操作系统原理算法总结

操作系统原理算法总结
操作系统原理算法总结

《操作系统原理》算法总结

一、进程(作业)调度算法

先来先服务调度算法(FCFS):每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。特点:利于长进程,而不利于短进程。

短进程(作业)优先调度算法(SPF):它是从就绪队列中选择一个估计运行时间最短的进程,将处理器分配给该进程,使之占有处理器并执行,直到该进程完成或因发生事件而阻塞,然后退出处理器,再重新调度。

时间片轮转调度算法 :系统将所有的就绪进程按进入就绪队列的先后次序排列。每次调度时把CPU分配给队首进程,让其执行一个时间片,当时间片用完,由计时器发出时钟中断,调度程序则暂停该进程的执行,使其退出处理器,并将它送到就绪队列的末尾,等待下一轮调度执行。

优先数调度算法 :它是从就绪队列中选择一个优先权最高的进程,让其获得处理器并执行。

响应比高者优先调度算法:它是从就绪队列中选择一个响应比最高的进程,让其获得处理器执行,直到该进程完成或因等待事件而退出处理器为止。特点:既照顾了短进程,又考虑了进程到达的先后次序,也不会使长进程长期得不到服务,因此是一个比较全面考虑的算法,但每次进行调度时,都需要对各个进程计算响应比。所以系统开销很大,比较复杂。

多级队列调度算法

基本概念:

作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)

作业平均周转时间(T)=周转时间/作业个数

作业带权周转时间(Wi)=周转时间/运行时间

响应比=(等待时间+运行时间)/运行时间

二、存储器连续分配方式中分区分配算法

首次适应分配算法(FF):对空闲分区表记录的要求是按地址递增的顺序排列的,每次分配时,总是从第1条记录开始顺序查找空闲分区表,找到第一个能满足作业长度要求的空闲区,分割这个空闲区,一部分分配给作业,另一部分仍为空闲区。

循环首次适应算法:每次分配均从上次分配的位置之后开始查

找。

最佳适应分配算法(BF):是按作业要求从所有的空闲分区中挑选一个能满足作业要求的最小空闲区,这样可保证不去分割一个更大的区域,使装入大作业时比较容易得到满足。为实现这种算法,把空闲区按长度递增次序登记在空闲区表中,分配时,顺序查找。

三、页面置换算法

最佳置换算法(OPT) :选择以后永不使用或在最长时间内不再被访问的内存页面予以淘汰。

先进先出置换算法(FIFO):选择最先进入内存的页面予以淘汰。

最近最久未使用算法(LRU):选择在最近一段时间内最久没有使用过的页,把它淘汰。

最少使用算法(LFU):选择到当前时间为止被访问次数最少的页转换。

四、磁盘调度

先来先服务(FCFS):是按请求访问者的先后次序启动磁盘驱动器,而不考虑它们要访问的物理位置

最短寻道时间优先(SSTF):让离当前磁道最近的请求访问者启动磁盘驱动器,即是让查找时间最短的那个作业先执行,而不考虑请求访问者到来的先后次序,这样就克服了先来先服务调度算法中磁臂移动过大的问题

扫描算法(SCAN)或电梯调度算法:总是从磁臂当前位置开始,沿磁臂的移动方向去选择离当前磁臂最近的那个柱面的访问者。如果沿磁臂的方向无请求访问时,就改变磁臂的移动方向。在这种调度方法下磁臂的移动类似于电梯的调度,所以它也称为电梯调度算法。

循环扫描算法(CSCAN):循环扫描调度算法是在扫描算法的基础上改进的。磁臂改为单项移动,由外向里。当前位置开始沿磁臂的移动方向去选择离当前磁臂最近的哪个柱面的访问者。如果沿磁臂的方向无请求访问时,再回到最外,访问柱面号最小的作业请求

算法分析与设计总结

第一章算法概述 1.算法:解决问题的一种方法或过程;由若干条指令组成的有穷指令。 2.算法的性质: 1)输入:有零个或多个输入 2)输出:有至少一个输出 3)确定性:每条指令是清晰的、无歧义的 4)有限性:每条指令的执行次数和时间都是有限的 3.算法与程序的区别 程序是算法用某种程序设计语言的具体实现 程序可以不满足算法的有限性 4.算法复杂性分析 1)算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复 杂性,需要空间资源的量称为空间复杂性 2)三种时间复杂性:最坏情况、最好情况、平均情况 3)可操作性最好且最有实际价值的是最坏情况下的时间复杂性 第二章递归与分支策略 1.递归概念:直接或间接调用自身的算法 2.递归函数:用函数自身给出定义的函数 3.递归要素:边界条件、递归方程 4.递归的应用 ?汉诺塔问题 void Hanuo(int n,int a,int b,int c) { if(n==1) return; Hanuo(n-1,a,c,b); move(a,b) Hanuo(n-1,c,b,a); } ?全排列问题 void Perm(Type list[],int k,int m) { //产生list[k,m]的所有排列 if(k == m) { for(int i = 0;I <= m;i++) cout<

