离子色谱仪工作原理以及结构-科邦实验室

离子色谱仪工作原理以及结构-科邦实验室
离子色谱仪工作原理以及结构-科邦实验室

离子色谱仪工作原理以及结构

Ⅰ.离子色谱仪简介

离子色谱仪是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱,其有别于传统离子交换色谱柱色谱的主要是树脂具有很高的交联度和较低的交换容量,进样体积很小,用柱塞泵输送淋洗液通常对淋出液进行在线自动连续电导检测。

通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。

1)离子交换色谱:离子交换色谱以离子间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。

2)离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。

3)离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。

Ⅱ.离子色谱仪组成

离子色谱仪由淋洗液系统、色谱泵系统、进样系统、流路系统、分离系统、化学抑制系统、检测系统和数据处理系统等组成。

一、淋洗液系统:

离子色谱仪常用的分析模式为离子交换电导检测模式,主要用于阴离子和阳离子的分析。

常用阴离子分析淋洗液有OH根体系和碳酸盐体系等,常用阳离子分析淋洗液有甲烷磺酸体系和草酸体系等。

淋洗液的一致性是保证分析重现性的基本条件。为保证同一次分析过程中淋洗液的一致性,在淋洗液系统中加装淋洗液保护装置,可以将进入淋洗液瓶的空气中的有害部分吸附和过滤,如CO2和H2O等。

二、色谱泵系统:

1、材质:

离子色谱的淋洗液为酸、碱溶液,与金属接触会对其产生化学腐蚀。如果选择不锈钢泵头,腐蚀会导致色谱泵漏液、流量稳定性差和色谱柱寿命缩短等。离子色谱泵头应选择全PEEK材质(色谱柱正常使用压力一般小于20MPa)。

2、类型:

(1)单柱塞泵。

(2)双柱塞泵:

1)串联双柱塞泵。

2)并联双柱塞泵。

3、压力脉动消除方式:

(1)电子脉动抑制。

(2)脉冲阻尼器。

三、进样系统:

进样系统是将常压状态的样品切换到高压状态下的部件。保证每次工作状态的重现性是提高分析重现性的重要途径。

1、进样阀:

(1)材质:

与色谱泵类似,选择全PEEK材质的进样阀才能保证仪器的寿命和分析结果的准确性。

(2)类型:

1)手动进样阀:进样一致性靠人,系统集成性差。

2)电动进样阀:进样一致性较好,系统集成性高。

2、自动进样器:

进样一致性最好,系统集成性最好。

四、流路系统:

采用色谱专用管路、接头及其它连接部件,保证全塑无污染溶出,保证材料的可靠性和使用寿命。

材料有PEEK管(高压区)、PTFE管、硅胶管(气路或废液用)、各种接头和连接配件。

五、分离系统:

分离系统是离子色谱的重要部件,也是主要耗材。

1、预柱:

又称在线过滤器,PEEK材质,主要作用是保证去除颗粒杂质。

2、保护柱:

保护柱与分析柱填料相同,消除样品中可能损坏分析住填料的杂质。如果不一致,会导致死体积增大、峰扩散和分离度差等。

3、分析柱:

有效分离样品组分。

六、化学抑制系统:

抑制系统是离子色谱的核心部件之一,主要作用是降低背景电导和提高检测灵敏度。抑制器的好坏关系到离子色谱的基线稳定性、重现性和灵敏度等关键指标。

1、柱-胶抑制:

采用固定短柱或现场填充抑制胶进行抑制,不同的抑制柱交替使用,属于间歇式抑制。

2、离子交换膜抑制:

采用离子交换膜,利用离子浓度渗透的原理进行抑制。

需要配制硫酸再生液,系统需要配置氮气或动力装置。

3、电解自再生膜抑制:

利用电解水产生媒介离子和离子配合离子交换膜进行抑制(zui佳选择)。

七、检测系统:

离子色谱最基本和常用的检测器是电导检测器,其次是安培检测器。

1、电导检测器:

电导检测器是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。

(1)双极脉冲检测器:

在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。

容易受到电极极化和双电层的影响。

(2)四极电导检测器:

