数列问题中数形结合思想的体现

数列问题中数形结合思想的体现
数列问题中数形结合思想的体现

数形结合思想在数列问题中的体现

摘要:从课程目标出发,在数学教学中运用数形结合的形象特点,逐步训练学生的抽象思维,引导学生用对立统一的观点来全面的认识客观事物的运动、变化和发展,帮助他们初步形成辩证唯物主义世界观.

关键词:数学教学;数形结合;对立统一;

对于数列问题,人们习惯用代数的思维方式和方法解决.但是,如果将数形结合的数学思想渗透到数列问题中,运用数形结合的思想和方法看待和解决数列问题,往往会有事半功倍的效果.

高中数学教材中对数列的本质有如下描述:

数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式.

既然数列可以看作一列函数值,那么数列就可以用图象来表示,显然,数列的图象是一群孤立的点. 对于等差数列,因为其通项公式a n =a 1+(n-1)d=dn+(a 1-d),即a n 是n 的一次函数,所以,等差数列的图象是分布在直线y=dx+(a 1-d)上的一群孤立的点,并且,当d>0时,y=dx+(a 1-d)是增函数,当d<0时,y=dx+(a 1-d)是减函数.利用这些观点解决某些数列问题,既快捷又直观.

例1.在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是( ) A .S 21 B .S 20 C .S 11 D .S 10

分析:由3a 8=5a 13,得

3

5

138=a a ,又a 1>0,∴a 8>a 13 ,∴数列{ a n }递减,如图1,设AB=x ,由相似三角形得,

5

35=+x x ,得x=7.5,所以a n 的图象所在直线与x 轴交点为(20.5,0),显然S n 中最大的是S 20.

教学中运用数形结合的形象特点,使抽象的数学问题尽可能地形象化,逐步训练学生的抽象思维.

例2.已知数列{a n }中,a 1=15,3a n+1=3a n -2 ,则该数列中相邻两项的乘积为负的项是( ) A .a 21和a 22 B .a 22和a 23 C .a 23和a 24 D .a 24和a 25

分析:由3a n+1=3a n -2得,a n+1-a n =32-,所以公差d=3

2-,如图2,

,DE AD BC AB = ,11532

x

=∴x=22.5,所以,a n 的图象所在直线与x 轴的交点为(23.5,0),故选C.

例3.已知等差数列{a n }中,第r 项的值为s ,第s 项的值为r (r

分析:如图3,由已知,A (r,s )、B(s,r) (r

例4.若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0, a 2003 ? a 2004<0,则使前n 项和S n >0成立的最大自然数n 是( )

A .4005

B .4006

C .4007

D .4008

分析:由已知,a 2003>

- a 2004>0,所以,a n 的图象所在直线与x 轴的交点在(2003.5,2004)内,由图4易知,S 4006>0, S 4007<0,故选B.

在数学教学中教师要有意识地沟通数与形之间的关系,帮助学生逐步树立起数形结合的观点,并使这一观点扎根到学生的认知结构中去,成为运用自如的思想观念和思维工具.

不仅如此,对于等差数列来说,由于其前n 项和S n =na 1+21n(n-1)d=2d n 2+(a 1-2

d )n,即S n 是n 的二次函

数,且缺常数项.所以S n 的图象是分布在抛物线y=2d x 2+(a 1-2

d )x 上的一群孤立的点,并且当d>0时,

抛物线开口向上,当d<0时,抛物线开口向下.同样,在这样的观点下,许多数列问题也可得到非常形象的解法.

例5.设{a n }是等差数列,公差为d, S n 是其前n 项的和,且S 5S 8,则下列结论错误的

是( )

A .d <0

B .a 7=0

C .S 9>S 5 D. S 6 与S 7与均为S n 的最大值

分析:由S 5S 8,知S n 的图象所在抛物线开口向下,又由,

)2

(212n d a n d S n -+=知d<0,如图5,显然a 7=0, S 9m ),求S m+n 的值.

