快?在T →∞,情况又如何? 5. 某气相反应11 A+B C k k -??→←??的温度从300K 升至310K ,310K 时正、逆反的速率均增加为300K 时正、逆反应速率的3倍,则正反应活化能E a,1和反应的Δr H m 为多少? 6. 气相反应:A -A + B -C [A -A -B -C ]≠??→??→←??, A 、B 、C 均为单原子, [A -A -B -C ]≠为非线形活化络合物,若 9v r t 1,10,10f f f ===,估算反应的几率因子的数量级 P 。 二、计算题 1. 恒容气相反应2N 2O(g) → 2N 2 (g) + O 2 (g) 由纯N 2O 开始,实验测得如下数据: (1) 判定反应级数,求967K 及1085K 时反应的速率常数k P 。 (2) 若950K ,从p 0 = p ?开始反应,求当N 2O(g)转化率达到80%所需时间,以及此时体系的总压p 总。 2. 已知溶液中进行的反应A+B P →,对B 为一级,当B,0c =1.0mol?dm -3,在300K 测得 如下数据: A c / mol·dm -3 1.000 0.692 0.500 0.250 t /s 0 20 44.9 134.8 (1) 确定反应对A 的级数,求300K 时反应的速率常数k 及反应的半衰期;

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

动力学习题课题目

1、T=300 K, H2(g)+Br2(g)=2HBr(g),反应器体积恒定为V=0.25 dm3,实验测得反应进行0.01 s时,Br2(g)的量减少了0.001 mol,试求: (1)转化速率dξ/dt;(2)反应速率r;(3)r(H2)、r(Br2)、r(HBr)与r的关系;(4)能否用dp(总)/dt测量反应速率? 2、2、N2O5分解反应实验测得不同温度下的k值,见下表。试探讨该反应的反应级数并求其 反应活化能E a。 3、等温等容理想气体反应:A(g) → B(g) + C(g),反应从纯A开始。设该反应对A为α级反 应,实验中只能测得总压力p T和反应最终压力p∞。(1)写出以p T和p∞表达的反应速率方程;(2)求k p和k之关系;(3)设计一个实验方案测量α值。 4、等容封闭体系中进行以下平行反应: (1) 当[A]0 = 2.00 mol?dm-3时,求[A]降低到何值时主产物C的分数S C达到最大? (2) 当[A] = 0 时,[C]多大? 5、试推导1-2对峙反应的驰豫时间表达式。 6、对于连续反应: C为活性物种,当k2[B] >> k-1及k2[B] << k-1两种情况时,分别讨论该反应的反应级数及表观速率常数k a的表达式。 7、对于丙酮卤代反应: 中间产物C、D和E分别为(CH3)2COH+、CH3C(OH)CH3和CH2XC(OH)CH3+,催化剂HA是一种酸,反应历程可写为: (1)用稳态近似发求以丙酮消耗速率表示的反应速率方程; (2)若k3 >> k2,决速步为哪一步?为什么? (3) 若k3 << k2,决速步为哪一步?为什么?

直升机飞行力学复习题答案

Chapter One A helicopter of central articulated rotor makes a level flight with cruse speed. In this flight condition, the pitching attitude angle is 02?=-, longitudinal cyclic pitching angle is 017 B =, rotor longitudinal flapping angle is 013s a =-. Assuming the tilted angle of rotor shaft is 00δ=, please determining the following angles: Helicopter climb angle θ= Fuselage attack angle α= Rotor attack angle s α= Rotor flapping due to forward speed 10a = 中心铰式旋翼直升机以巡航速度前飞。俯仰角-2°,纵向周期变距7°,纵向挥舞角-3°,旋翼轴前倾角0° 平飞,爬升角0° 机身迎角-2° 桨盘平面迎角-2° 吹风挥舞4°

Chapter Two 1.For the main/tail rotor configuration helicopter, the pilot applies which stick or rudder to control what kind of surfaces and corresponding aerodynamic forces? 2.Why the gradient of control stick forces can’t be too large or small? 3.Co-axis, tandem and tilted-rotor helicopters have no tail rotor. How to change the direction in hover for these helicopters? 1.操纵——气动面——响应P13表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/后倒——前飞/后飞,俯仰左推/右推杆——横向周期变距,桨盘侧倒——侧飞,滚转 油门/总距杆——改变总距——改变垂向速度 脚蹬——改变尾桨总距——改变航向 2.为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力,太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3.共轴、纵列、倾转旋翼机如何悬停转弯? 共轴——上下旋翼总距差动 纵列——前后横向周期变距一个向左一个向右 倾转旋翼——一侧后倒一侧前倒

动力学例题一27708445

动力学有限元分析例题一 例题1:图1所示的悬臂梁,长L =3m ,截面宽度b =0.02m ,高度h =0.10m 。材料弹性模量E =210GPa ,密度ρ=7800Kg/m 3。不考虑系统的阻尼,试计算梁横向振动的前6阶固有频率和正则振型,运用振型叠加法计算梁右端在受到力(100sin 10F t )π=N 作用下0-1s 时间内的响应,并与理论解对比。 【理论解:固有频率f 1=9.3132Hz ,f 2=58.365Hz ,f 3=163.42Hz ,f 4=320.25Hz ,f 5=529.39Hz ,f 6=790.81Hz ; 响应()()()()()2 321 410sin 10sin 100101i i x L i i i i X t p p L y t EI k L p π ππ=∞ =? ?? ??? t =??????????????? ∑? 其中i i p k =是系统的无阻尼固有频率,A 是梁截面积, ()()()() ()() ()()(sin cos sin cos i i i i i i i i i sh k L k L )X ch k x k x sh k x k x ch k L k L ?=?? ?+是系统的正则振型,k i 满足特征方程()()cos 1i i k L ch k L =?。 】 图1 悬臂梁结构图 解:求解中采用国际单位制。

Edb=extract(Edof,Egv(:,i)); ext=ex+(i-4)*4; eldraw2(ext,eyt,[2 3 1]); eldisp2(ext,eyt,Edb,[1 2 2],magnfac); FreqText=num2str(Freq(i)); text(4*(i-4)+1.25,-3.0,FreqText); end % 绘制前6阶正则振型图。 % Step 6 设定简谐响应分析条件和 6.进入简谐响应分析,给定相关参数 选取模态 T=1; nev=2; % 设定计算总时间为1s,选择结构 的前两阶模态作为振型叠加法分析 的基础。 F0=100; omega=10*pi; % 设定正弦载荷的幅值为100N,频 率为5Hz。 % Step 7 求解得到模态坐标下的响 7.求解得到模态坐标下的响应 应 dt=0.002; t=0:dt:T; nhist=[13]; % 选取第13自由度作为响应输出, 并设定对应的时刻。 for j=1:nev Dr(j,:)=zeros(1,length(t)); Dr(j,:)=F0*Egv(nhist,j)*(omega*sin (Cfreq(j)*t)-Cfreq(j)*sin(omega*t))/(C freq(j)*(omega^2-Cfreq(j)^2)); end % 用Duhamel积分计算响应。 % Step 8 将模态坐标下的响应映射 8.将模态坐标下的响应映射回物理坐标下的响应回物理坐标下的响应 DR=Egv(nhist,1:nev)*Dr; % 进行响应的坐标转换。 % Step 9 绘制响应时间历程图 9.绘制响应时间历程图 figure(2), plot(t,DR(1,:),'-') axis([0 T -0.008 0.008]) grid, xlabel('time (sec)'), ylabel('displacement (m)') title('Displacement(time) at the free

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

相关文档
最新文档