《分子生物学》实验课时

《分子生物学》实验课时
《分子生物学》实验课时

《分子生物学》实验(课时)

————————————————————————————————作者: ————————————————————————————————日期:

?

《夜晚的实验》课文原文

《夜晚的实验》课文原文 意大利科学家斯帕拉捷习惯晚饭后到附近的街道上散步。他常常看到,很多蝙蝠灵活的在空中飞来飞去,却从不会撞到树上或者墙壁上。这个现象引起了他的好奇:蝙蝠凭什么特殊的本领在夜空中自由自在的飞行呢? 1793年夏天,一个晴朗的夜晚,喧腾热闹的城市渐渐平静下来。斯帕拉捷匆匆吃完晚饭,便走出街口,把笼子里的蝙蝠放了出去。当他看到放出去的几只蝙蝠轻盈敏捷地来回飞翔时,不由得尖叫起来。因为那几只蝙蝠,眼睛全被他蒙上了,都是“瞎子”呀。 斯帕拉捷为什么要把蝙蝠的眼睛蒙上呢?原来,每当他看到蝙蝠在夜晚轻巧自如的飞翔时,总认为这些小精灵一定长着一双特别敏锐的眼睛。假如他们的眼睛瞎了,就不可能在黑暗中灵巧的躲过各种障碍物,并且敏捷的捕捉飞蛾了。然而事实完全出乎他的意料。斯帕拉捷很奇怪:不用眼睛,蝙蝠凭什么来辨别前方的物体,捕捉灵活的飞蛾呢? 于是,他把蝙蝠的鼻子堵住。结果,蝙蝠在空中还是飞得那么敏捷、轻松。“难道他薄膜似的翅膀,不仅能够飞翔,而且能在夜间洞察一切吗?”斯帕拉捷这样猜想。他又捉来几只蝙蝠,用油漆涂满它们的全身,然而还是没有影响到它们的飞行。

最后,斯帕拉捷堵住蝙蝠的耳朵,把他们放到夜空中。这次,蝙蝠可没有了先前的神气。他们像无头的苍蝇一样在空中东碰西撞,很快就跌落到地上。 啊!蝙蝠在夜间飞行,捕捉食物,原来是靠听觉来辨别方向、确认目标的! 斯帕拉捷的实验,揭开了蝙蝠飞行的秘密,促使很多人进一步思考:蝙蝠的耳朵又怎么能“穿透”黑夜,“听”没有声音的物体呢? 后来人们继续研究,终于弄清了其中的奥秘。原来,蝙蝠靠喉咙发出人耳听不到的“超声波”,这种声音沿着直线传播,一碰到物体就像光照到镜子上那样反射回来。蝙蝠用耳朵接受到这种“超声波”,就能迅速做出判断,灵巧的自由飞翔,捕捉食物。

第12课《夜晚的实验》

苏教版语文六年级下册 12 夜晚的实验 一、教学目标: 1.学会本课3个生字,理解由生字组成的新词。 2.正确、流利、有感情地朗读课文,概括课文主要内容,能联系课文语言环境,懂得课后作业中“瞎子”、“穿透”、“听|”等词的意思及其所带引号的用法。 3.通过朗读、复述等一系列语言训练,感受并学习科学家细心观察、善于思考、大胆实验、潜心研究、遭受失败不气馁、善于反思,不断利用科学技术造福人类的科学精神。 4.细读课文第二部分,体会作者是如何把“第一次实验”的过程写具体的,学习作者详略得当的写作方法。采用先分次再整体的方法复述实验的过程。 二、教学重、难点: 重点:学习科学家细心观察、善于思考、大胆实验、潜心研究、遭受失败不气馁、善于反思,不断利用科学技术造福人类的科学精神。 难点:在读中整体感知,在读中有所感悟,在读中培养语感,在读中受到情感的熏陶。 三、教学评价设计: 1.在检查学生预习环节,通过查看预习单、听写、轮读、汇报、交流等形式了解学生独立识字、写字、读书及对课文内容掌握情况,以学定教。 2.在初读感知环节,通过给段落加小标题,提炼课文内容,理清文章的表达顺序,进一步提升学生整体把握文本的能力。 3.在精读感悟环节,采用默读、圈画、批注、交流、汇报等形式,引导学生抓住关键词句并联系上下文理解课文内容,学习科学家细心观察、善于思考、大胆实验、潜心研究、遭受失败不气馁、善于反思,不断利用科学技术造福人类的科学精神。 4.在整个学习过程中,关注学生的情感体验,及时作出鼓励性的评价,注意培养学生自主学习、合作学习的意识和能力。