在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。

(3)五极电导检测器:

在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。

2、安培检测器:

安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。

(1)直流安培检测模式:

主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。

(2)脉冲安培检测模式:

主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测。

不可检测硫的氧化物。

(3)积分脉冲安培检测模式:

为脉冲安培检测的升级检测模式,适用于检测脉冲安培检测的物质。

八、数据处理系统:

完成数据处理,联通仪器。

Ⅲ.离子色谱仪工作原理

分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。

离子色谱仪的工作过程是:输液泵将流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导入,流动相将样品带入色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,抑制型离子色谱则在电导检测器之前增加一个抑制系统,即用另一个高压输液泵将再生液输送到抑制器,在抑制器中,流动相的背景电导被降低,然后将流出物导入电导检测池,检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵,因此仪器的结构相对要简单得多,价格也要便宜很多。

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

离子色谱的发展历史及基本原理

离子色谱(Ion Chromatography)是高效液相色谱(HPLC)的一种,是分析阴离子和阳离子的一种液相色谱方法。 狭义而言, 离子色谱法是以低交换容量的离子交换树脂为固定相对离子性物质进行分离, 用电导检测器连续检测流出物电导变化的一种色谱方法。《离子色谱原理与应用》 [1] 中对离子色谱法的定义是:利用被测物质的离子性进行分离和检测的液相色谱法。 发展历史 1975 年, Small 等人 [2] 成功地解决了用电导检测器连续检测柱流出物的难题, 即采用低交换容量的阴离子或阳离子交换柱, 以强电解质作流动相分离无机离子, 流出物通过一根称为抑制柱的与分离柱填料带相反电荷的离子交换树脂柱。这样, 将流动相中被测离子的反离子除去, 使流动相背景电导降低, 从而获得高的检测灵敏度。从此, 有了真正意义上的离子色谱法( ion chromat ography, IC) , IC 也从此作为一门色谱分离技术从液相色谱法中独立出来。1979 年, Gjerde 等 [3] 用弱电解质作流动相。因流动相本身的电导率较低, 不必用抑制柱就可以用电导检测器直接检测。人们把使用抑制柱的离子色谱法称作双柱离子色谱法( double column IC) 或抑制型离子色谱法( suppress ed IC) , 把不使用抑制柱的离子色谱法称作单柱离子色谱法( s ingle column IC) 或非抑制型离子色谱法( nonsuppressed IC) 。 基本原理 离子色谱的分离机理主要是离子交换,有3种分离方式,它们是高效离子交换色谱(HPIC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。用于3种分离方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子交换功能基和容量各不相同。HPIC用低容

比较气相色谱法与高效液相色谱法分离原理、仪器构造及应用范围的不同点

比较气相色谱法与高效液相色谱法分离原理、仪器构造及应用范围的不同点。 一、分离原理: 1.气相:气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。 2.液相:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 二、应用范围: 1.气相:气相色谱法具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。一般对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 2.液相:高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 三、仪器构造: 1.气相:由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 1.1 柱箱:色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离,从而达到分析的目的,柱箱的作用就是安装色谱柱。 由于色谱柱的两端分别连接进样器和检测器,因此进样器和检测器的下端(接头)均插入柱箱。 柱箱能够安装各种填充柱和毛细管柱,并且操作方便。 色谱柱(样品)需要在一定的温度条件下工作,因此采用微机对柱箱进行温度控制。并且由于设计合理,柱箱内的梯度很小。 对于一些成份复杂、沸程较宽的样品,柱箱还可进行三阶程序升温控制。且程序设定后自动运行无需人工干预,降温时还能自动后开门排热。 1.2 进样器: 进样器的作用是将样品送入色谱柱。如果是液体样品,进样器还必须将其汽化,因此采用微机对进样器进行温度控制。 根据不同种类的色谱柱及不同的进样方式,共有五种进样器可供 选择: 1.填充柱进样器 2.毛细管不分流进样器附件 3.毛细管分流进样器附件 4.毛细管分流/不分流进样器 5.六通阀气体进样器 1.3检测器:

气相色谱仪的工作原理

JC-8890气相色谱分析技术是一种多组分混合物的分离、分析的技术。它主要利用样品中各组份的沸点、极性及吸附系数在色谱柱中的差异,使各组份在色谱柱中得到分离,并对分离的各组分进行定性、定量分析。 气相色谱仪以气体作为流动相(载气),当样品被送入进样器并气化后由载气携带进入填充柱或毛细管柱,由于样品中各组份的沸点、极性及吸附系数的差异,使各组份在柱中得到分离,然后由接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来,最后通过局域网(或互联网)送至色谱工作站,由色谱工作站将各组份的气相色谱图记录并进行分析从而得到各组份的分析报告。其工作原理简图如下图所示: 图1.1 气相色谱仪工作原理简图 由于该分析方法有分离效能高、分析速度快、样品用量少等特点,因此已广泛地应用于石油化工、生物化学、医药卫生、卫生检疫、食品检验、环境保护、食品工业、医疗临床等部门。气相色谱法在这些领域中解决了工业生产的中间体和工业产品的质量检验、科学研究、公害检测、生产控制等问题。 GC-8890系列色谱仪的特点:众所周知,传统气相色谱仪是以1台色谱仪、1台AD转换器、1套计算机、1套打印机的方式工作的。这种工作方式使得色谱仪配备较多的化工厂、实验

室、院校等用户在使用和管理上非常不便,并且设备重复投资、浪费严重。配备大量的计算机也给用户在设备管理和数据管理上带来诸多不便。同时这种传统的模式往往要采用一个厂家的气相色谱仪,又要采用另外一个厂家的工作站配合才能使用,使得系统整体的功能难以发挥、系统的性能也难以提高,对于用户提出的功能增加就更无从谈起了(比如数据的远程传输、多台仪器的监控等)。 GC-8890系列网络化气相色谱仪有如下功能 ★采用了技术先进的10/100M自适应以太网通信接口、并内置IP协议栈、使仪器可以轻松的通过企业内部局域网、互联网实现远距离的数据传输;方便了实验室的架设、简化了实验室的配置、方便了分析数据的管理; ★仪器内部设计3个独立的连接进程,可以连接到本地处理、单位主管(如质检科长、生产厂长等)、以及上级主管,可以方便地使单位主管和上级主管实时监控仪器的运行以及分析数据结果; ★仪器配备的NetChromTM工作站可以同时支持多台色谱仪工作,实现数据处理以及反控,简化了文档管理,并最大程度的降低了用户的实验室投资以及运行费用; ★仪器可以通过互联网连接到生产厂家,实现远程诊断、远程程序更新等(需用户许可); ★仪器可配备的5.7寸彩色液晶屏或192*64单色液晶屏,满足不同的用户需求; ★系统具有中、英文2套操作系统,可自由切换; ★控温区域可由用户自由命名,方便用户的使用; ★仪器采用了多处理器并行工作方式,使仪器更加稳定可靠;可选配多种高性能检测器选择,如FID、TCD、ECD、FPD和NPD,最多可同时安装三种检测器,可满足复杂样品分析。也可采用检测器追加方式,在仪器购入后很方便的选购安装其它检测器; ★仪器采用模块化的结构设计,设计明了、更换升级方便,保护了投资的有效性;

离子色谱仪操作员培训试题

仪器(离子色谱仪部份)授权操作员能力测试题 姓名:科室:分数: A型题:单选题(每题5分,共计50分) 1、我单位离子色谱仪的型号是() A、CIC-100 B、CIC-200 C、CDC-100 D、CDC-200 2、我单位离子色谱仪的生产厂家是() A、瑞士万通 B、青岛埃仑 C、美国戴安 D、青岛盛瀚 3、我单位离子色谱仪所用的阴离子色谱柱型号() A、NJ1641 B、NJ1642 C、NJ1643 D、NJ1644 4、根据我单位所配离子色谱仪的色谱柱看目前是() A、阳离子色谱 B、阴离子色谱 C、阴阳离子色谱 D、有机物色谱 5、第一台商用离子仪色谱仪诞生于() A、1955年 B、1970年 C、1975年 D、1990年 6、第一台商用离子仪色谱仪诞生于() A、瑞士万通 B、青岛埃仑 C、美国Dionex D、青岛盛瀚 7、离子色谱仪原理最早提出于( C ) A、1955年 B、1970年 C、1975年 D、1990年 8、最早提出离子色谱仪原理的是() A、美国Dow化学公司的H.Small等人 B、澳大利亚物理学家A.Walsh C、道尔顿 D、Beer E、Lambert