图5

分析:由已知,A(m,n)、B(n,m)是S n图Array象上的两点,显然,这两点关于直线y=x对称,所以,直线AB斜率为-1,从而,点C的坐标为(m+n,0),点D的坐标为(m+n,-m-n);设S n所在抛物线为y=ax2+bx,因为A、B均在此抛物线上,∴am2+bm=n, an2+bn=m,∵n≠m,两式相减得,a(m+n)+b=-1,两边同乘以(m+n)得,a(m+n)2+b(m+n)=-(m+n),即点D在抛物线上,所以,S m+n=-(m+n).

客观世界是一个普遍联系的整体,每一事物都不是孤立的存在,它和其他事物以各种方式相互依赖着,相互制约着,相互作用着.数学自身的发展即揭示出:事物无不处于普遍联系之中. 教师用鲜活的事例,引导学生用普遍联系的观点、对立统一的观点来全面的认识客观事物的运动、变化和发展,从而对人生观、世界观正处于定型期的中学生以良好的促进作用,帮助他们初步形成辩证唯物主义世界

观.

数形结合巧解分段函数问题

数形结合巧解分段函数问题

作者: 日期:

数形结合巧解分段函数问题-中学数学论文 数形结合巧解分段函数问题 湖北武汉关山中学刘元利张璟怡 在数学研究过程中,数形结合既是一种重要的数学思想,又是一种常用的数学方法,数形结合是历年高考的重点和热点之一。而分段函数作为一类特殊的函数,凡是函数中所涉及到的内容,它都有可能涉及到,如求分段函数的定义域和值域、极值和最值、判断其奇偶性、对称性、单调性、周期性,作图象等在历届高考中也都有所体现,解决这些问题的主要思想方法有数形结合、等价转化及分类讨论等三种方法。本文仅从数形结合方面来求解分段函数问题作了一些整理和归纳,以供参考。 一、求分段函数的定义域、值域及最值 例1.对任意实数x,设f (x)是4x+1,x+2,-2x+4 三个函数中的最小值,求f (x )的最大值 分析:4x+1,x+2,-2x+4 三个中哪个会最小呢?三个都有可能,因而要进行 讨论,故f (x)应为分段函数 解:依题意知,

所 2 求分段函数的单调区间 - 由伺\町知屮 2?对于给定的正数心定文附数川A ) 解徘主三-1 或 (X )的解析式是解题关键,再作图象求最值比分类讨论求值 评注:先找出 -W 作岀兀图象如M 2所示.由 作岀尸沢幻的岡象如圈 函数屮耳庖弋当时心壬炳数A ⑴的单碉区间为] £1>-匚即.由/(灯輕* 比较要好得多,有时数形结合法就是一种最佳之法。 2呵知/(A ■啲逮增区间为(-X.-I ],ii ( 例2X 2009年湖南卷[设两数/(iWoc ,4?)内有定 | /( x )./(x J W * 11 ,_/■( jc )乂 2 JI 4K +L * 评注:这是一种自定义函数的题型,具有创新意识,要弄懂定义求出函数解

数形结合思想在小学数学中的应用完整版

数形结合思想在小学数 学中的应用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 班级:2013级初等教育理科1班 目录

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显着提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验[1],说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。 数形结合思想的涵义 数、形是一个数学事物两个方面的基本属性。数形结合思想的实质是数字与

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用 摘要 数学是研究现实世界的空间形式和数量关系的学科,数和形是数学研究的两个重要方面,在研究过程中,一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常的直观形象,另一方面,一些图形的属性又可以通过数量关系的研究使得图形的性质更丰富、更精确、更深刻,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。 数形结合包含“以形助数”和“以数助形”两个方面,在高中阶段用的较多的是以形助数。数量关系如果能有效地结合图形,往往会使抽象问题直观化,复杂问题简单化,巧妙地应用数形结合的思想方法来处理一些抽象的数学问题,可起到事半功倍的效果,达到优化解题途径的目的,在选择题,填空题中,数形结合更能显示出其简捷的优越性。 关键词:数形结合思想方法应用解题