操作系统原理知识知识点复习,梁光祥

目录 第一章操作系统概论 (2) 1.1操作系统概念 (2) 1.2操纵系统的主要功能 (2) 1.3操作系统的基本特征 (3) 1.4操作系统的逻辑结构和运行模型 (3) 1.5操作系统的形成与发展 (3) 1.6操作系统主要类型 (3) 第二章进程管理 (4) 2.1.进程概念 (4) (4) 2.2.进程控制 (5) 2.3.进程互斥与同步 (5) 2.4.进程通信 (5) 2.5.线程 (5) 第三章处理器调度与死锁 (6) 3.1.处理器调度 (6) 3.2.死锁 (7) 第四章存储管理 (8) 4.1.程序的链接和装入 (8) 4.2.分区式存储管理 (8) 4.3.分页式存储管理 (8) 4.4.分段式存储管理 (9) 4.5.段页式存储管理 (9) 4.6.虚拟存储管理 (10) 第五章设备管理 (11) 5.1.输入输出系统 (11) 5.2.输入输出控制方式 (11) 5.3.缓冲技术 (14) 5.4.分配策略: (14) 5.5.输入输出软件 (14) 5.6.虚拟设备 (14) 5.7.磁盘存储管理 (14) 第六章文件管理 (15) 6.1.概述 (15) 6.2文件数据的组织和存储 (15) 6.3.文件目录 (15) 6.4.文件储存空间管理 (16)

第一章操作系统概论1.1操作系统概念 1.配备操作系统的目的 1)方便人们使用计算机 2)有效管理计算机 2.操作系统的目标 1)有效地管理计算机的硬件和软件资源 2)提高系统效率 3)具有可扩充性 4)具有开放性 5)具有可靠性 6)具有可移植性 1.2操纵系统的主要功能 1.处理器管理功能 1)进程控制 2)进程同步 3)进程通信 4)调度 2.存储管理功能 1)内存的分配与回收 2)内存保护 3)地址映射 4)内存扩充 5)内存共享 3.设备管理功能 1)缓冲管理 2)设备分配与回收 3)设备驱动 4)实现设备独立性 5)实现虚拟设备 4.文件管理功能 1)文件的存储空间管理 2)目录管理 3)文件的读写管理 4)文件保护 5.网络功能 1)网络资源管理 2)网络通信管理

算法分析与设计试卷

《算法分析与设计》试卷(A) (时间90分钟满分100分) 一、填空题(30分,每题2分)。 1.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法2.在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( B ). A.回溯法 B.分支限界法 C.回溯法和分支限界法 D.回溯法求解子集树问题 3.实现最大子段和利用的算法是( B )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法4..广度优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法5.衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 6.Strassen矩阵乘法是利用( A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 7. 使用分治法求解不需要满足的条件是( A )。 A 子问题必须是一样的 B 子问题不能够重复 C 子问题的解可以合并 D 原问题和子问题使用相同的方法解 8.用动态规划算法解决最大字段和问题,其时间复杂性为( B ). A.logn B.n C.n2 D.nlogn 9.解决活动安排问题,最好用( B )算法 A.分治 B.贪心 C.动态规划 D.穷举 10.下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A.递归函数 B.剪枝函数C。随机数函数 D.搜索函数11. 从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( C )之外都是最常见的方式. A.队列式分支限界法 B.优先队列式分支限界法 C.栈式分支限界法 D.FIFO分支限界法 12. .回溯算法和分支限界法的问题的解空间树不会是( D ). A.有序树 B.子集树 C.排列树 D.无序树 13.优先队列式分支限界法选取扩展结点的原则是( C )。 A、先进先出 B、后进先出 C、结点的优先级 D、随机14.下面是贪心算法的基本要素的是( C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解15.回溯法在解空间树T上的搜索方式是( A ). A.深度优先 B.广度优先 C.最小耗费优先 D.活结点优先 二、填空题(20分,每空1分)。 1.算法由若干条指令组成的又穷序列,且满足输入、输出、 确定性和有限性四个特性。 2.分支限界法的两种搜索方式有队列式(FIFO)分支限界法、优先队列式分支限界法,用一个队列来存储结点的表叫活节点表。

操作系统原理知识点总结

第一章绪论 1、操作系统是一组控制和管理计算机硬件和软 件资源、合理的对各类作业进行调度以方便用户的程序集合 探2、操作系统的目标:方便性、有效性、可扩 展性、开发性 探3、操作系统的作用:作为计算机硬件和用户 间的接口、作为计算机系统资源的管理者、作为 扩充机器 4、单批道处理系统:作业处理成批进行,内存中始终保持一道作业(自动性、顺序性、单道性) 5、多批道处理系统:系统中同时驻留多个作业,优点:提高CPU利用率、提高I/O设备和内存利用率、提高系统吞吐量(多道性、无序性、调度性) 6、分时技术特性:多路性、交互性、独立性、 及时性,目标:对用户响应的及时性 7、实时系统:及时响应外部请求,在规定时间 内完成事件处理,任务类型:周期性、非周期性或硬实时任务、软实时任务 ※&操作系统基本特性:并发、共享、虚拟、 异步性 并行是指两或多个事件在同一时刻发生。 并发是两或多个事件在同一时间间隔内发生。