9. 我国第一代离子色谱仪于()通过了专家鉴定。 A.1983年6月 B.1985年6月 C. 1990年6月 D.1995年6月。 10.阴离子色谱柱内柱液用()保存。 A.纯水 B.淋洗液 C. 稀硝酸 D.阴离子合成洗涤剂 B型题、判断题(每题5分,共计50分) 1、根据离子色谱分离原理可以分为3种不同类型,主要分为离子交换色谱、离子对色谱和离子排斥色谱。() 2、离子色谱仪器一般由流动相输运系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统等几部分组成。() 3、离子色谱仪所用纯水要用低于1us/cm的去离子水或超纯水。() 4.纯水必须脱气处理,脱气效果的好坏直接关系到仪器能否正常运转,这是离子色谱仪整个仪器操作的关键。() 5.样品无须预处理是离子色谱仪的优点。() 6.进样时扳阀动作要缓慢,防止拧松。() 7.阴阳柱较长时间(10天)不用时,应通入淋洗液保存。() 8.CIC-100采用抑制电导法检测阴离子。() 9.启动泵前要检查淋洗液、纯水液面位置,启动泵时一定要保证有通入淋洗液或纯水,吸头在液面以下。() 10.离子色谱仪的主要部件有恒流泵、抑制器、色谱柱、电导池、六通阀、触摸屏、电流调节开关、基线调节旋扭。()

离子色谱仪的原理及操作

目前离子色谱法已经在能源、环境、冶金、电镀、半导体、水文地质等方面广泛应用,并且开始进入与生命科学有关的分析领域,我国从20世纪80年代初期引进离子色谱仪,开始了离子色谱的应用研究工作,同时也开始了仪器的研制,目前已能生产离子色谱仪,随着离子色谱技术的发展,离子色谱仪在我国的应用将日益普及。 一、工作原理及构造 离子色谱仪分析过程由进样(样品环进样)、分离(离子交换柱分离)、抑制(抑制器)、检测系统和数据系统五部分组成。 二、基本操作步骤 1、开机前的准备:打开实验室空调,根据样品的检测条件和色谱柱的条件配置所需淋洗液和再生液。 2、开机:依次打开打印机、计算机进入操作系统;打开氮气钢瓶总阀,调节钢瓶减压阀分压表指针为0.2MPa左右,再调节色谱主机上的减压表指针为5psi左右,确认离子色谱仪与及计算机数据线连接正常,打开离子色谱主机电源;点击开始、程序、Chromeleon、sever monitor、双击桌面上工作站程序、双击安装目录下离子色谱操作控制面板;操作控制面板打开后选中connected使软件与离子色谱仪联动起来,打开泵头废液阀排除泵和管路里的气泡,关闭泵头废液阀,开泵启动仪器,查看基线,待基线稳定后方可进样分析 3、样品分析:建立程序文件;建立方法文件;建立样品表文件;加样品到自动进样器或手动进样;启动样品表;若是手动进样,按系统提示逐个进样分析。 4、数据处理:建立标准曲线;打印标准曲线;打印待测样品分析报告 5、关机:关闭泵,关闭操作软件;关闭离子色谱主机电源;关闭氮气钢瓶总阀并将减压表卸压;关闭计算机、显示器和打印机电源 三、注意事项 1、以外情况处理:仪器工作中遇到突然停电时,应该立即关闭离子色谱仪主机电源开关,然后关闭计算机、显示器和打印机电源 2、维护和保养:保持泵头无气泡,每周至少开一次机,若长时间未开机,请在开泵之前排除泵头气泡(先逆时针旋松泵头废液阀排气泡,观察管路,无气泡后拧紧泵头废液阀,但不要过紧。) 3、系统更换 将原系统卸下后,原来接柱的地方用黑色两通接头链接,将淋洗液瓶盖管路放入盛有去离子水的容器中,开泵冲洗,用PH试纸检测流出的废液至中性,关泵再将淋洗液瓶盖管路放入所要更换的淋洗液瓶中,开泵冲洗,用PH试纸检测流出的废液至该淋洗液的酸碱性,最后关泵,卸去刚才所接的两通管,将所需要更换的系统按其指示标签及管路标签正确连接。 4、样品处理 含有强氧化性物质、油性水不溶物、高浓度有机溶剂等的样品不宜进样分析,尽量避免样品中的水不溶物进入柱子导致柱头堵塞或柱效能下降,应使用滤膜除去杂质,最好再使用C28预处理小柱除去有机物,以延长柱子的使用寿命。

