人教中考数学专题题库∶圆的综合的综合题附答案

人教中考数学专题题库∶圆的综合的综合题附答案
人教中考数学专题题库∶圆的综合的综合题附答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).

(1)当G(4,8)时,则∠FGE= °

(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.

要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).

【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.

【解析】

试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.

(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.

试题解析:(1)连接FE,

∵E(8,0),F(0 , 6),G(4,8),

∴根据勾股定理,得FG=,EG=,FE=10.

∵,即.

∴△FEG是直角三角形,且∠FGE=90 °.

(2)作图如下:

P(7,7),PH是分割线.

考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.

2.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.

(1)求证:直线DE与⊙O相切;

(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.

【答案】(1)证明见解析;(2)2.

【解析】

试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;

(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.

试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;

(2)解:∵D是弧BC的中点,∴DC DB

,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且

DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=8

4

=2,∵BF是⊙O的切

线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.

点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.

3.(1)问题背景

如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.

小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:

第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);

第二步:证明Q,B,P三点共线,进而原题得证.

请你根据小明同学的思考过程完成证明过程.

(2)类比迁移

如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.

(3)拓展延伸

如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=4

3

AC,AB⊥AC,垂足

为A,则OC的最小值为.

【答案】(1)证明见解析;(2)OC最小值是2﹣3;(3)3

2

【解析】

试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;

(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;

(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=4

3

OA,连接OQ,

BQ,OB.由△QAB∽OAC,推出BQ=4

3

OC,当BQ最小时,OC最小;

试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);

∵BC 是直径,∴∠BAC=90°, ∵AB=AC ,∴∠ACB=∠ABC=45°,

由旋转可得∠QBA=∠PCA ,∠ACB=∠APB=45°,PC=QB ,

∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q ,B ,P 三点共线, ∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP 2=AP 2+AQ 2=2AP 2, ∴QP=2AP=QB+BP=PC+PB ,∴

2AP=PC+PB .

(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,

∵AB ⊥AC,∴∠BAC=90°,

由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;

(3)如图③中,作AQ ⊥OA ,使得AQ=

4

3

OA ,连接OQ ,BQ ,OB .

∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =4

3

, ∴△QAB ∽OAC ,∴BQ=

4

3

OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2,

∴OC的最小值为3

4×2=

3

2

故答案为3

2

【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.

4.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若

1

3 CF

DF

=,连

接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.

(1)求证:△ADF∽△AED;

(2)求FG的长;

(3)求tan∠E的值.

【答案】(1)证明见解析;(2)FG =2;(3)

5 4

.

【解析】

分析:(1)由AB是 O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,

继而证得△ADF∽△AED;(2)由

1

3

CF

FD

= ,CF=2,可求得DF的长,继而求得CG=DG=4,

则可求得FG=2;(3)由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠

5

本题解析:①∵AB是⊙O的直径,弦CD⊥AB,

∴DG=CG,∴AD AC

=,∠ADF=∠AED,

∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;

②∵

1

3

CF

FD

=,CF=2,∴FD=6,∴CD=DF+CF=8,

∴CG=DG=4,∴FG=CG-CF=2;

③∵AF=3,FG=2,∴225

AF FG

-=,

点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.

5.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E

(1)判断直线PD是否为⊙O的切线,并说明理由;

(2)如果∠BED=60°,PD=3,求PA的长;

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析.

【解析】

【分析】

(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;

(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,

∴0 tan30

OD

PD

=,解得OD=1,

∴PO,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,

∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.

6.在平面直角坐标系XOY中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且

x1≠x2,若P、Q为某等边三角形的两个顶点,且有一边与x轴平行(含重合),则称P、Q 互为“向善点”.如图1为点P、Q互为“向善点”的示意图.已知点A的坐标为(1,

3),点B的坐标为(m,0)

(1)在点M(﹣1,0)、S(2,0)、T(3,33)中,与A点互为“向善点”的是

_____;

(2)若A、B互为“向善点”,求直线AB的解析式;

(3)⊙B的半径为3,若⊙B上有三个点与点A互为“向善点”,请直接写出m的取值范围.

【答案】(1)S,T.(2)直线AB的解析式为y3或y3x33)当﹣2<m<0或2<m<4时,⊙B上有三个点与点A互为“向善点”.

