高三数学教案 函数的定义域与值域

高三数学教案   函数的定义域与值域
高三数学教案   函数的定义域与值域

函数的定义域与值域

目的:1.能够由函数表达式求出定义域(各种不同类型);

2.对含字母系数的定义域会对字母参数取值范围进行全面讨论;

3.掌握求函数值域的基本方法:观察法、配方法、判别法、换元法、反函数法、均值不等式法、 及图象法。

一、选择题:

1.函数y =1122---x x 的取定义域是( )

A.[-1,1]

B.(][)+∞-?-∞-,11,

C.[0,1]

D.{-1,1}

2.已知函数f (x )=12++mx mx 的定义域是一切实数,则M 的取值范围是( )

A.0<m <1

B.0≤m ≤4

C.m ≥4

D.0<m ≤4

3.已知函数f (x )的定义域为[0,1],那么函数f (x 2-1)的定义域为( )

A.[0,1]

B.[1,2]

C.[1,2]

D.[-2,-1]∪[1,2]

4.函数y =log 2x +3(x ≥1)的值域是( )

A.[)+∞,2

B.(3,+∞)

C.[)+∞,3

D.(-∞,+∞) 5.函数y =2-x x 42+-的值域是( )

A.[-2,2]

B.[1,2]

C.[0,2]

D.[-2,2]

6.值域是(0,+∞)的函数是( )

A.y =52x -2

B.y =(3

1)x -1 C.y =1)21(-x D.|log |22x y = 7.函数1

55)(+=x x x f 的值域是( )

A.(-∞,1)∪(5,+∞)

B.(1,5)

C. (-∞,1)∪(1,+∞)

D.(-∞,-

51)∪(-51,+∞) 8.函数1

2)(2+=x x x f 的值域是( ) A.[-1,1] B.[0,1] C.[-1,0] D.[1,2]

9.函数)0(11)(≠++=x x

x x f 的值域为( ) A.[)+∞,3 B.(]1,-∞- C.()),3(1,+∞?-∞- D.(][)+∞?-∞-,31,

10.函数y =|x +1|+|x -2|的值域是( )

A. [)+∞,3

B. (]3,-∞-

C. [)+∞,1

D. (]

1,∞- 二、填空题:

11.函数x

x y -=

||1的定义域为__________________ 12.设12)12(-=-x f x ,则f (x )的定义域是________________ 13.函数y =2||1x -的值域为______________________

14.函数y=x +

x -1的值域为____________________

15.函数11)(+-=x x e e x f 的反函数)(1x f -的定域是______________ 三、解答题:

16.求下列函数的值域:

⑴y =2x -5+

x 415- ⑵y =x +24x - ⑶32++=x x y

⑷x x y cos 3sin 1++=

⑸x x y sin 2sin 2+-=

17.若函数3412++-=

ax ax ax y 的定义域为R ,求实数a 的取值范围。

18.若f (x +1)的定义域是[)3,2-,求)21(

+x f 的定义域。

19.求函数2

cos 4cos 3sin 2--+=

x x x y 的值域。

20.函数a x f x ?+=31)(的定义域是(]1,∞-,求a 的取值范围。

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结 函数概念 1.映射的概念 设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则 注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。 2.函数的概念 (1)函数的定义: 设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都

冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常

⑵函数的定义域、值域 在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。 (3)函数的三要素:定义域、值域和对丿应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式來表示。 4.分段函数 在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。 (-)考点分析 考点1:映射的概念 例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ; (2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ; (3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x . 上述三个对应是A到B的映射. 例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个 例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对 (4)8 个(3)12 个(C)16 个(0)18 个 M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是() 考点2:判断两函数是否为同一个函数

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

高一初等函数定义域值域

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 741+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值 例5、某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记

本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。

1、求下列函数的定义域 (1)f (x )= 43-x x (2)f (x )=2x (3)f (x )= 2 362+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等 (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=6 2-+x x (1)点(3,14)在f (x )的图象上吗 (2)当x=4时,求f (x )的值; (3)当f (x )=2,求x 的值。