第一章 绪论 数学是研究现实世界中空间形式与数量关系的一门学科,故数学的研究是围绕数和形展开的,而数形结合的实质在于数量关系决定着几何图形属性,几何图形的属性反映着数量关系[1]。在现代数学研究中,数形结合既是一种常用的数学方法又是一种数学思想。由此可见,在高中阶段,掌握并熟练运用这一思想是十分必要的。本文针对数形结合思想的形成和演进,数形结合思想解题能力的培养,以及在高中数学解题中的应用范围和数形结合思想在解题中的实际应用做了浅显成述。

第二章数形结合思想的概述和历史演进 2.1数形结合思想的概述 数学的两个最古老、最普遍的研究对象是数、形,在某些条件的作用下,两者可以相互转化。中学数学研究的对象可以分为数和形两大部分,数与形的联系则称作数形结合,它包含“以形助数”和“以数助形”两个方面[1]。以形助数,即借助形的直观性来阐明数之间的关系;以数助形,即借助数的精确性来阐明形的某些属性。 2.2数形结合思想的历史演进 随着时间的推移,数学得到了不断的拓展和充实,数学中最原始的研究对象数与形也在不断地变化,从最初因需要而产生数到欧几里德撰写的《几何原本》,再到从笛卡尔创立平面直角坐标系到近、现代数学研究,数形结合一直伴随其行。在古希腊数学时期,毕达哥斯拉学派在研究数学时,就借助形来归纳数的性质,这便是早期的“数”与“形”结合的体现。 数轴的建立使人类对数与形的统一有了初步的认识,把实数与数轴上的点一一对应起来,数可视为点,点可当作数,点在直线上的位置关系可以数量化,而数的运算可以几何化。1637年,笛卡尔在其《几何学》中,首次提出了点的坐标和变数的思想,并借助坐标系用含有数的代数方程来表示和研究曲线[2]。笛卡尔把数轴(一维)扩展到平面直角坐标系,把有序数对) P与平面上的点 x , (y 一一对应起来,从而使得平面曲线的点集与二元方程组的解集一一对应起来。于是就可以用代数方法来研究几何图形的性质,把几何研究转换成对应的代数的研究。

数形结合解决问题

第课时总课时 数形结合解决问题 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。 【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗?学生思考后举例。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现? 学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 三、拓展延伸。 师:同学们,我们在解决问题中常常用到的线段图,也是数形结合思想的一个重要应用。例如前面学过的相遇问题、百分数应用题等等。下面我们就做两个题目,体会画线段图解决问题的优越性。 1、育才小学2000年有60台计算机,2006年以达到150台。2006年比2000年增加了百分之几? 2、有两根蜡烛,一根长8厘米,另一根长6厘米。把两根都燃掉同样长的一部分后,短的一根剩下的长度是长的一根剩下的3/5。每段燃掉多少厘米? (学生独立解答,体会用线段图解决问题的优越性。) 集体交流,引导学生陈述自己的解题思路。 四、归纳梳理。 师:这节课我们主要研究了利用数形结合的方法来解决问题,你能谈 谈自己的收获吗? 学生谈自己收获,提出尚存疑惑的问题。

初中数学中的数形结合思想

浅谈初中数学中的数形结合思想 在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。 如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。 二、由形思数数形结合。解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。这类问题在初中数学中运用的也比较多,如: 1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