离子色谱仪器实验报告

离子色谱实验报告 刘鹏1233351 环境工程 一.实验目的 1.掌握离子交换色谱分析法中的基本原理 2.了解RFIC淋洗液发生器KOH发生原理 3.了解电导检测器的基本原理。 4.基本了解离子色谱(IC 1000)组成结构,硬件操作及掌握化学工作站的开机,关机,参数设定,数据采集及分析的基本操作。 5.掌握离子交换色谱定性、外标定量方法。 二.基本原理 离子交换分离原理:离子交换色谱是离子色谱中的一种,其分离机制主要是离子交换,是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换,依据这些离子对交换剂有不同的亲和力而被分离。 抑制器ASRS-4mm工作原理(用OH-体系):(1)水进入阳极电离,产生H+,通过阳离子交换膜进入抑制器(中间通道);(2)OH-携带Cl-、SO42-等进入抑制器,并与H+结合生成HCl,H2SO4等,以离子形式存在,进入检测器检测。(3)剩下的阳离子通过阳离子交换膜,进入并与阴极电离产生的OH-结合,废液排出。(实质是用H+代替其他阳离子进入检测器,因为H+的摩尔电导最高,所以以HCl形式进入电导检测器,能够降低背景电导,从而提高待测离子的灵敏度)。 抑制器ASRS-4mm工作原理(用CO32-/HCO3-体系):(1)水进入阳极电离,产生H+,通过阳离子交换膜进入抑制器(中间通道);(2)CO32-/HCO3-携带Cl-、SO42-等进入抑制器,并与H+结合生成HCl,H2SO4等,以离子形式存在,进入检测器检测。(3)剩下的阳离子通过阳离子交换膜,进入并与 阴极电离产生的OH-结合,废液排出。(实质是用H+代替其他阳离子进入检测器,因为H+的摩尔电导最高,所以以HCl形式进入电导检测器,能够降低背景电导,从而提高待测离子的灵敏度)。 RFIC淋洗液发生器发生原理(KOH淋洗液发生原理):淋洗液发生器由高压KOH发生室和低压K+电解槽组成。KOH发生室装有一个穿孔的铂金阴极,钾离子电解槽装有一个铂金阳极。KOH发生室通过阳离子交换膜与K+电解槽连接。离子交换连接器允许来自K+电解槽的K+通过并进入高压KOH发生室,而阻止来自K+电解槽的其他阴离子进入。离子交换连接器将高压KOH发生室与低压K+电解槽隔开,泵驱动去离子水通过KOH发生室,在正负极之间加上直流电压,水在正极和负极发生电解,在正极产生的H+代替电解质溶液中的K+,被置换出的K+跨过阳离子交换连接器进入KOH发生室,这些K+与在阴极产生的OH-结合生产KOH,即用于阴离子交换色谱的淋洗液。 电导检测器是离子色谱的通用型检测器,其检测的原理是电导,主要用于测定无机阴阳离子和部分极性有机物。电导检测器通过在外加电场作用下使待测物质发生电离,离子通过流通池引起电导率的变化来进行检测。一般而言,呈离子态的物质都可以用电导法测定,但溶液的电导率是其各种离子的加和,供离子分离用的溶剂本身的高电导率会掩盖待测介质中离子的电导,所以只有在一种离子电导率占绝对优势的情况下方可检测。 外标法定量:外标法是色谱分析中一种简便的定量方法。当样品中所有组分都得到良好的分离并都能被检测而得到色谱峰时,则可利用外标法定量计算样品中各组分的浓度。其定量的依据是被测物质的量与它在色谱图上的峰面积(或峰高)成正比。数据处理软件(工作站)可以给出包括峰高和峰面积在内的多种色谱数据。一般由被测物所配标准浓度与峰面积做标准曲线,由标准曲线求出被测物浓度。 Dionex IC 1000 离子交换色谱仪的工作过程:泵将Miniport超纯水,以稳定的流速(或压力)输