互斥共享:一段时间只允许一个进程访问该资源 同时访问:微观上仍是互斥的 虚拟是指通过某种技术把一个物理实体变为若干个逻辑上的对应物。 异步是指运行进度不可预知。 共享性和并发性是操作系统两个最基本的特征探9、操作系统主要功能:处理机管理、存储器管理、设备管理、文件管理、用户管理 第二章进程的描述和控制 探1程序顺序执行特征:顺序性、封闭性、可再现性探2、程序并发执行特征:间断性、失去封闭性、不可再现性 3、前趋图:有向无循环图,用于描述进程之间执行的前后关系 表示方式: (1)p1--->p2 (2) --->={(p1,p2)| pl 必须在p2 开始前完成} 节点表示:一条语句,一个程序段,一进程。 (详见书P32)

《操作系统原理》算法总结

《操作系统原理》算法总结 一、进程(作业)调度算法 ●先来先服务调度算法(FCFS):每次调度是从就绪队列中,选择一个最先 进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。特点:利于长进程,而不利于短进程。 ●短进程(作业)优先调度算法(SPF):它是从就绪队列中选择一个估计运 行时间最短的进程,将处理器分配给该进程,使之占有处理器并执行,直到该进程完成或因发生事件而阻塞,然后退出处理器,再重新调度。 ●时间片轮转调度算法:系统将所有的就绪进程按进入就绪队列的先后次 序排列。每次调度时把CPU分配给队首进程,让其执行一个时间片,当时间片用完,由计时器发出时钟中断,调度程序则暂停该进程的执行,使其退出处理器,并将它送到就绪队列的末尾,等待下一轮调度执行。 ●优先数调度算法:它是从就绪队列中选择一个优先权最高的进程,让其 获得处理器并执行。 ●响应比高者优先调度算法:它是从就绪队列中选择一个响应比最高的进 程,让其获得处理器执行,直到该进程完成或因等待事件而退出处理器为止。特点:既照顾了短进程,又考虑了进程到达的先后次序,也不会使长进程长期得不到服务,因此是一个比较全面考虑的算法,但每次进行调度时,都需要对各个进程计算响应比。所以系统开销很大,比较复杂。 ●多级队列调度算法 基本概念: 作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)

作业平均周转时间(T)=周转时间/作业个数 作业带权周转时间(Wi)=周转时间/运行时间 响应比=(等待时间+运行时间)/运行时间 二、存储器连续分配方式中分区分配算法 ?首次适应分配算法(FF):对空闲分区表记录的要求是按地址递增的 顺序排列的,每次分配时,总是从第1条记录开始顺序查找空闲分区 表,找到第一个能满足作业长度要求的空闲区,分割这个空闲区,一 部分分配给作业,另一部分仍为空闲区。 ?循环首次适应算法:每次分配均从上次分配的位置之后开始查找。 ?最佳适应分配算法(BF):是按作业要求从所有的空闲分区中挑选一个 能满足作业要求的最小空闲区,这样可保证不去分割一个更大的区域, 使装入大作业时比较容易得到满足。为实现这种算法,把空闲区按长 度递增次序登记在空闲区表中,分配时,顺序查找。 三、页面置换算法 ●最佳置换算法(OPT):选择以后永不使用或在最长时间内不再被访问 的内存页面予以淘汰。 ●先进先出置换算法(FIFO):选择最先进入内存的页面予以淘汰。 ●最近最久未使用算法(LRU):选择在最近一段时间内最久没有使用过 的页,把它淘汰。 ●最少使用算法(LFU):选择到当前时间为止被访问次数最少的页转换。 四、磁盘调度

算法设计与分析复习题及答案

一、填空题(20分) 1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。 3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。 4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。 5.设S={X1,X2,···,X n}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,(1)在二叉搜索树的内结点中找到X=X i,其概率为b i。(2)在二叉搜索树的叶结点中确定X∈(X i,X i+1),其概率为a i。在表示S的二叉搜索树T中,设存储元素X i的结点深度为C i;叶结点(X i,X i+1)的结点深度为d i,则二叉搜索树T的平均路长p为多少?假设二叉搜索树T[i][j]={X i,X i+1,···,X j}最优值为m[i][j],W[i][j]= a i-1+b i+···+b j+a j,则m[i][j](1<=i<=j<=n)递归关系表达式为什么? 6.描述0-1背包问题。 三、简答题(30分) 1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为a i和b i,请写出流水作业调度问题的johnson法则中对a i和b i的排序算法。(函数名可写为sort(s,n))

《操作系统原理》课程教学大纲

附件1: 《操作系统原理》课程教学大纲 制定(修订)人: 李灿平、郭亚莎制定(修订)时间: 2006年 7 月所在单位: 信息工程学院 一、课程基本信息

三、教学内容及基本要求 第一章绪论 本章简要介绍操作系统的基本概念、功能、分类以及发展历史。同时讨论研究操作系统的几种观点。 §1.1 操作系统的概念 本节介绍操作系统的基本概念,什么是操作系统以及操作系统与硬件软件的关系。 本节重点:操作系统与硬件软件的关系。 本节要求学生理解什么是操作系统,掌握操作系统与硬件软件的关系。 §1.2 操作系统的历史 本节按器件工艺介绍操作系统的发展历史。 本节重点:多道程序系统的概念。 本节要求学生了解操作系统的发展历史,理解多道程序系统概念。 §1.3 操作系统的基本类型 本节介绍常见的操作系统的类型、特点及适用的对象。 本节重点:批处理操作系统、分时系统、实时系统。 本节要求学生掌握上述三大操作系统的特点及适用对象。 §1.4 操作系统功能 本节简单介绍操作系统的五个功能。处理机管理,存储管理,设备管理,信息管理(文件系统管理)和用户接口。 本节要求学生了解上述功能。 §1.5 计算机硬件简介 本节简单介绍计算机硬件系统。 本节要求学生自修。