5.借助拓展小练笔,搜集有关仿生学的知识和例子,促进学生语文素养的提高。 四、教与学的准备: 学生:完成预习单。(见后附件1) 教师:1.查看学生预习单,了解学情。 2.多媒体课件。 五、教学课时:2 课时 六、教学设计: 第一课时 环节一、整体感知——初读感知,整体把握 (一)导入新课 课件导入 1 .播放运用超声波来为飞机、轮船导航,超声波治病,超声波勘探的几组CAI 课件,让学生体会超声波的广泛用途。 (“超声波”这个词语对六年级的学生来说还是比较陌生的。通过课件的介绍,一方面让他们了解超声波的知识,另一方面也为学习课文设下悬念。 ) 2 .你们知道超声波是怎样被发现的吗?它缘于一位科学家的夜间实验。 3 .出示课题:《夜晚的实验》。 板书课题:夜晚的实验(读题) 看了课题,你想知道什么? 有什么疑问吗? (此课题信息储藏量大,学生可能会提很多问题。如:谁做实验?为什么在夜晚做实验?怎样做实验?实验的结论是什么?它与超声波有何联系?等等。) (二)借助预习单,检查预习。 1.检查生字的识、写。 (1)投影出示预习单,检查学生对文中难读和易读错词语的朗读,指导学生读准多音字“核”以及外国人名。

分子生物学

分子标志物:指可以反映机体生理、病理状态的核酸、蛋白质(多肽)、代谢产物等生物分子。 DNA结构: DNA的二级结构是双螺旋结构:DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,两链以-脱氧核糖-磷酸-为骨架,以右手螺旋方式绕同一公共轴盘。螺旋直径为2nm,形成大沟(major groove) 及小沟(minor groove)相间。碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T;G=C)。相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。 DNA的三级结构是超螺旋结构:DNA双螺旋链再盘绕即形成超螺旋结构。正超螺旋(positive super coil)盘绕方向与DNA双螺旋方同相同负超螺旋(negative super coil)盘绕方向与DNA双螺旋方向相反。 原核生物DNA的是环状超螺旋结构 核小体(nucleosome) 是染色质的基本组成单位,由DNA和蛋白质构成。组蛋白:H1、H2A、H2B、H3、H4 RNA结构: 一级结构:核苷酸连接方式同DNA。RNA的一级结构即指核苷酸的连接方式、数量和排列 方式。 主要结构特征:①含有稀有碱基(修饰碱基);②不遵守Char gaff原则;③多数为单链分子,形成链内双链二级结构(发夹结构);④碱基配对:A-U,G-C。 t RNA二级结构:DHU环反密码环额外环 TΨC环氨基酸臂 t RNA的三级结构是倒L型 t RNA的功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译。 m RNA的结构与功能: 1)基本特点:含量低(约占总RNA的1%~5%);种类多(上万种);分子大小差异大(几百~约2万个核苷酸);半衰期短。 2)结构特点:编码区——决定蛋白质的一级结构,包括起始密码子、终止密码子、外显子。非编码区——与蛋白质生物合成的调控有关,包括5′非编码区(帽结构、核蛋白体识别结合位点等)、3′非编码区(多聚腺苷酸尾)、间隔序列(内含子)。大多数真核m RNA 的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C′2甲基化,形成帽子结构m7GpppN-。大多数真核m RNA的3′末端有一个多聚腺苷酸(poly A)结构,称为多聚A尾3)功能:作为蛋白质合成的模板。 帽子结构和多聚A尾的功能:m RNA核内向胞质的转位、m RNA的稳定性维系、翻译起始的调控 增色效应:核酸分子在变性过程中,其溶液的A260会增大,此现象称为增色效应。 融解温度(Tm):DNA分子热变性程度达到50%时所对应的温度,称为融解温度或解链温度。 Tm的影响因素: ①DNA分子的碱基组成Tm与DNA分子碱基组成的关系 AT富集区先解链,GC富集区后解链。 ②溶液的离子强度一般情况下,在低离子强度溶液中,DNA的Tm较低, 且解链温度范围较宽;在高离子强度溶液中,Tm较高,解链温度范围较窄。 ③ pH 一般情况下,核酸溶液的pH在5~9范围内,DNA的Tm变化不明显;当溶液的pH<4或>11时,DNA的Tm会降低。