【解析】

【分析】

(1)根据等边三角形的性质结合“向善点”的定义,可得出点S,T与A点互为“向善点”;(2)根据等边三角形的性质结合“向善点”的定义,可得出关于m的分式方程,解之经检验后可得出点B的坐标,根据点A,B的坐标,利用待定系数法即可求出直线AB的解析式;

(3)分⊙B与直线3相切及⊙B与直线33相切两种情况求出m的值,再利用数形结合即可得出结论.

【详解】

(1)

30330

,3tan60 1(1)221

?--

===

-

--

333

3tan60

31

?

-

==

-

∴点S,T与A点互为“向善点”.

故答案为S,T.

(2)根据题意得:

30

3

|1|

m

-

=

-

解得:m1=0,m2=2,

经检验,m1=0,m2=2均为所列分式方程的解,且符合题意,

∴点B的坐标为(0,0)或(2,0).

设直线AB的解析式为y=kx+b(k≠0),

将A(1,),B(0,0)或(2,0)代入y=kx+b,得:

3

k b

b

?+=

?

?

=

??

3

20

k b

k b

?+=

?

?

+=

??

解得:

3

k

b

?=

?

?

=

??

3

23

k

b

?=-

?

?

=

??

∴直线AB的解析式为y=3x或y=﹣3x+23.

(3)当⊙B与直线y=3x相切时,过点B作BE⊥直线y=3x于点E,如图2所示.

∵∠BOE=60°,

∴sin60°=3

BE

OB

=,

∴OB=2,

∴m=﹣2或m=2;

当⊙B与直线y=﹣3x+23相切时,过点B作BF⊥直线y=﹣3x+23于点F,如图3所示.

同理,可求出m=0或m=4.

综上所述:当﹣2<m<0或2<m<4时,⊙B上有三个点与点A互为“向善点”.

【点睛】

本题考查了等边三角形的性质、特殊角的三角函数值、待定系数法求一次函数解析式、解分式方程以及解直角三角形,解题的关键是:(1)根据等边三角形的性质结合“向善点”的定义,确定给定的点是否与A点互为“向善点”;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分⊙B与直线y=3x相切及⊙B与直线y=-3x+23相切两种情况考虑.

7.在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P独立于图形W.

(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于

点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于AB的点是;

(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标x p的取值范围;

(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.

【答案】(1)P2,P3;(2)x P<-5或x P>-5

3

.(3)-3<t<2或2<t<2

【解析】

【分析】

(1)根据点P独立于图形W的定义即可判断;

(2)求出直线DE,直线CD与直线y=2x+8的交点坐标即可判断;

(3)求出三种特殊位置时t的值,结合图象即可解决问题.

【详解】

(1)由题意可知:在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独

立于AB的点是P2,P3.

(2)∵C(-3,0),D(0,3),E(3,0),

∴直线CD的解析式为y=x+3,直线DE的解析式为y=-x+3,

28

3

y x

y x

+

?

?

+

?

,解得

5

2

x

y

-

?

?

-

?

,可得直线l与直线CD的交点的横坐标为-5,

28

3

y x

y x

+

?

?

-+

?

,解得

5

3

14

3

x

y

?

-

??

?

?

??

,可得直线l与直线DE的交点的横坐标为-

5

3

∴满足条件的点P的横坐标x p的取值范围为:x P<-5或x P>-5

3

(3)如图3-1中,当直线KN与⊙H相切于点E时,连接EH,则EH=EK=1,HK=2,

∴22-1,

∴T(0,22

∴当-3<t<2时,⊙H上的所有点都独立于图形W.

如图3-2中,当线段KN与⊙H相切于点E时,连接EH.

OT=OH+KH-KT=4+2-3=1+2,

∴T(0,1+2),此时t=1+2,

如图3-3中,当线段MN与⊙H相切于点E时,连接EH.

22

∴T(0,22

∴当2<t<2时,⊙H上的所有点都独立于图形W.

综上所述,满足条件的t的值为-3<t<2或2<t<2

【点睛】

本题属于圆综合题,考查了切线的性质,一次函数的应用,点P独立于图形W的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决实际问题.

8.如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.