§1.6 算法的描述 本节介绍操作系统管理计算机系统的有关过程所用的描述算法。 本节要求学生掌握本书所采用的描述算法。 §1.7 研究操作系统的几种观点 本节介绍研究操作系统的几种观点。系统管理的观点,用户界面观点和进程管理观点。 本节要求学生了解上述三种观点。 第二章操作系统用户界面 本章主要讨论操作系统的两个用户接口,并以UNIX系统为例,简单介绍用户接口的使用操作方法。 §2.1 作业的基本概念 本节介绍作业的基本概念,什么是作业及作业组织(结构)。 本节重点:作业的基本概念。 本节要求学生掌握作业的基本概念,了解作业的组织。 §2.2 作业的建立 本节介绍作业的几种输入方式和作业的建立过程。 本节重点:联机输入方式和Spooling系统,作业控制块PCB和作业的四个阶段。 本节要求学生了解作业的几种输入方式,理解Spooling系统,掌握作业建立的过程内容。理解作业的四个基本阶段。提交、后备、执行以及完成阶段。 §2.3 命令控制界面接口 本节介绍操作系统为用户提供的命令接口界面。介绍命令接口的两种使用方式。讨论联机方式下操作命令的分类。 本节重点:命令接口的使用方式。 本节要求学生理解命令接口的作用和使用方式。了解联机方式下操作命令的分类。 §2.4 系统调用 本节介绍操作系统提供给编程人员的唯一接口,系统调用。同时讨论系统调用的分类。 本节重点:编程人员通过系统调用使用操作系统内核所提供的各种功能和系统调用的处理过程。 本节要求学生了解系统调用的分类、理解系统调用的功能、掌握系统调用的处理过程。 §2.5 UNIX用户界面 本节简单介绍UNIX系统的发展历史和特点以及UNIX系统结构。同时讨论UNIX操作命令和系统调用的分类功能和使用方法。 本节重点:UNIX系统的特点。 本节要求学生了解UNIX系统的发展史,掌握UNIX系统的特点,理解UNIX系统操作命令和系统调用的功能。 第三章进程管理 本章详细介绍进程和线程管理的有关概念和技术。 §3.1 进程的概念 本节介绍进程的基本概念。通过程序的并发执行,引出进程具有并发性特征的概念。同时讨论进程的各式各样的定义以及作业和进程的关系。 本节重点:进程的特征。 本节要求学生了解程序的并发执行,掌握进程的特征。 §3.2 进程的描述 本节介绍进程的静态描述以及进程上下文结构。 本节重点,进程的上下文结构。 本节要求学生理解进程的静态描述内容,掌握进程控制块PCB的作用和进程上下文结构。

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

算法设计与分析学习总结

算法分析与设计 学习总结 题目:算法分析与设计学习总结 学院信息科学与工程学院专业2013级计算机应用技术 届次 学生姓名 学号2013110657 二○一三年一月十五日

算法分析与设计学习总结 本学期通过学习算法分析与设计课程,了解到:算法是一系列解决问题的清晰指令,代表着用系统的方法描述解决问题的策略机制。算法能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂性和时间复杂度来衡量。算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。计算机系统中的操作系统、语言编译系统、数据库管理系统以及各种各样的计算机应用系统中的软件,都必须使用具体的算法来实现。算法设计与分析是计算机科学与技术的一个核心问题。 设计的算法要具有以下的特征才能有效的完成设计要求,算法的特征有:(1)有穷性。算法在执行有限步后必须终止。(2)确定性。算法的每一个步骤必须有确切的定义。(3)输入。一个算法有0个或多个输入,作为算法开始执行前的初始值,或初始状态。(4)输出。一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。 (5)可行性。在有限时间内完成计算过程。 算法设计的整个过程,可以包含对问题需求的说明、数学模型的拟制、算法的详细设计、算法的正确性验证、算法的实现、算法分析、程序测试和文档资料的编制。算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法和并行算法。 经典的算法主要有: 1、穷举搜索法 穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,bing从中找出那些符合要求的候选解作为问题的解。 穷举算法特点是算法简单,但运行时所花费的时间量大。有些问题所列举书来的情况数目会大得惊人,就是用高速计算机运行,其等待运行结果的时间也将使人无法忍受。我们在用穷举算法解决问题是,应尽可能将明显不符合条件的情况排除在外,以尽快取得问题的解。 2、迭代算法 迭代法是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或方程组)的过程,为实现这一过程所使用的方法统称为迭代法。迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1)选一个方程的近似根,赋给变量x0。 (2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0。 (3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。 3、递推算法 递推算法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的。 4、递归算法 递归算法是一种直接或间接的调用自身的算法。 能采用递归描述的算法通常有这样的特征:为求解规模为n的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模