妙用“数形结合”,巧解小学数学问题

妙用“数形结合”,巧解小学数学问题-小学数学论文-教育 期刊网 妙用“数形结合”,巧解小学数学问题 浙江绍兴市越城区灵芝镇中心小学(312000)罗海明 “数形结合”是数学的重要思想方法之一,而且“数形结合”能培养学生创造性思维、抽象思维和形象思维。著名数学家华罗庚曾经说过:“数形结合千般好,数形分离万事休。”可见数形结合的重要性。 一、注重“形”与“数”之间的结合 在小学数学课堂教学过程中,应注重“数”与“形”之间的结合。通过“形”来刺激学生的感官,使其首先进行仔细观察,进而得出计算关系,而这种计算关系则涉及“数”。根据数学问题中”数”的结构,构造出与之相应的集合图形,并利用几何图形的特征、规律来研究和解决问题,这样可以化抽象为直观,易于显露出问题的内在联系,同时借助几何直观审题,还可以避免一些复杂的数字讨论,在这里我们暂且称之为“以形助数”。“以形助数”其实是指在数学学习的过程中,经常会有抽象的数学概念和复杂的数量关系,而我们往往可以借助图形使之形象化、直观化,把抽象的数学语言转化为直观的图形,避免繁杂的计算,获得出奇制胜的解法。“以形助数” 中的“形”,或有形或无形。若有形,则可为图表与模型;若无形,则可另行构造或联想。因此“以形助数”的途径大体有三种:一是运用图形;二是构造图形;三是借助于代数式的几何意义。小学阶段常用第一种或第二种,第三种则在高学段中偶尔有出现。那么“以形助数”该如何运用到课堂中去呢? 【例1】计算如图1所示图形的面积。

首先让学生审题:(1)从整体上来看,图1为一个什么平面图形?(2)图1中有几个三角形,它们的特征是什么?让学生带着这两个问题进行思考,最终得出如下解题思路。 解题思路分析:要求梯形的面积,那么就需要知道上底、下底以及高这三个条件。由图1可以看出,该梯形的高是6厘米,那么解题的关键就是求出上底以及下底的长度,或者求出它们二者的长度和。在左边的直角三角形中,其中一个内角是45°,由此可知左边这个直角三角形为等腰直角三角形,因此梯形高的左边部分与下底相等。同理可知,右边的小三角形也是一个等腰直角三角形,因此梯形的上底与高的右边部分相等。然后按照等腰直角三角形的含义推出该梯形上下底长度之和为梯形高,即为6厘米,因此根据梯形的面积公式得(上底+下底)×高÷2=(6×6)÷2=18(平方厘米)。 【例2】如图2所示,直角三角形的面积为12平方厘米,计算圆的面积大小。 首先提出两个问题:(1)图2中包括哪两种图形?(2)两种图形各自的面积计算的基本公式是什么? 解题思路分析:根据圆的面积计算公式S=πr2,若要计算圆的面积,那么解决此题的关键之处在于先求出r。在图2中,三角形的底以及高都是圆的半径,图

线性递归数列

线性递归数列 【基础知识】 1、概念:①、递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(n k <)的关系式称为递归式。 ②、递归数列:由递归式和初始值确定的数列成为递归数列。 2、常用方法:累加法,迭代法,代换法,代入法等。 3、思想策略:构造新数列的思想。 4、常见类型: 类型Ⅰ:???=≠+=+为常数)a a a n p n q a n p a n n ()0)(() ()(11(一阶递归) 其特例为:(1))0(1≠+=+p q pa a n n (2))0() (1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n 解题方法:利用待定系数法构造类似于“等比数列”的新数列。 类型Ⅱ:???==≠≠+=++为常数) b a b a a a q p qa pa a n n n ,(,)0,0(2112(二阶递归) 解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα +=,代入初始值求得B A ,。 类型Ⅲ:)(1n n a f a =+其中函数)(x f 为基本初等函数复合而成。 解题方法:一般情况下,通过构造新数列可转化为前两种类型。 【例题】 例1、已知数列}{n a 满足以下递归关系?? ?=+=+14311a a a n n ,求通项n a 。 例2、已知数列}{n a 满足?? ?=-+=+2)12(211a n a a n n ,求通项n a 。 例3、已知数列}{n a 满足?? ?=≥+=+1)2(211a n na a n n ,求通项n a 。 例4、已知数列}{n a 满足?? ?==-=++2,1232112a a a a a n n n ,求通项n a 。 例5、由自然数组成的数列}{n a ,满足11=a ,mn a a a n m n m ++=+,求n a 。