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

高一人教版必修一 数学函数定义域、值域、解析式题型

高一函数定义域、值域、解析式题型 一、 具体函数的定义域问题 1 求下列函数的定义域 (1 )1 y = (2 )y = (2)(3) 若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m <<(B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 二、 抽象函数的定义问题 (一)已知函数()f x 的定义域,求函数[()]f g x 的定义域 2. 已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。 (二)已知函数[()]f g x 的定义域,求函数()f x 的定义域 3. 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。 (三)已知函数[()]f g x 的定义域,求函数[()]f h x 的定义域 4. 已知函数2(1)f x -的定义域为(2,5),求函数1()f x 的定义域。 5.已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

(一) 配凑法 5 .已知22113(1)x f x x x ++=+,求()f x 的解析式。 (二) 换元法 6.已知(12f x +=+()f x 的解析式。 (三) 特殊值法 7 .已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+且(0)1f =,求()f x 。 待定系数法 8.已知()f x 是二次函数,且2(1)(1)244f x f x x x ++-=-+,求()f x 。 (四) 转化法 9. 设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0f x f x ++=,当11x -≤≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。 (五) 消去法 11.已知函数()f x 21()()x f x x -=,求()f x (六) 分段求解法 12. 已知函数2,()21,()1,0x x o f x x g x x ?≥=-=?-

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义 域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

必修一 函数的定义域及值域

个性化学科优化学案 辅导科目 数学 就读年级 学生 教师 徐亚 课 题 函数的概念 授课时间 2015年11月28 备课时间 2015年11月25日 教 学 目 标 1、理解函数的概念,明确确定函数的三个要素,会用区间表示函数的定义域和值域;掌握求函数定义域的基本原则。 2、了解函数的三种表示方法,并能选择合适的方法表示函数。 重、难 考 点 求函数的值域问题时要明确两点,一是值域的概念,二是函数的定义域和对应关系是确定函数的依据。 教学容 鹰击长空—基础不丢 1.定义:设A 、B 是两个非空集合,如果按照某种对应关系f ,使对于集合A 中的 一个数x ,在集 合B 中 确定的数f(x)和它对应,那么就称:f A B →为集合A 到集合的一个 ,记作: 2.函数的三要素 、 、 3.函数的表示法:解析法(函数的主要表示法),列表法,图象法; 4. 同一函数: 相同,值域 ,对应法则 . 1.区间的概念和记号 在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b ∈R ,且a

定义域及值域类型总结(全,含答案)

◎求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1; (5)*三角函数中的正切x y tan =的定义域为? ?? ??? ∈+ ≠Z k k x x ,2 π π; (6)已知函数()x f 的定义域为D ,求函数()[]x g f 的定义域,只需()D x g ∈; (7)已知函数()[]x g f 的定义域D ,求()x f 的定义域,只需(){}x g y y x =∈,即求()x g 的值域。 (8)已知函数()[]x g f 的定义域D ,求()[]x t f 的定义域,只需()1D x g D x ∈?∈,()21D x D x t ∈?∈?。 (9)已知函数()x f 或()[]x g f 的定义域D ,求()[]x t f 与别的函数的复合函数的定义域,按(6)、(7)的方法求()[]x t f 的定义域,再与别的函数定义域的交集。 (10)已知()x f 的解析式,求()[]x f f 的定义域,先求出()x f 的定义域D ,让()D x f ∈,求出x 的范围。 如果()x f 的定义域是D x ≠,则让()D x f ≠求出1D x ≠,最终D x ≠且1D x ≠。 例:求下列函数的定义域 1、)2-lg(=2x x y 2>0

数学必修一定义域值域知识点总结

数学必修一定义域值域知识点总结 数学必修一定义域知识点 定义 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 常见题型 1,已知f(x)的定义域,求f(g(x))的定义域. 例1,已知f(x)的定义域为(-1,1),求f(2x-1)的定义域. 略解:由-1<2x-1<1有0<1 ∴f(2x-1)的定义域为(0,1) 2,已知f(g(x))的定义域,求f(x)的定义域. 例2,已知f(2x-1)的定义域为(0,1),求f(x)的定义域。 解:已知0<1,设t=2x-1 ∴x=(t+1)/2 ∴0<(t+1)/2<1 ∴-1<1 ∴f(x)的定义域为(-1,1) 注意比较例1与例2,加深理解定义域为x的取值范围的含义。 3,已知f(g(x))的定义域,求f(h(x))的定义域.