计算机操作系统原理知识点第三章

所谓的程序的并发执行,是指内存中可以同时驻留多个运行中的程序,他们共享cpu 和各种系统资源,以并发方式进行运算。 进程: 进程实质性各种定义:P63 .2 1. 进程是程序的一次执行 2. 进程是可以和别的计算并发执行的计算 3. 进程可定义为一个数据结构以及能在其上执行的程序 4. 进程是一个程序及其数据在处理机上顺序执行时所发生的活动 5. 进程是一个程序在数据集上运行的过程,他是系统进行资源分配和调度的一个独 立单位 进程的特征:P63 .2 1. 动态性 2. 并发性 3. 独立性 4. 异步性 5. 结构特征(进程通常是由程序段、数据段和堆栈、进程控制块三部分组成) 进程控制块是系统对进程实施管理的唯一依据和系统能够感知到进程存在的唯一标识 一个进程的至少具有的3基本状态: 1. 就绪状态:是指进程以获得cpu 以外的所必要的资源,只要获得cpu ,便可以立即执行 时的状态 2. 执行状态:是指进程以获得cpu ,其程序在cpu 上执行时的状态 在单cpu 的系统中,任一时刻至多只有一个进程处于执行状态。 在多cpu 的系统中,则可以同时有多个进程处于执行状态 3. 阻塞状态:是指正在cpu 上执行的进程,因需要等待某个事件暂时无法继续执行,而放 弃cpu 时的状态。 1. 就绪→执行 2. 执行→就绪 3. 执行→阻塞 4. 阻塞→就绪 进程同步:是指多个合作进程为了完成一组相关任务在执行速度上的相互协调。 进程同步和进程互斥的联系与区别: 联系:进程互斥从某种意义上可看是进程同步的一种特例。 区别:进程互斥是并发进程间因共享临界资源所产生的间接制约关系, 而进程同步则是合作进程间因执行顺序所产生的直接制约关系 PV 原语 阻塞 事件发生 事件等待 进程的基本状态及其转换

《并行算法》课程总结与复习

《并行算法》课程总结与复习 Ch1 并行算法基础 1.1 并行计算机体系结构 并行计算机的分类 ?SISD,SIMD,MISD,MIMD; ?SIMD,PVP,SMP,MPP,COW,DSM 并行计算机的互连方式 ?静态:LA(LC),MC,TC,MT,HC,BC,SE ?动态:Bus, Crossbar Switcher, MIN(Multistage Interconnection Networks) 1.2 并行计算模型 PRAM模型:SIMD-SM, 又分CRCW(CPRAM,PPRAM,APRAM),CREW,EREW SIMD-IN模型:SIMD-DM 异步APRAM模型:MIMD-SM BSP模型:MIMD-DM,块内异步并行,块间显式同步 LogP模型:MIMD-DM,点到点通讯 1.3 并行算法的一般概念 并行算法的定义 并行算法的表示 并行算法的复杂度:运行时间、处理器数目、成本及成本最优、加速比、并行效率、工作量 并行算法的WT表示:Brent定理、WT最优 加速比性能定律 并行算法的同步和通讯 Ch2 并行算法的基本设计技术 基本设计技术 平衡树方法:求最大值、计算前缀和 倍增技术:表序问题、求森林的根 分治策略:FFT分治算法 划分原理: 均匀划分(PSRS排序)、对数划分(并行归并排序)、方根划分(Valiant归并排序)、功能划分( (m,n)-选择) 流水线技术:五点的DFT计算 Ch3 比较器网络上的排序和选择算法 3.1 Batcher归并和排序 0-1原理的证明 奇偶归并网络:计算流程和复杂性(比较器个数和延迟级数)

双调归并网络:计算流程和复杂性(比较器个数和延迟级数) Batcher排序网络:原理、种类和复杂性 3.2 (m, n)-选择网络 分组选择网络 平衡分组选择网络及其改进 Ch4 排序和选择的同步算法 4.1 一维线性阵列上的并行排序算法 4.2 二维Mesh上的并行排序算法 ShearSort排序算法 Thompson&Kung双调排序算法及其计算示例 4.3 Stone双调排序算法 4.4 Akl并行k-选择算法:计算模型、算法实现细节和时间分析 4.5 Valiant并行归并算法:计算模型、算法实现细节和时间分析 4.7 Preparata并行枚举排序算法:计算模型和算法的复杂度 Ch5 排序和选择的异步和分布式算法 5.1 MIMD-CREW模型上的异步枚举排序算法 5.2 MIMD-TC模型上的异步快排序算法 5.3分布式k-选择算法 Ch6 并行搜索 6.1 单处理器上的搜索 6.2 SIMD共享存储模型上有序表的搜索:算法 6.3 SIMD共享存储模型上随机序列的搜索:算法 6.4 树连接的SIMD模型上随机序列的搜索:算法 6.5 网孔连接的SIMD模型上随机序列的搜索:算法和计算示例 Ch8 数据传输与选路 8.1 引言 信包传输性能参数 维序选路(X-Y选路、E-立方选路) 选路模式及其传输时间公式 8.2 单一信包一到一传输 SF和CT传输模式的传输时间(一维环、带环绕的Mesh、超立方) 8.3 一到多播送 SF和CT传输模式的传输时间(一维环、带环绕的Mesh、超立方)及传输方法8.4 多到多播送 SF和CT传输模式的传输时间(一维环、带环绕的Mesh、超立方)及传输方法8.5 贪心算法(书8.2) 二维阵列上的贪心算法 蝶形网上的贪心算法 8.6 随机和确定的选路算法(书8.3) Ch12矩阵运算