gc-ms的工作原理详解

GC-MS工作原理 GC气相色谱 MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究等都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 四、气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

气相色谱仪原理结构及操作

气相色谱仪原理结构及操 作 Modified by JEEP on December 26th, 2020.

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为

进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。 一般更换进样隔垫的周期以下面三个条件为准:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差;(3)手动进样次数70次,或自动进样次数50次以后。 玻璃衬管 气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型。衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱。如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响。比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换。 玻璃衬管清洗的原则和方法 当以下现象:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗。清洗的方法和步骤如下:(1)拆下玻璃衬管;(2)取出石英玻璃棉;(3)用浸过溶剂(比如丙酮)的纱布清洗衬管内壁。玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm。要求填充均匀、平整。 气体过滤器

离子色谱法测定水中的阴离子

实验五离子色谱法测定水中的阴离子 环境工程李婷婷2110921109 实验目的 1、了解离子色谱分析的基本原理及操作方法; 2、掌握离子色谱法的定性和定量分析方法。 二、实验原理 离子色谱(Ion ChromatograPhy, IC)是色谱法的一个分支,离子色谱法(IC)是利用被分离物质在离子交换树脂(固定相)上交换能力的不同,从而连续对共存多种阴离子或阳离子进行分离、定性和定量的方法。 阴阳离子的交换方程可以表示为: 阴离子交换:R+Y-+X-=R+X-+Y- 阳离子交换:R-Y++X+=R-X++Y+ 其中:R+, R-为固定相上的离子交换基团; Y+,Y-为可交换的平衡离子,例如H+,Na+或OH-,Cl-; X+,X-为组分离子。 如下图所示:

IC仪器主要测定流程: NaOH淋洗液 低客量 阴〔或阳)离子 交换树脂 咼脊里 阳C或阴?■离子 I 交换树脂* 国交换侍需日 常抚离子?样 品k阴码T 9样品小阴离f (Z)进样器 废液

测定步骤: (1)进样:水样待测离子首先与分离柱的离子交换树脂之间直接进行离子交换(即被保留在分离柱上); (2)淋洗:如用NaoH乍淋洗液分析样品中的F-、Cl-和SO42- 等,保留在分离柱上的阴离子即被淋洗液中的OH基置换并从分离柱上被洗脱。对树脂亲和力弱的待分析离子(如F-)则先于对树脂亲 和力强的待分析离子(如SO42- )被依次洗脱; (3)阻留:淋出液经过抑制柱,将来自淋洗液的背景电导抑制到最小(即去除NaOH,这样当待测离子离开抑制柱进入电导池时就有较大的可准确测量的电导信号。 (4)测定:根据依次进入电导检测器的待测离子电导率差异, 可进行定量测定。 三、实验步骤 1、过滤:用0.45 m过滤膜过滤。 目的是:去除样品中所包含的,有可能损坏仪器或者影响色谱柱/抑制器性能的成分——有机大分子;去除有可能干扰目标离子测定的成分。 2、进样: 手动进样。用针管吸取1mL 水样推进进样口。 注意:水样不要交叉污染,清洗针管 3、分析水样: 自动分析水中的氟离子、氯离子、硝酸根离子、亚硝酸根离子、磷酸根离子、硫酸根离子。 实验中注意事项: 1、查淋洗液与分离柱是否一致:是否过期(30天),是否满足当天的需要,废液