例3,已知f(2x-1)的定义域为(0,1),求f(x-1)的定义域。 略解:如例2,先求出f(x)的定义域为(-1,1),然后如例1有-1<1,即0<2 ∴f(x-1)的定义域为(0,2) 指使函数有意义的一切实数所组成的集合。 其主要根据: ①分式的分母不能为零 ②偶次方根的被开方数不小于零 ③对数函数的真数必须大于零 ④指数函数和对数函数的底数必须大于零且不等于1 例4,已知f(x)=1/x+√(x+1),求f(x)的定义域。 略解:x≠0且x+1≧0, ∴f(x)的定义域为[-1,0)∪(0,+∞) 注意:答案一般用区间表示。 例5,已知f(x)=lg(-x2+x+2),求f(x)的定义域。 略解:由-x2+x+2>0有x2-x-2<0 即-1<2 ∴f(x)的定义域为(-1,2) 函数应用题的函数的定义域要根据实际情况求解。 例6,某工厂统计资料显示,产品次品率p与日产量 x(件)(x∈N,1≦x<99)的关系符合如下规律: 又知每生产一件正品盈利100元,每生产一件次品损失100元. 求该厂日盈利额T(元)关于日产量x(件)的函数;

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

高一函数值域定义域方法总结

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆 求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+0 201x x ? ???≠-≥21 x x 例2 求下列函数的定义域:

高中一年级数学_指数函数_函数的值域与最值(教(学)案)

授课类型 T-指数函数 C-函数的值域与最值 T-指数函数 教学目的 1、掌握指数函数的概念和指数运算的性质 2、掌握指数函数的图像和性质,并能够根据指数函数的性质解决一些变形的指数函数的问题;利用指数函数建议数学模型解决实际问题。 3、掌握函数值域与最值的解法 教学内容 1.一张白纸对折一次得两层,对折两次得4层,对折3次得8层,问若对折x 次所得层数为y ,则y 与x 的函数表达式是:2x y =. 2.一根1米长的绳子从中间剪一次剩下 12米,再从中间剪一次剩下1 4 米,若这条绳子剪x 次剩下y 米,则y 与x 的函数表达式是:12x y ?? = ??? . 问题:这两个函数有何特点? 同步讲解 一、指数函数的概念 一般地,函数x y a =()01a a >≠且叫做指数函数,其中x 是自变量,函数的定义域是R . 注意:为何规定0a >,且1a ≠? 你知道么?

图象 性质 ①定义域:R ②值域:(0,+∞) ③过点(0,1),即x =0时y =1 ④在R 上是增函数,当x <0时,0<y <1; 当x >0时,y >1 ④在R 上是减函数,当x <0时,y >1; 当x >0时,0<y <1 利用指数函数的性质,比较下列各组中两个数的大小. (1)3 2和 1.7 2; (2)23 0.6 - 和34 0.6 - . 【分析与解答】(1)因为指数2x y =函数在(),-∞+∞上是增函数,又3 1.7>,所以3 1.72 2>. (2)因为指数函数0.6x y =在(),-∞+∞上是减函数,又2334 ->-,所以23 3 40.60.6-->. 求下列函数的定义域与值域。 (1)1 4 2 x y -= (2)23x y -?? = ? ?? (3)1 42 1x x y +=++ 【分析与解答】根据指数函数的定义域为R ,逐个分析。 【解】(1)由404x x -≠?≠ 所以定义域为}{ ,4x x R x ∈≠且 1 41 0214 x x -≠∴≠-Q 所以值域为{} 0,1y y y >≠ (2)定义域为R 。 2331322x x x y --≥?????? ∴==≥= ? ? ??? ?? ?? Q 故值域为{} 1y y ≥

数学定义域和值域

函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 经典例题透析 类型一、函数概念 1.下列各组函数是否表示同一个函数? (1) (2) (3) (4) 小结1:相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) 2.求下列函数的定义域(用区间表示). (1);(2);(3). 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 3.值域: (先考虑其定义域) 实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有: 1.直接法:由常见函数的值域或不等式性质求出; 2.分离常数法:可将其分离出一个常数; 3.观察法:利用函数的图象的"最高点"和"最低点",观察求得函数的值域;