操作系统原理实验五

实验五线程的同步 1、实验目的 (1)进一步掌握Windows系统环境下线程的创建与撤销。 (2)熟悉Windows系统提供的线程同步API。 (3)使用Windows系统提供的线程同步API解决实际问题。 2、实验准备知识:相关API函数介绍 ①等待对象 等待对象(wait functions)函数包括等待一个对象(WaitForSingleObject ())和等待多个对象(WaitForMultipleObject())两个API函数。 1)等待一个对象 WaitForSingleObject()用于等待一个对象。它等待的对象可以为以下对象 之一。 ·Change ontification:变化通知。 ·Console input: 控制台输入。 ·Event:事件。 ·Job:作业。 ·Mutex:互斥信号量。 ·Process:进程。 ·Semaphore:计数信号量。 ·Thread:线程。 ·Waitable timer:定时器。 原型: DWORD WaitForSingleObject( HANDLE hHandle, // 对象句柄 DWORD dwMilliseconds // 等待时间 ); 参数说明: (1)hHandle:等待对象的对象句柄。该对象句柄必须为SYNCHRONIZE访问。 (2)dwMilliseconds:等待时间,单位为ms。若该值为0,函数在测试对象的状态后立即返回,若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒,如表2-1所示。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。

Static HANDLE hHandlel = NULL; DWORD dRes; dRes = WaitForSingleObject(hHandlel,10); //等待对象的句柄为hHandlel,等待时间为10ms 2)等待对个对象 WaitForMultiple()bject()在指定时间内等待多个对象,它等待的对象与 WaitForSingleObject()相同。 原型: DWORD WaitForMultipleObjects( DWORD nCount, //句柄数组中的句柄数 CONST HANDLE * lpHandles, //指向对象句柄数组的指针 BOOL fWaitAll, //等待类型 DWORD dwMilliseconds //等待时间 ); 参数说明: (1)nCount:由指针 * lpHandles指定的句柄数组中的句柄数,最大数是MAXIMUM WAIT OBJECTS。 (2)* lpHandles:指向对象句柄数组的指针。 (3)fWaitAll:等待类型。若为TRUE,当由lpHandles数组指定的所有对象被唤醒时函数返回;若为FALSE,当由lpHandles数组指定的某一个 对象被唤醒时函数返回,且由返回值说明是由于哪个对象引起的函数 返回。 (4)dwMilliseconds:等待时间,单位为ms。若该值为0,函数测试对象的状态后立即返回;若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒。 返回值:、 如果成功返回,其返回值说明是何种事件导致函数返回。 各参数的描述如表2-2所示。

算法分析与设计知识点总结

第一章概述 算法的概念:算法是指解决问题的一种方法或过程,是由若干条指令组成的有穷序列。 算法的特征: 可终止性:算法必须在有限时间内终止; 正确性:算法必须正确描述问题的求解过程; 可行性:算法必须是可实施的; 算法可以有0个或0个以上的输入; 算法必须有1个或1个以上的输出。 算法与程序的关系: 区别:程序可以不一定满足可终止性。但算法必须在有限时间内结束; 程序可以没有输出,而算法则必须有输出; 算法是面向问题求解的过程描述,程序则是算法的实现。 联系:程序是算法用某种程序设计语言的具体实现; 程序可以不满足算法的有限性性质。 算法描述方式:自然语言,流程图,伪代码,高级语言。 算法复杂性分析: 算法复杂性的高低体现运行该算法所需计算机资源(时间,空间)的多少。 算法复杂性度量: 期望反映算法本身性能,与环境无关。 理论上不能用算法在机器上真正的运行开销作为标准(硬件性能、代码质量影响)。 一般是针对问题选择基本运算和基本存储单位,用算法针对基本运算与基本存储单位的开销作为标准。 算法复杂性C依赖于问题规模N、算法输入I和算法本身A。即C=F(N, I, A)。 第二章递归与分治 分治法的基本思想: 求解问题算法的复杂性一般都与问题规模相关,问题规模越小越容易处理。 分治法的基本思想是,将一个难以直接解决的大问题,分解为规模较小的相同子问题,直至这些子问题容易直接求解,并且可以利用这些子问题的解求出原问题的解。各个击破,分而治之。 分治法产生的子问题一般是原问题的较小模式,这就为使用递归技术提供了方便。递归是分治法中最常用的技术。 使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。 分治法所能解决的问题一般具有以下几个特征: 该问题的规模缩小到一定的程度就可以容易地解决; 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; 利用该问题分解出的子问题的解可以合并为该问题的解; 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。(这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。) 递归的概念:

操作系统原理课程设计报告

操作系统原理课程设计报告

系(院):计算机科学学院 专业班级: 姓名: 学号: 指导教师: 设计时间:2020.5.25——2020.5.30 设计地点:

一、课程设计目的 (4) 二、课程设计的任务和要求 (4) 三、模拟程序的描述: (5) 四、运行环境 (7) 五、算法原理 (8) 1)多级反馈队列调度算法 (13) 2)优先权调度算法 (14) 六、需求分析 (16) 七、总体设计 (17) 八、详细设计与实现[含代码和实现界面] (19) 九、主要代码分析: (26) 十、总结 (44)

一、课程设计目的 《操作系统原理》是计算机科学与技术专业的一门专业核心课程,也是研究生入学考试中计算机专业综合中所涉及的内容。该课程理论性强,纯粹的理论学习相对枯燥乏味,不易理解。通过课程设计,可加强学生对原理知识的理解。 二、课程设计的任务和要求 本次课程设计的题目是,时间片轮转调度算法的模拟实现。要求在充分理解时间片轮转调度算法原理的基础上,编写一个可视化的算法模拟程序。 具体任务如下: 1、根据需要,合理设计PCB结构,以适用于时间片轮转调度算法;

2、设计模拟指令格式,并以文件形式存储,程序能够读取文件并自动生成指令序列。 3、根据文件内容,建立模拟进程队列,并能采用时间片轮转调度算法对模拟进程进行调度。 三、模拟程序的描述: 模拟指令的格式:操作命令+操作时间 ● C :表示在CPU上计算 ●I :表示输入 ●O :表示输出 ●W :表示等待 ●H :表示进程结束 操作时间代表该操作命令要执行多长时间。这里假设I/O设备的数量没有限制,I和O设备都只有一类。 I,O,W三条指令实际上是不占有CPU的,执行这三条指令就应该将进程放入对应的等待队列(输入等待队列,输出等待队列,其他等待队列)。

操作系统原理复习提纲

第一章 1、存储程序式计算机的特点 存储程序式计算机的结构包括中央处理器(CPU、存储器和输入/输出设备 特点是集中顺序过程控制。其计算是过程性的,完全模拟手工操作过程,即首先取原始数据,执行一个操作,将中间结果保存起来,再取一个数,与中间结果一起执行下一个操作,如此计算下去,直到计算完成。系统中的程序计数器体现其顺序性(在单CPU的计算机系统中只有一个程序计数器),计算机根据程序设定的顺序依次执行每一个操作。集中控制是指机器各部件的工作由CPU集中管理和指挥。 2、操作系统发展的几个阶段的名称及特点 (1)手工操作阶段 特点:无任何软件、由人工干预、独占性、串行性 (2)批处理阶段 联机批处理特点:监督程序、作业自动过渡 脱机批处理特点:主机与xx机并行操作 (3)执行系统 主机、外设并行操作;增强了保护能力

3、多道程序设计技术定义及特征 在计算机主存中同时存放几道相互独立的程序。这些程序在管理程序控制之下,相互穿插地运行。当某道程序因某种原因不能继续运行下去时(如等待外部设备传输数据),管理程序便将另一道程序投入运行。 特征: (1)多道:计算机主存中同时存放几道相互独立的程序 (2)宏观上并行:同时进入系统的几道程序都处于运行过程中, 即它们都开始运行,但都未运行完毕。 (3)微观上串行:从微观上看,主存中的多道程序轮流或分时地占用处理机,交替执行。 4、操作系统定义和特征 操作系统是一个大型的程序系统,它负责计算机的全部软、硬资源的分配、调度工作,控制和协调并发活动,实现信息的存取和保护。它提供用户接口,使用户获得良好的工作环境。 特征: (1)并发:并发性是指处理多个同时性活动的能力。 (2)共享:共享是指多个计算任务对系统资源的共同享用 (3)不确定性:操作系统能处理大量的、随机的事件序列,使个用