①求证:AG=GD;

②当∠ABC满足什么条件时,△DFG是等边三角形?

③若AB=10,sin∠ABD=3

5

,求BC的长.

【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;

(3)BC的长为14

5

【解析】

【分析】

(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE

=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;

(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;

(3)利用三角函数先求出tan∠ABD

3

4

=,cos∠ABD=

4

5

,再求出DF、BF,然后即可求出

BC.

【详解】

(1)证明:连接AD,

∵DE⊥AB,AB是⊙O的直径,

∴AD AE

=,

∴∠ADE=∠ABD,

∵弦BD平分∠ABC,

∴∠DBC=∠ABD,

∵∠DBC=∠DAC,

∴∠ADE=∠DAC,

∴AG=GD;

(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,

∴∠DBC=∠ABD=30°,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠CAB=90°﹣∠ABC=30°,

∴∠DFG=∠FAB+∠DBA=60°,

∵DE ⊥AB ,

∴∠DGF =∠AGH =90°﹣∠CAB =60°, ∴△DGF 是等边三角形; (3)解:∵AB 是⊙O 的直径, ∴∠ADB =∠ACB =90°, ∵∠DAC =∠DBC =∠ABD , ∵AB =10,sin ∠ABD =

35

, ∴在Rt △ABD 中,AD =AB?sin ∠ABD =6, ∴BD =

22AB BD -=8,

∴tan ∠ABD =

34AD BD =,cos ∠ABD =4

=5

BD AB , 在Rt △ADF 中,DF =AD?tan ∠DAF =AD?tan ∠ABD =6×34=9

2

, ∴BF =BD ﹣DF =8﹣

92=72

, ∴在Rt △BCF 中,BC =BF?cos ∠DBC =BF?cos ∠ABD =72×45=145

. ∴BC 的长为:

14

5

【点睛】

此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.

9.如图, Rt △ABC 中,∠B=90°,它的内切圆分别与边BC 、CA 、AB 相切于点D 、E 、F , (1)

设AB=c, BC=a, AC=b, 求证: 内切圆半径r =

1

2

(a+b-c). (2) 若AD 交圆于P , PC 交圆于H, FH//BC, 求∠CPD;

(3)若10, PD =2. 求△ABC 各边长.

【答案】(1)证明见解析(2)45°(3)91010,1510

,12

【解析】

【分析】

(1)根据切线长定理,有AE=AF,BD=BF,CD=CE.易证四边形BDOF为正方形,

BD=BF=r,用r表示AF、AE、CD、CE,利用AE+CE=AC为等量关系列式.

(2)∠CPD为弧DH所对的圆周角,连接OD,易得弧DH所对的圆心角∠DOH=90°,所以∠CPD=45°.

(3)由PD=18和r=310,联想到垂径定理基本图形,故过圆心O作PD的垂线OM,求得弦心距OM=3,进而得到∠MOD的正切值.延长DO得直径DG,易证PG∥OM,得到同位角∠G=∠MOD.又利用圆周角定理可证∠ADB=∠G,即得到∠ADB的正切值,进而求得AB.再设CE=CD=x,用x表示BC、AC,利用勾股定理列方程即求出x.

【详解】

解:(1)证明:设圆心为O,连接OD、OE、OF,

∵⊙O分别与BC、CA、AB相切于点D、E、F

∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE

∴∠B=∠ODB=∠OFB=90°

∴四边形BDOF是矩形

∵OD=OF=r

∴矩形BDOF是正方形

∴BD=BF=r

∴AE=AF=AB-BF=c-r,CE=CD=BC-BD=a-r

∵AE+CE=AC

∴c-r+a-r=b

整理得:r=1

2

(a+b-c)