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

12、夜晚的实验

《夜晚的实验》教学设计 教材解析: 《夜晚的实验》是六年级下册第4 单元的一篇叙事性课文,讲述了意大利科学家斯帕拉捷通过夜晚的4 次实验,揭开了蝙蝠是依靠听觉来飞行的秘密,人们由此发现了超声波,并将超声波广泛应用于航空、航海、工业、农业、军事、医疗等领域。文章用浅显的语言介绍了斯帕拉捷的实验过程,用形象的比喻说明了蝙蝠如何利用超声波探路以及超声波的广泛用途,告诉孩子们任何有意义的发现都源于对生活的细心观察,认真实验。 设计思路: 遵循高年级学生学习语文的特点,采取“ 质疑式探究法” ,让学生自主发现问题,以问题为介,多次走进文本,层层深入,充分与文本对话,由表及里,实现三维目标的整合。 教学目标: 1 .学会本课4 个生字以及由生字组成的新词。 2 .理清记叙顺序,把握故事梗概。 3 .理解课文内容,知道任何有意义的发现都源于对生活的细心观察,认真实验。 重点难点: 1、指导学生正确、流利、有感情地朗读课文,复述课文。 2、感受科学家细心观察、善于思考、大胆实验、潜心研究、不断利用科学技术造福人类的科学精神。 教学流程: 一、激情入境,引入文本 1 .播放运用超声波来为飞机、轮船导航,超声波治病,超声波勘探的几组CAI 课件,让学生体会超声波的广泛用途。(“ 超声波” 这个词语对六年级的学生来说还是比较陌生的。通过课件的介绍,一方面让他们了解超声波的知识,另一方面也为学习课文设下悬念。) 2 .你们知道超声波是怎样被发现的吗?它缘于一位科学家的夜间实验。 3 .出示课题:《夜晚的实验》。 二、扣题生疑,走近文本 1 .看到这个题目,你有哪些疑问?( 此课题信息储藏量大,学生可能会提很多问题。如:谁做实验?为什么在夜晚做实验?怎样做实验?实验的结论是什么?它与超声波有何联系?等等。教师要及时梳理问题。) 2 .课题是文章的眼睛,我们要善于从这里发现问题,再带着这些问题读书,才是有目的的读,才会提高读的效率。让我们带着这些问题走进课文吧! (“ 学贵有疑” 。引导学生由课题生发开去,进行质疑问难,激活了学生的思维,使他们一开始就处于“ 愤”“ 悱” 的状态,激发了读书的欲望,也培养了自读能力。) 三、扫除障碍,走进文本 1 .自由朗读课文。 2 .学习生字,检查认读,读准后再写写。

分子生物学--名词解释(全)

1. 半保留复制(semiconservative replication):DNA复制时,以亲代DNA的每一股做模板,以碱基互补配对原则,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为半保留复制。 2.复制子replicon:由一个复制起始点构成的DNA复制单位。 57. 复制起始点(Ori C)DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸序列顺序的片段,即复制起始点。 24.(35)复制叉(replication fork)是DNA复制时在DNA链上通过解旋、解链和SSB蛋白的结合等过程形成的Y字型结构称为复制叉。 3. Klenow 片段klenow fragment:DNApol I(DNA聚合酶I)被酶蛋白切开得到的大片段。 4. 外显子exon、extron:真核细胞基因DNA中的编码序列,这部分可转录为RNA,并翻译成蛋白质,也称表达序列。 5.(56)核心启动子core promoter:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区。(Hogness区) 6. 转录(transcription):是在DNA的指导下的RNA聚合酶的催化下,按照硷基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。 7. 核酶(ribozyme):是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。 8.(59)信号肽signal peptide:常指新合成多肽链中用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。 9.顺式作用元件(cis-acting element):真核生物DNA中与转录调控有关的核苷酸序列,包括增强子、沉默子等。 10.错配修复(mismatch repair,MMR):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式;主要用来纠正DNA双螺旋上错配的碱基对,还能修复一些因复制打滑而产生的小于4nt的核苷酸插入或缺失。修复的过程是:识别出正确的链,切除掉不正确的部分,然后通过DNA聚合酶III和DNA连接酶的作用,合成正确配对的双链DNA。 直接修复direct repair:是将被损伤碱基恢复到正常状态的修复。有三种修复方式:1光复活修复2、O6-甲基鸟嘌呤-DNA甲基转移酶修复3单链断裂修复。