离子色谱仪基本问题及解答

离子色谱仪常见疑问及解答 1.什么是卤素 卤素(halogen)是指周期表第7(VIIA)族非金属元素,包括氟(Fluorine)、氯(Chlorine)、溴(Bromine)、碘(Iodine)和砹(Astatine)五种元素,总称为卤素.由于砹为放射性元素,所以人们常说的卤素只是指氟、氯、溴和碘. 2.卤素的使用领域及危害 在塑料等聚合物产品中添加卤素(氟,氯,溴,碘)用以提高燃点,其优点是燃点比普通聚合物材料高,可达300℃。燃烧时,会散发出卤化气体(氟,氯,溴,碘),迅速吸收氧气,从而使火熄灭。但其缺点是释放出的氯气浓度高时,引起的能见度下降会导致无法识别逃生路径,同时氯气具有很强的毒性,影响人的呼吸系统,此外,含卤聚合物燃烧释放出的卤素气在与水蒸汽结合时,会生成腐蚀性有害气体(卤化氢),对一些设备及建筑物造成腐蚀。PBB ,PBDE ,TBBPA 等溴化阻燃剂是目前使用较多的阻燃剂,主要应用在电子电器行业,包括:电路板、电脑、燃料电池、电视机和打印机等等。 这些含卤阻燃剂材料在燃烧时产生二恶英,且在环境中能存在多年,甚至终身累积于生物体,无法排出。 3.卤素限量的相关法律法规 (1)根据EN61249-2-21标准,PCB板基材中的溴不超过900PPM,氯不超过900PPM,溴+氯不超过1500PPM才可以称为无卤PCB板 (2)电子电气行业塑料大约15%为阻燃制品,阻燃剂主要使用溴,氯系化合物.德国环境团体PAL从1995年开始在电子电气设备外壳中禁用有机溴化物,瑞典TCO95规定在电子电气设备中凡超过25克的塑料器件,禁止使用有机溴,氯化合物.(3)塑料中卤素的限制要求,其限量依然根据EN61249-2-21标准.即溴不超过900PPM,氯不超过900PPM,溴+氯不超过1500PPM. 4.目前市场上测量卤素的仪器主要有哪些 主要有离子色谱仪,分光光度仪,XRF,电位滴定仪四种 其中离子色谱仪分析结果的准确性明显比其它三种仪器高,相对与离子色谱而言,三种仪器存在明显缺陷 (1)分光光度仪: 在一种物质中含有多种卤素时,测试过程中会相互干扰;同时一次性只能测试一个项目,如需要测试4种卤素时,需要分4次测试,检测操作非常烦;检测限度在1ppm以上 (2)XRF: Na~Ar元素其X光强度会受空气中的分子所吸收而降低,Cl的强度约相较于真空中强

气相色谱仪原理、结构及操作(精)

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC )是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC 主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He 等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。一般更换进样隔

液相色谱仪的工作原理

液相色谱仪的工作原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~ 350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography)

离子色谱法

一、离子色谱(IC)基本原理 离子色谱是高效液相色谱(HPLC)的一种,其分离原理也是通过流动相和固定相之间的相互作用,使流动相中的不同组分在两相中重新分配,使各组分在分离柱中的滞留时间有所区别,从而达到分离的目的。 二、离子色谱仪的结构 离子色谱仪一般由四部分组成,即输送系统、分离系统、检测系统、和数据处理系统。输送系统由淋洗液槽、输液泵、进样阀等组成;分离系统主要是指色谱柱;检测系统(如果是电导检测器)由抑制柱和电导检测器组成。 离子色谱的检测器主要有两种:一种是电化学检测器,一种是光化学检测器。电化学检测器包括电导、直流安培、脉冲安培、和积分安培;光化学检测器包括紫外-可见和荧光。电导检测器是IC的主要检测器,主要分为抑制型和非抑制型(也称为单柱型)两种。抑制器能够显著提高电导检测器的灵敏度和选择性,其发展经历了四个阶段,从最早的树脂填充的抑制器到纤维膜抑制器,平板微膜抑制器和先进的只加水的高抑制容量的电解和微膜结合的自动连续工作的抑制器。 三、离子色谱基本理论 离子色谱主要有三种分离方式:离子交换离子排斥和反相离子对。这三种分离方式的柱填料树脂骨架基本上都是苯乙烯/二乙烯苯的共聚物,但是树脂的离子交换容量各不相同,以下就主要介绍离子交换色谱的分离机理。 在离子色谱中应用最广的柱填料是由苯乙烯-二乙烯基苯共聚物制得的离子交换树脂。这类树脂的基球是用一定比例的苯乙烯和二乙烯基苯在过氧化苯酰等引发剂存在下,通过悬浮物聚合制成共聚物小珠粒。其中二乙烯基苯是交联剂,使共聚物称为体型高分子。