(2)取FH中点O,连接OD ∵FH∥BC

∴∠AFH=∠B=90° ∵AB 与圆相切于点F , ∴FH 为圆的直径,即O 为圆心 ∵FH ∥BC

∴∠DOH=∠ODB=90° ∴∠CPD=

1

2

∠DOH=45°

(3)设圆心为O ,连接DO 并延长交⊙O 于点G ,连接PG ,过O 作OM ⊥PD 于M ∴∠OMD=90° ∵PD=18 ∴DM=

1

2

PD=9 ∵10

∴22OD DM -22(310)9-9081-3 ∴tan ∠MOD=DM

OM

=3 ∵DG 为直径 ∴∠DPG=90°

∴OM ∥PG ,∠G+∠ODM=90° ∴∠G=∠MOD

∵∠ODB=∠ADB+∠ODM=90° ∴∠ADB=∠G ∴∠ADB=∠MOD ∴tan ∠ADB=

AB

BD

=tan ∠MOD=3 ∴10

∴10?10=10 设CE=CD=x ,则10+x ,10+x ∵AB 2+BC 2=AC 2

∴10)2.10+x)2=10+x)2 解得:10

BC=1210,

AC=1510

∴△ABC各边长AB=910,AC=1510,BC=1210

【点睛】

本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.

10.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.

(1)若∠G=48°,求∠ACB的度数;

(2)若AB=AE,求证:∠BAD=∠COF;

(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若

tan∠CAF=1

2

,求1

2

S

S的值.

【答案】(1)48°(2)证明见解析(3)3 4

【解析】

【分析】

(1)连接CD,根据圆周角定理和垂直的定义可得结论;

(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得

CD PB PD

==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;

(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则

OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=3

4

x,代入面积公式可得结

论.

【详解】

(1)连接CD,

∵AD是⊙O的直径,

∴∠ACD=90°,

∴∠ACB+∠BCD=90°,

∵AD⊥CG,

∴∠AFG=∠G+∠BAD=90°,

∵∠BAD=∠BCD,

∴∠ACB=∠G=48°;

(2)∵AB=AE,

∴∠ABE=∠AEB,

∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,

∴∠BCG=∠DAC,

∴CD PB

=,

∵AD是⊙O的直径,AD⊥PC,

∴CD PD

=,

∴CD PB PD

==,

∴∠BAD=2∠DAC,

∵∠COF=2∠DAC,

∴∠BAD=∠COF;

(3)过O作OG⊥AB于G,设CF=x,

∵tan∠CAF=1

2=

CF AF

∴AF=2x,

∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,

∴△COF≌△OAG,

∴OG=CF=x,AG=OF,

设OF=a,则OA=OC=2x﹣a,

Rt△COF中,CO2=CF2+OF2,

∴(2x﹣a)2=x2+a2,

a=3

4 x,

∴OF=AG=3

4 x,

∵OA=OB

,OG⊥AB,

∴AB=2AG=3

2

x,

∴1

213

··3 22 1·24·

2

AB OG x x

S

S x x

CF AF

===.

【点睛】

圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:CD PB PD

==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

圆中综合题复习专题

圆中综合题复习专题 第一组 1.若集合A ={(x ,y)|x 2+y 2≤16},B ={(x ,y)|x 2+(y -2)2≤a -1}且A ∩B =B ,则a 的取值范围是________. 解:由题意知B ?A.当a<1时,B =?,满足题意;当a =1时,B ={(0,2)},满足题意;当a>1时,则集合A ,B 分别表示圆面x 2+y 2≤16与圆面x 2+(y -2)2 ≤a -1,由题意得B 内含于A ,从而4-a -1≥2,解得a ≤5.综上,a ≤5. 2.已知两点A (1,2),B (5,5)到直线l 的距离分别是3和2,则满足条件的直线共有_____条. 解以A (1,2)为圆心,3为半径的圆A :(x -1)2+(y -2)2=9,以B (5,5)为圆心,2为半径的圆B :(x -5) 2+(y -5)2=4,根据题意所要满足的条件,则l 是圆A 与圆B 的公切线,因为A (1,2),B (5,5)两点间的距离d =5,即d =r 1+r 2,所以圆A 与圆B 相外切,所以有3条公切线. 3.过点(3,1)作圆()1122=+-y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为________. 解:点P (3,1)与圆心C (1,0)PA 2,则以P (3,1)为圆心,以2为半径的圆P 方程为(x -3)2+(y -1)2 =4,则两圆的交点即为A ,B ,两圆相减可得AB 的方程为2x +y -3=0. 4.在平面直角坐标系xOy 中,已知圆1C : ()()22481x y -+-=,圆2C :()()22 669x y -++=.若圆心在x 轴上的圆C 同时平分圆1C 和圆2C 的圆周,则圆C 的方程是_______________________. 解:由题意,圆C 与圆C 1和圆C 2的公共弦分别为圆C 1和圆C 2的直径,设C (a ,0),则(a ﹣4)2+(0﹣8)2+1=(a ﹣6)2+(0+6)2+9,∴a =0,∴圆C 的方程是x 2+y 2=81. 5.圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a 的值为________. 15+,解得a =± 51=-,得0a =.综上 a =±0. 6.在平面直角坐标系xOy 中,若与点A(2,2)的距离为1且与点B(m ,0)的距离为3的直线恰有两条,则实数m 的取值范围是________. 解:由题意知以A(2,2)为圆心,1为半径的圆与以B(m ,0)为圆心,3为半径的圆相交,所以4<(m -2)2+ 4<16,所以-23+2