分子生物学发展史之我感

分子生物学发展史之我感 19世纪后期到20世纪50年代,分子生物学完成了两大重点突破:确定了蛋白质是生命的主要基础物质;确定了生物遗传的物质是DNA。 1953年Watson和Crick提出了DNA双螺旋结构模型,这一发现犹如黎明中亮起的第一道曙光,照亮了隐藏在黑暗中的条条大路,为之后的一系列发现照明了方向,由此步入了分子生物学的建立和发展阶段。而后DNA半保留复制模型的确立,DNA作为模板转录RNA,RNA作为模板利用氨基酸合成蛋白质,RNA作为模板转录DNA。这些成果的发现共同建立了以中心法则为基础的分子生物学基本理论体系。 中心法则建立的这一过程大约花了近20年,是几代科学家辛苦专研的共同成果,个人觉得这个发展过程还是很飞速的。看分子生物学发展史,我觉得也是在看诺贝尔化学、生理和医学奖收获史。就以中心法则建立的这一过程来说,每走一小步都是一个突破,都极其重要,往往也标志着下一个突破的到来。没有DNA半保留复制方式的发现,没有RNA聚合酶的发现,就不会有转录的发现,再就不会有翻译等等的发现。这每一小步成果也都建立在科学家大胆创新的思维,合理的实验设计,共同合作和坚持不懈的反复实验基础之上。同时,在获得这一系列成果的过程中,科学家们也创造了更多的实验方法与新技术。这些新方法新技术往往推动一个学科的快速发展,甚至带来一个新的交叉学科。随着分子生物学的进一步发展,已经渗透到各个领域,分子结构生物学,分子细胞生物学,分子遗传学,分子发育生物学…… 20世纪70年代后,以基因工程技术的出现作为新的里程碑,标志人类从认识生命本质到迈出改造生命的步伐。在D.Baltimore、R.Dulbecco和H.M.Temin 发现肿瘤病毒与细胞遗传物质之间的相互作用,以及W.Arber、D.Nathans、H.O.mith发现限制性内切酶并荣获1978年诺贝尔生理或医学奖后,基因工程技术得到迅速发展。这得益于许多分子生物学新技术的不断涌现。M.R.Capecchi、O.Smithies和M.J.Evans凭借“基因打靶技术”共同分享了2007年度诺贝尔生理学或医学奖,“基因打靶”技术利用细胞脱氧核糖核酸(DNA)可与外源性DNA 同源序列发生同源重组的性质,可以定向改造生物某一基因。借助这一从上世纪80年代发展起来的技术,人们得以按照预先设计的方式对生物遗传信息进行精细改造。可以瞄准某一特定基因,使其失去活性,进而研究该特定基因的功能。尽管“基因打靶”技术刚刚诞生20余年,全世界的科学家已经利用该技术先后对小鼠的上万个基因进行了精确研究。根据导致人类疾病的各种基因缺陷,科学家培育了超过500种存在不同基因变异的小鼠,这些变异小鼠对应的人类疾病包括心血管疾病、神经病变,糖尿病和癌症等。评委会认为,是因为其“开创了全新的研究领域”,为人类攻克某些疾病提供了药物试验的动物模型。我对这一技术印象深刻,不仅惊叹于它的革新,更惊叹于其实际应用功能。它在医学领域的应用或将攻克很多人类疾病,给医学进步带来很大利益。所以说,一个学科的发展往往能推动另一学科的发展,学科之间是有界限的,往往也是无界限的。除了基因打靶,更多的技术已经被发现或将要被发现。每一次的技术革新都在影响着人类生活,给人带来更多福祉。这也教诲我们在科研工作中要有发现的眼睛,创新的思维。 学习了分子生物学的发展历史,发现分子生物学是生命科学范围发展最迅速