操作系统原理重点知识点

精品文档注意:大题必看否则很难及格! 操作系统是配置在计算机硬件上带第一层软件,是对硬件系统的首什么是操作系统:1、次扩充。作为计算机系统资OSOS作为用户与计算机硬件系统之间带接口、操作系统的作用:2、实现啦对计算机资源带抽象源带管理者、OS 有效性、方便性、可扩充性、开放性3、操作系统的目标:并发性虚拟性异步性)其中最重要的特征是共享性4、操作系统基本特征(并 发性 用户接口设备管理文件管理5、操作系统带主要功能:处理机管理存储器管理 完成)(I/O---阻塞---请求)---(进程调度)---执行---(I/O6、进程的三种基本状态:就绪P38页)(执行---(时间片用完)---就绪---就绪 异步性独立性并发性7、进程的特征:动态性 成批处理多道8、批处理系统带特征:脱机交互性及时性9、分时系统带特征:多路性独立性。方式、通道方式控制方式有:程序直接控制方式、中断控制方式、DMA10、常用I/O CPU 减少对设备间速度不匹配的矛盾。(2) CPU、为什么要引入缓冲区?(1)缓和与I/O11设备之间 的并行性和I/OCPU中断响应时间的限制。(3) 提高CPU的中断频率,放宽对系统由哪几部分组成?以打印机为例说明如何利用该技术实现多个进程对打SPOOLing12、印机的共享?输入进 程和输出进程输入缓冲区和输出缓冲区组成:输人井和输出井 对所有提出输出请求的用户进程,系统接受它们的请求时,并不真正把打印机分配给它们,而是由输出进程在输出井中为它申请一空闲缓冲区,并将要打印的数据卷入其中,输出进程再为用户进程申请一张空白的用户打印请求表,并将用户的打印请求填入表中,再将该表挂到打印机队列上。 这时,用户进程觉得它的打印过程已经完成,而不必等待真正的慢速的打印过程的完成。当打印机空闲时,输出进程将从请求队列队首取出一张打印请求表,根据表中的要求将要打印的数据从输出井传到内存输出缓冲区,再由打印机进行输出打印。打印完后,再处理打印队列中的一个打印请求表,实现了对打印机的共享。 13、什么是死锁?产生死锁的必要条件有哪些?处理死锁的方法? 所谓死锁是指多个进程在运行过程中因争夺资源而造成带一种僵局,当进程处于这种僵持状态时,若无外力作用,他们都将无法再向前推进。必要条件:互斥条件请求和保持条件不剥夺条件环路等待条件处理方法:预防死锁避免死锁检验死锁解除死锁 以上为简答题可能出带部分以下全为计算题做题时照猫画虎就差不多计算过程比较简单 有不懂得同学赶快在考试之前问一下懂的同学保证你考试能打60分以上。呵呵 应用题 1、调度算法(FCFS/SPF 高度优先权时间片轮转) 有5个进程P1、P2、P3、P4、P5,它们的创建时刻、运行时间和优先数见下表。规定进程的优 先数越小其优先级越高。试描述在采用下述调度算法时,各进程的运行过程,并计算平均周转时间(假设忽略进程的调度时间,时间单位为ms)。 (1)先来先服务算法。(2)剥夺式优先级调度算法。(此问可去掉。增加非剥夺式)

算法期末总结

一、时间复杂度: InsertionSort的运行时间是Ω(n) 排序问题的比较次数为Ω(nlog n) SelectionSort算法和BottomUpSort算法可分别使用Θ(n2)和Θ(nlog2n)描述 任何基于比较的排序算法,可以证明它的运行时间必定是Ω(nlog n) ◆通常把时间复杂性为O(nlog n)的基于比较的排序算法,称为该问题的最优算法。 ◆根据这一定义,算法BottomUpSort是该问题的最优算法 二、空间复杂度 算法LinearSearch空间复杂性为Θ(1) 算法Merge空间复杂性为Θ(n) 三、基本的符号(O类似于≤、Ω类似于≥、Θ类似于= 、o类似于<) O符号提供了一个运行时间的上界 Ω符号在运行时间的一个常数因子内提供一个下界。 Θ符号给出算法运行时间增长率的一个精确描述。 Ω符号定义的一个重要推论:f(n)= Ω(g(n)),当且仅当g(n)=O(f(n)) Θ符号定义的一个重要推论:f(n)= Θ(g(n))当且仅当f(n)=O(g(n))并且g(n)=O(f(n)) 任一常数函数是O(1)、Ω(1)、Θ(1) 一个(二叉)堆是一棵几乎完全的二叉树,它的每个结点都满足堆的特性:设v是一个结点,p(v)是v的父结点,那么存储在p(v)中的数据项键值大于或等于存储在v中的数据项键值。堆的蕴含特性: 沿着每条从根到叶子的路径,元素的键值以降序(或称非升序)排列。 ◆T的根结点存储在H[1]中; ◆设T的结点存储在H[j]中,如果它有左子结点,则这个左子结点存储在H[2j] 中;如果它还有右子结点,这个右子结点存储在H[2j+1]; ◆若元素H[j]不是根结点,它的父结点存储在H[?j/2?]中。 由“几乎完全二叉树” 的定义可知,如果堆中某结点有右子结点,则它一定也有左子结点。 堆具有如下性质: key(H[?j/2?])≥key(H[j]) 2≤j≤n 创建堆 ①方法一 给出有n个元素的数组A[1..n],要创建一个包含这些元素的堆可以这样进行: 首先假设堆由1个元素构成,然后将第2个、第3个元素插入堆,直至n个。 ②方法二 设数组A有n=10个元素,构造它的几乎完全二叉树T。 构造一个n元素的堆,算法MakeHeap需要Θ(n)时间和Θ(1)空间 算法HeapSort对n个元素排序,需要用O(nlog2n)时间和Θ(1)空间 最大堆:最大键值元素存放在根结点。 最小堆:最小键值元素存放在根结点 由于堆树的高度为?log2n?,所以删除一个元素所需的时间为O(log2n)。 堆排序不稳定。 用根树来表示每个集合,集合中的元素存储在节点中,树中除根节点外的每个元素X都有一个指向父节点P(X)的指针。根有一个空指针,用做集合的名字或集合的代表。这样产

相关文档
最新文档