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

初三中考数学综合题一

初三中考数学综合题(一) A 卷 一、选择题(每小题3分,共30分) 1.下列各数中是负数的是( ) A .-(-3) B .-(-3)2 C .-(-2)3 D .|-2| 2.下列计算正确的是( ) A .3a = B .632a a a ÷= C .()1 22a a -=- D .() 3 2628a a -=- 3.6月5日是世界环境日,“海洋存亡,匹夫有责”,目前全球海洋总面积约为36105.9万.平方千米,用科学记数法(保留三个有效数字)表示为( ) A .6 1061.3?平方千米 B .7 1061.3?平方千米 C .81061.3?平方千米 D .91061.3?平方千米 4.一个几何体的三视图如图所示,则这个几何体是( ). 5.已知下列四个命题:(1).对角线互相垂直平分的四边形是正方形;(2).相邻的两个角都互补的四边形是平行四边形;(3).平分弦的直径垂直于弦,并且平分弦所对的两条弧;( 4).对角线垂直相等的四边形是菱形。其中真命题的个数是( ) A .0 B .1 C .2 D .3 6.已知112233 (2)(1)(2)P y P y P y --,,,,,是反比例函数2y x =的图象上的三点,则123y y y ,,的大小关系是( ) A.321y y y << 123y y y << C.213y y y << D. 以上都不对 7.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为( ) A .45° B .125° C .55° D .35° 8.已知点P (x ,y )在函数x x y -+= 2 1 的图象上,那么点P 应在平面直角坐标系中的( ) A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 9.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,成都市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是( ) A .20、20 B .30、20 C .3010.如图,在平面直角坐标系中,点A 在第一象限, ⊙A 与x 轴相切于B ,与y 轴交于C (0,1), D (0,4)两点,则点A 的坐标是 ( ) A .35 (,)22 B .3(,2)2 A B C D 主 视 图左视图俯 视图(第4题)

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学综合习题(六)

中考数学综合习题(六) 一、 填空题 1、计算:(2)--= ;15- = ;1 3()2 -= . 2、计算:(52)(52)+-= . 3、计算:2sin60°= . 4、将3 2 x xy -分解因式的结果为 . 5、一个圆锥形容器的底面半径为12cm ,母线长为15cm ,那么这个圆锥形容器的高为 cm. 6、如图,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是 cm. 选择题(7~12题为单项选择题;13~15题为多项选择题) 7、下列计算正确的是( ) A 、3 2 5 2a a a += B 、32 6 (2)4a a -= C 、2 2 2 ()a b a b +=+ D 、623 a a a ÷= 8、下列各图中,∠1大 于∠2的 是( ) 9、下列运算中,错误.. 的是( ) A 、 (0)a ac c b bc =≠ B 、1a b a b --=-+ C 、0.55100.20.323a b a b a b a b ++= -- D 、x y y x x y y x --=++ 10、将不等式841 13822 x x x x +<-?? ?≤-??的解集在数轴上表示出来,正确的是( ) 11、在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )