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

分子生物学

一、名词解释: 分子生物学:研究核酸等生物大分子的功能、形态结构特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地 改造和重组自然界的基础学科。 基因:合成一种功能蛋白或RNA分子所必需的全部核苷酸序列。 基因组:生物有机体的单倍体细胞中的所有DNA。 C值:在真核生物中,每种生物的单倍体基因组的DNA总量总是恒定的,称为C值。 DNA的半保留复制:DNA在复制过程中,两条链解开分别作为模板合成新链,产生互补的 两条链,这样新形成的两个DNA分子与亲代DNA分子的碱基顺序完 全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则 是新合成的,这种复制方式称为DNA的半保留复制。 复制叉:复制时双链DNA要解开成两股链分别进行,复制起点呈现叉子的形式,称为~ 复制子:单独复制的一个DNA单元被称为一个复制子,它是一个可移动的单位。 DNA的半不连续复制:DNA复制过程中,前导链的复制是连续的,后随链的复制不连续的, 它是生物界中的普遍现象,称为~ 编码链:与mRNA序列相同的那条DNA链,又叫有意义链。 模板链:另一条根据碱基互补原则指导mRNA合成的DNA链,又叫反义链。 三联子密码:mRNA上每3个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这3个核苷酸就称为密码,也叫三联子密码。 同义密码子:编码同一种氨基酸的不同密码子。如UUU和UUC是苯丙氨酸的同义密码子。SD序列:存在于原核生物起始密码子AUG上游7-12个核苷酸处的一种4-7个核苷酸的保守片段,它与16S如RNA3’端反向互补,所以可将mRNA的AUG起始密码子置于 核糖体的适当位置以便起始翻译作用。 冈崎片段:DNA合成过程中,后随链的合成是不连续进行的,先合成许多片段,最后各段再连接成为一条长链,这些小的片段成为冈崎片段。 DNA修复:错配修复、切除修复(包括:碱基切除修复和核苷酸切除修复)、重组修复、DNA 的直接修复、SOS反应。 DNA的转座:是由可移位因子介导的遗传物质重排现象。 基因家族:真核细胞中许多相关的基因常按功能成套组合,被称为基因家族。 外显子和内含子:大多数真核基因都是由蛋白质编码序列和非蛋白质编码序列两部分组成的,编码序列称为外显子,非编码序列称为内含子。 增强子特性:增强效应十分明显;增强效应与其位置和取向无关;大多为重复序列,一般长约50bp;其增强效应有严密的组织和细胞特异性;没有基因专一性;许多增 强子还受外部信号的调控。 顺式作用元件:真核生物启动子和增强子是由若干DNA序列元件组成的,由于它们常与特定的功能基因连锁在一起,因此被称为顺式作用元件。 反式作用因子:能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。有螺旋-转折-螺旋结构;锌指结构;碱性-亮氨酸拉 链;碱性-螺旋-环-螺旋;同源域蛋白; 热激蛋白:许多生物在最适温度范围以上,能受热诱导合成一系列热休克蛋白,又称热激蛋白! 癌基因:可分为两类,一类是病毒癌基因,主要有DNA病毒和RNA病毒;另一类是细胞转化基因,它们能使正常细胞转化为肿瘤细胞。 DNA探针:带有标记的一段已知序列DNA,共有四类,基因组DNA探针、cDNA探针、RNA

分子生物学地研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

分子生物学作业(完整版)