典型的离子交换剂由三个重要部分组成:不溶性的基质,它可以是有机的,也可以是无机的;固定的离子部位,它或者附着在基质上,或者就是基质的整体部分;与这些固定部位相结合的等量的带相反电荷离子。附着上去的集团常被称作官能团。结合上去的离子被称作对离子,当对离子与溶液中含有相同电荷的离子接触时,能够发生交换。正是后者这一性质,才给这些材料起了“离子交换剂”这个名字。 离子交换法的分离基理是离子交换,用于亲水性阴、阳离子的分离。阳离子分离柱使用薄壳型树脂,树脂基核为苯乙烯/二乙烯基苯的共聚物,核的表面是磺化层,磺酸基以共价键与树脂基核共聚物相连;阴离子分离柱使用的填料也是苯乙烯/二乙烯基苯的共聚物,核外是磺化层,它提供了一个与外界阴离子交换层以离子离子键结合的表面,磺化层外是流动均匀的单层季铵化阴离子胶乳微粒,这些胶乳微粒提供了树脂分离阴离子的能力,其分离基理基于流动相和固定相(树脂)阳离子位置之间的离子交换。 淋洗液中阴离子和样品中的阴离子争夺树脂上的交换位置,淋洗液中含有一定量的与树脂的离子电荷相反的平衡离子。在标准的阴离子色谱中,这种平衡离子是CO 32-和HCO 3-;在标准的阴离子色谱中,这种平衡离子是H +。离子交换进行的过程中,由于流动相可以连续地提供与固定相表面电荷相反的平衡离子,这种平衡离子与树脂以离子对的形式处于平衡状态,保持体系的离子电荷平衡。随着样品离子与连续离子(即淋洗离子)的交换,当样品离子与树脂上的离子成对时,样品离子由于库仑力的作用会有一个短暂的停留。不同的样品离子与树脂固定相电荷之间的库仑力(即亲和力)不同,因此,样品离子在分离柱中从上向下移动的速度也不同。样品阴离子A -与树脂的离子交换平衡可以用下式表示: 阴离子交换 A - +(淋洗离子)-+NR 4-R = A -+NR 4-R + (淋洗离子) 对于样品中的阳离子,树脂交换平衡如下(H +为淋洗离子): 阳离子交换 C + + H +-O 3S-R = C +-O 3S-R + H + 在阴离子交换平衡中,如果淋洗离子是HCO 3-,可以用下式表示阴离子交换平衡: [][][][]4 33 4NH CO H A HCO NR A K + ---+-= K 是选择性系数。K 值越大,说明样品离子的保留时间越常。选择性系数是电荷、离子半径、系统淋洗液种类和树脂种类的函数。 离子半径 样品离子的价数越高,对离子交换树脂的亲和力越大。因此,在一般的情况下,保留时间随离子电荷数的增加而增加。也就是说,淋洗三价离子需要采用高离子强度的淋洗液,二价离子可以用较低浓度的淋洗液,而低于一价离子,所需淋洗液浓度更低。 离子半径

液相色谱仪工作原理

液相色谱仪工作原理公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、液相色谱理论发展简况 色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。 色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。 液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称现代液相色谱。 二、HPLC的特点和优点 HPLC有以下特点: 高压——压力可达150~300 Kg/cm2。色谱柱每米降压为75 Kg/cm2以上。

相关文档
最新文档