12、已知某种品牌电脑的显示器的大约为4 210?小时,这种显示 寿命 器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( ) 13、下列说法正确的是( ) A 、9的算术平方根是3 B 、设a 是实数,则a a -的值可能是正数,也可能是负数 C 、点(2,3)P -关于原点的对称点的坐标是(2,3)-- D 、抛物线2 6y x x =--的顶点在第四象限 14、如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法正确的是( ) A 、七(3)班外出步行的有8人 B 、七(3)班外出的共有40人 C 、在扇形统计图中,步行人数所占的圆心角度数为82° D 、若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约有150人 15、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( ) A 、∠ADE=∠CDE B 、DE ⊥E C C 、AD·BC=BE·DE D 、 CD=AD+BC 三、解答下列各题 A B C D E F 12 20 乘车50% 步行 20% 骑车30% 乘车 步行 骑车

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学综合复习题共三套含答案

复习题(一) 一、选择题:(本题共10小题,每小题4分,共40分. 在每题所给出的四个选项中,只有 一项是符合题意的. 请把所选项前的字母代号填在题后的括号内.) 1、计算2 )3(-,结果正确的是( ) A 、-9 B 、9 C 、-6 D 、6 2、若a 为任意实数,则下列等式中恒成立的是 ( ). A 、2 a a a =+ B 、a a a 2=? C 、1=÷a a D 、0=-a a 3、如图,桌面上有一个一次性纸杯,它的俯视图应是如图所示的( ) 4、下列结论中正确的是( ) A 、无限小数都是无理数 B 、 3 3 是分数 C 、(-4)2的平方根是±4 D 、a a 221 -=- 5、已知反比例函数y =x a 2 -的图象在第二、四象限,则a 的取值范围是( ) A 、a ≤2 B 、a ≥2 C 、a <2 D 、a >2 6、正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A 、5 B C 、1 2 D 、2 7、如图,奥运会五环旗是由五个圆组成的图形,此图中存在的圆和圆的位置关系有( ) A 、相交与内含 B 、只有相交 C 、外切与外离 D 、相交与外离 8、如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位 置,若B A AC ''⊥,则BAC ∠是( ) A 、50° B 、60° C 、70° D 、80° 9、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1,则这个圆锥的底面半径为( ) A 、 2 1 B 、22 C 、2 D 、22 10、固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解 的克数.如图所示,观察硝酸钾和氯化铵在水里的溶解度,下列叙述不正确...的是( ) A 、硝酸钾的溶解度比氯化铵的溶解度大 B 、约25℃时二者的溶解度相等 C 、温度为10℃时氯化铵的溶解度大 D 、温度为40℃时,硝酸钾的溶解度大

中考数学综合题专题复习【圆】专题解析

中考数学综合题专题复习【圆】专题解析 一.教学内容: 1.圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。 2. 主要定理: (1)垂径定理及其推论。 (2)圆心角、弧、弦、弦心距之间的关系定理。 (3)圆周角定理、弦切角定理及其推论。 (4)圆内接四边形的性质定理及其推论。 (5)切线的性质及判定。 (6)切线长定理。 (7)相交弦、切割线、割线定理。 (8)两圆连心线的性质,两圆的公切线性质。 (9)圆周长、弧长;圆、扇形,弓形面积。 (10)圆柱、圆锥侧面展开图及面积计算。 (11)正n边形的有关计算。 二. 中考聚焦: 圆这一章知识在中考试题中所占的分数比例大约如下表: 圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。 三. 知识框图: 圆 圆的有关性质 直线和圆的位置关系圆和圆的位置关系正多边形和圆 ? ? ? ? ? ? ?

圆的有关性质 圆的定义 点和圆的位置关系(这是重点) 不在同一直线上的三点确定一个圆 圆的有关性质 轴对称性—垂径定理(这是重点) 旋转不变性 圆心角、弧、弦、弦心距间的关系 圆心角定理 圆周角定理(这是重点) 圆内接四边形(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 直线和圆的位置关系 相离 相交 相切 切线的性质(这是重点) 切线的判定(这是重点) 弦切角(这是重点) 和圆有关的比例线段(这是重点难点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 圆和圆的位置关系 外离 内含 相交 相切 内切(这是重点) 外切(这是重点)两圆的公切线 ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 正多边形和圆 正多边形和圆 正多边形定义 正多边形和圆 正多边形的判定及性质 正多边形的有关计算(这是重点)圆的有关计算 圆周长、弧长(这是重点) 圆、扇形、弓形面积(这是重点) 圆柱、圆锥侧面展开图(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

相关文档
最新文档