分子生物学作业 第一次 1、Promoter:(启动子)一段位于结构基因5…端上游、能活化RNA聚合酶的DNA序列,是RNA聚合酶的结合区,其结构直接关系转录的特异性与效率。 2、Cis-acting element:(顺式作用元件)影响自身基因表达活性的非编码DNA序列,组成基因转录的调控区包括:启动子、增强子、沉默子等 一、简述基因转录的基本特征。(作业)P35 二、简述蛋白质生物合成的延长过程。P58 肽链的延伸由于核糖体沿mRNA5 ′端向3′端移动,开始了从N端向C端的多肽合成。 起始复合物,延伸AA-tRNA,延伸因子,GTP,Mg 2+,肽基转移酶 每加一个氨基酸完成一个循环,包括: 进位:后续AA-tRNA与核糖体A位点的结合 起始复合物形成以后,第二个AA-tRNA在EF-Tu作用下,结合到核糖体A位上。 通过延伸因子EF-Ts再生GTP,形成EF-Tu?GTP复合物,参与下一轮循环。 需要消耗GTP,并需EF-Tu、EF-Ts两种延伸因子。 转位:P位tRNA的AA转给A位的tRNA,生成肽键; 移位:tRNA和mRNA相对核糖体的移动; 核糖体向mRNA3’端方向移动一个密码子,二肽酰-tRNA2进入P位,去氨酰-tRNA 被挤入E位,空出A位给下一个氨酰-tRNA。移位需EF-G并消耗GTP。 三、真核细胞mRNA分子的加工过程有哪些?P40 1、5’端加帽 加帽指在mRNA前体刚转录出来或转录尚未完成时,mRNA前体5’端在鸟苷酸转移酶催化下加G,然后在甲基转移酶的作用下进行甲基化。 帽子的类型 0号帽子(cap1) 1号帽子(cap1) 2号帽子(cap2) 2、3’端的产生和多聚腺苷酸花 除组蛋白基因外,真核生物mRNA的3?末端都有poly(A)序列,其长度因mRNA种类不同而变化,一般为40~200个A 。 大部分真核mRNA有poly(A)尾巴,1/3没有。 带有poly(A)的mRNA称为poly(A)+, 不带poly(A)的mRNA称为poly(A)-。 加尾信号: 3?末端转录终止位点上游15~30bp处的一段保守序列AAUAAA。 过程: ①内切酶切开mRNA3?端的特定部位; ②多聚A合成酶催化加poly(A)。 3、RNA的剪接

(完整版)名词解释分子生物学

分子生物学名词解释 基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组 半保留复制(semiconservative replication):一种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。因此,复制完成时将有两个子代DNA分子,每个分子的核苷酸序列均与亲代分子相同, 半不连续复制(Semi-ondisctinuousreplication)。是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。 dNTP,deoxy-ribonucleoside triphosphate(脱氧核糖核苷三磷酸)的缩写。是包括dATP, dGTP, dTTP, dCTP,dUTP等在内的统称,N是指含氮碱基,代表变量指代A、T、G、C、U等中的一种。在生物DNA、RNA合成中,以及各种PCR(RT-PCR(reverse transcription PCR)、Real-time PCR)中起原料作用。转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列. 多顺反子(polycistronicmRNA)在原核细胞中,通常是几种不同的mRNA连在一起,相互之间由一段短的不编码蛋白质的间隔序列所隔开,这种mRNA叫做多顺反子mRNA。这样的一条mRNA链含有指导合成几种蛋白质的信息。 基因表达:(gene expression)是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程 外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。外显子是最后出现在成熟RNA中的基因序列,又称表达序列。 转录(Transcription)是遗传信息从DNA流向RNA的过程。即以双链DNA中的一条链为模板,以dATP、dCTP、dGTP、dUTP四种[1]核苷三磷酸为原料,在RNA聚合酶催化下合成RNA的过程。 翻译translation是蛋白质生物合成(基因表达中的一部分,基因表达还包括转录)过程中的第一步,翻译是根据遗传密码的中心法则,将成熟的信使RNA分子(由DNA通过转录而生成)中“碱基的排列顺序”(核苷酸序列)解码,并生成对应的特定氨基酸序列的过程 启动子(Promoters)启动子是位于结构基因5'端上游的DNA序列,能活化RNA聚合酶,使之与模板DNA准确的结合并具有转录起始的特异性。 增强子(enhancer)指增加同它连锁的基因转录频率的DNA序列。增强子是通过启动子来增加转录的 断裂基因(splite gene)。真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(splite gene)。 内含子(introns)在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列。术语内含子也指编码相应RNA内含子的DNA中的区域 顺式作用元件:cis-acting element 是指那些与结构基因达调控相关、能够被基因调控蛋白特异性识别和结合的特异 DNA 序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。