4.判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式"函数等;此外,使用此方法要特别注意自变量的取值范围; 5.换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域. 例题详见备课本 5. 换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。 ∵0e x > ∴01y 1y >-+ 解得:1y 1<<- 故所求函数的值域为)1,1(- 例3. 求函数1x x y -+=的值域。 解:令t 1x =-,)0t (≥ 则1t x 2+= ∵ 43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知 当0t =时,1y m i n = 当0t →时,+∞→y 故函数的值域为),1[+∞

高一初等函数定义域值域

高一初等函数定义域值 域 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 7 41+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值

例5、某种笔记本的单价是5元,买x(x {1,2,3,4,5})个笔记本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。 x

1、求下列函数的定义域 (1)f (x )=43-x x (2)f (x )=2x (3)f (x )=236 2+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等? (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=62 -+x x (1)点(3,14)在f (x )的图象上吗?

函数值域定义域值域练习题

函数值域定义域值域练 习题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一.选择题(共18小题) 1.(2007?河东区一模)若函数f(x)=的定义域为A,函数g(x)=的定义域为B,则使A∩B=的实数a的取值范围是()A.(﹣1,3)B.[﹣1,3]C.(﹣2,4)D.[﹣2,4] 2.若函数f(x)的定义域是[﹣1,1],则函数f(x+1)的定义域是()A.[﹣1,1]B.[0,2]C.[﹣2,0]D.[0,1] 3.(2010?重庆)函数的值域是() A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)4.(2009?河东区二模)函数的值域是() A.(0,+∞)B.C.(0,2)D.(0,)5.已知函数y=x2+4x+5,x∈[﹣3,3)时的值域为() A.(2,26)B.[1,26)C.(1,26)D.(1,26] 6.函数y=在区间[3,4]上的值域是() A.[1,2]B.[3,4]C.[2,3]D.[1,6] 7.函数f(x)=2+3x2﹣x3在区间[﹣2,2]上的值域为() A.[2,22]B.[6,22]C.[0,20]D.[6,24] 8.函数的值域是() A.{y|y∈R且y≠1} B.{y|﹣4≤y<1} C.{y|y≠﹣4且y≠1} D.R 9.函数y=x2﹣2x(﹣1<x<2)的值域是() A.[0,3]B.[1,3]C.[﹣1,0]D.[﹣1,3)10.函数的值域为() A.[2,+∞)B.C.D.(0,2] 11.函数的值域为()

A.[4,+∞)B.(﹣∞,4]C.(0,+∞)D.(0,4] 12.函数的定义域为() A.[3,5)B.(﹣5,3]C.[3,5)∪(5,+∞)D.[3,+∞) 13.已知函数f(x)的定义域为(0,1),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D. 14.已知,则f(x)的定义域是() A.[﹣2,2]B.[0,2]C.[0,1)∪(1,2]D. 15.函数f(x)=(x﹣)0+的定义域为() D.(,+∞)A.(﹣2,)B.(﹣2,+∞)C.(﹣2,)∪(, +∞) 16.定义域为R的函数y=f(x)的值域为[a,b],则函数y=f(x+a)的值域为()A.[2a,a+b]B.[a,b]C.[0,b﹣a]D.[﹣a,a+b] 17.函数的值域是() A.[1,2]B.[0,2]C.[﹣,﹣1]D.[﹣,1] 18.已知y=4x﹣3?2x+3的值域为[1,7],则x的取值范围是() A.[2,4]B.(﹣∞,0)C.(0,1)∪[2,4]D.(﹣∞,0]∪[1,2]二.填空题(共11小题) 19.(2013?安徽)函数y=ln(1+)+的定义域为_________.20.(2012?四川)函数的定义域是_________.(用区间表示)21.求定义域:. 22.若函数f(x)=x2﹣2ax+b(a>1)的定义域与值域都是[1,a],则实数b= _________. 23.函数y=的值域是_________. 24.函数的值域为_________. 25.函数的值域为_________.

相关文档
最新文档