六年级下册语文同步练习12 夜晚的实验∣苏教版(有答案)

《夜晚的实验》同步练习 1、《夜晚的实验》本文通过记叙 ,表现了科学家 的精神。 2、《夜晚的实验》一文中斯帕拉捷通过多次实验,终于弄清蝙蝠夜间飞行是靠 确认目标的,从而促使人们对“”研究。你还知道入们受到蝙蝠启发,发明了,我们要学习斯帕拉捷的科学精神。 3、后来人们继续,终于弄清了其中的。原来,蝙蝠靠发出人耳听不见的“”,这种声音沿着,一碰到物体就回来。蝙蝠用耳朵接受到这种“”,就能迅速,,捕捉食物。 1、斯帕拉捷是(国家),他主要贡献是:发现了“超声波”;我们还知道的科学家有(国家),他主要贡献。我们还知道的科学家有(国家),他主要贡献。 2、仿生学举例。 —— ——

参考答案 基础知识达标 1、《夜晚的实验》本文通过记叙意大利科学家斯帕拉捷通过多次夜晚的实验,终于揭开蝙蝠夜晚飞行秘密的经过,以及这一实验结果促使人们对超声波进行研究,并给人类带来巨大恩惠的事实,表现了科学家细心观察,善于思考,不断实验,潜心研究,利用科学技术造福人类的精神。 2、《夜晚的实验》一文中斯帕拉捷通过多次实验,终于弄清蝙蝠夜间飞行是靠听觉来辨别方向确认目标的,从而促使人们对“超声波”研究。你还知道入们受到蝙蝠启发,发明了雷达,我们要学习斯帕拉捷细心观察,善于思考,不断实验,潜心研究,利用科学技术造福人类的科学精神。 3、后来人们继续研究,终于弄清了其中的奥秘。原来,蝙蝠靠喉咙发出人耳听不见的“超声波”,这种声音沿着直线传播,一碰到物体就像光照到镜子上那样反射回来。蝙蝠用耳朵接受到这种“超声波”,就能迅速做出判断,灵巧的自由飞翔,捕捉食物。 课后能力提升 4、斯帕拉捷是意大利(国家),他主要贡献是:发现了“超声波”;我们还知道的科学家有英国(国家)牛顿,他主要贡献发现了万有引力。我们还知道的科学家有美国(国家)爱迪生,他主要贡献发明了灯泡,在留声机、电报、电影等众多发明。 5、仿生学举例。 萤火虫——人工冷光青蛙——电子蛙眼

分子生物学

1.介绍一种新的DNA序列改造的分子生物学技术原理。 提示(Cre/crop、Golden gate、Gibson assembly、Omega PCR) 答:Cre/crop:

Golden gate

2.介绍一基因沉默或敲除的分子生物学技术原理? 提示:iRNA、TALEN、CRISPR-Cas9等 答:RNAI: RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA (double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,(长度超过三十的dsRNA会引起干扰素毒性)所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。 作用机制:病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应, 其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA (大约21~23 bp),即siRNA。siRNA在细胞内RNA解旋酶的作用下解链成正义链和反义链,继之由反义siRNA再与体内一些酶(包括内切酶、外切酶、解旋酶等)结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)。RISC与外源性基因表达的mRNA的同源区进行特异性结合,RISC具有核酸酶的功能,在结合部位切割mRNA,切割位点即是与siRNA中反义链互补结合的两端。被切割后的断裂mRNA随即降解,从而诱发宿主细胞针对这些mRNA的降解反应。siRNA不仅能引导RISC切割同源单链mRNA,而且可作为引物与靶RNA结合并在RNA聚合酶(RNA-dependent RNA polymerase,RdRP)作用下合成更多新的dsRNA,新合成的dsRNA再由Dicer切割产生大量的次级siRNA,从而使RNAi的作用进一步放大,最终将靶mRNA完全降解。 RNAi发生于除原核生物以外的所有真核生物细胞内。需要说明的是,由于dsRNA抑制

相关文档
最新文档