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

用数形结合的方法解题

1 引言 数与形是数学中最古老最基本的研究对象。华罗庚教授说过:“数缺形时少直观,形缺数时难入微。”数与形各有特定的含义、但他们之间相辅相成、相互渗透、相互转化。数形结合思想是重要的解题方法,是每年高考必考的重要内容,数形结合应用解题能力与学生成绩呈显著的正相关。解题时将问题转化为与之等价的图形问题,可以直观的使问题简捷获解。实现数形结合常与以下内容有关:①实数与数轴上的点的对应关系; ②所给的等式或代数式的结构含有明显的几何意义;③以几何元素和几何条件为背景建立起的概念;④函数与图像的对应关系;⑤曲线与方程的对应关系。应用数形结合思想不仅直观易发现解题途径,而且能避免复杂的计算推理,大大简化解题过程,这在解选择、填空题中更为显著,培养这种思想意识能开拓自己的思维视野。 2 文献综述 2.1国内外研究现状 数形结合作为高中数学中非常重要的思想方法,很早就引起了许多专家学者的关注。自笛卡尔创造了平面直角坐标系,数形结合的思想得到了突飞猛进的发展。文献[1]中叶立军谈到:“数缺形时少直观,形少数时难入微。数形结合百般好,隔离分家万事休。”近些年来,国内外仍有许多学者发表了对数形结合思想的应用研究,文献[2-3]中介绍了数形结合在概率统计和数列中的应用。文献[4-6]通过总结图形结构与数式结构提出了数形结合的两个主要途径。文献[7-10]认为数形结合可以直观快速解决很多问题,但转化时要遵循转化等价原则。不过由于数形结合思想应用范围极其广泛,所以我认为目前对数形结合思想的研究仍有很大的空间。 2.2国内外研究现状评价 文献[11-13]中介绍了许多数形结合的途径和方法,其中研究解决函数各类文章最多,集中于判断两函数图像交点个数及其他函数性质。对于数形结合在高中数学各种问题的研究并不够全面。 2.3提出问题 如今数形结合有着广泛的应用,即把数学与几何图形相结合,化繁为简,化抽象为具体,直观快速地抓住问题的本质与要害,可使解题起到事半功倍的效果。然而一个不

初中数学中的数形结合思想

初中数学中的数形结合思想 “数缺形欠直观,形缺数难入微”,数形结合是解决数学问题最重要的数学思想方法之一.数形结合思想通过“以数助形,以形解数”,使复杂问题简单化,抽象问题具体化,它是数学的规律性和灵活性的有机结合. 一、以数助形 例1如图1,在平面直角坐标系中,A(1,1),B(5,1),C(1,4)是三角形ABC的三个顶点,求BC的长. 这一题经过转化后实质上就是求平面上两点之间的距离.而在本题中△ABC是直角三角形,所以利用勾股定理可BC=AB2+AC2=5. 这个问题实质上是利用数形结合的思想来推导在具体点的坐标下的两点之间的距离公式.利用同样的思想可以推导出平面上两点之间的距离公式:平面上点P1(x1,y1),P2(x2,y2),则P1P2=(x1-x2)2+(y1-y2)2. 例2在直角坐标系中,已知直线l经过点(4,0),与两坐标轴围成的直角三角形的面积等于8,若一个二次函数的图象经过直线l与两坐标轴的交点,以x=3为对称轴,且开口向下,求这个二次函数的解析式,并求最大值. 分析如果不画出图象,本题很难理解.由三角形的面积来

确定点B的坐标时,就需要把几何问题化为代数问题,确定OB的长度后,由绝对值的双值性来决定点B的纵坐标. 设直线l与x轴交点A(4,0),与y轴交点坐标B(0,m), 则OA=4,OB=|m|. 如由图,S△AOB=12OA?OB=12×4|m|=8, 所以|m|=4.因此,B(0,4)或B′(0,-4). 由二次函数图象的对称轴为x=3,可知点A的对称点A′(2,0),则图象经过A、A′、B,或A、A′、B′. 设抛物线的解析式为y=a(x-2)(x-4). 把点B或B′坐标代入,得a=12或a=-12. 因为开口向下,所以,a=12不符合题意. 故y=-12(x-2)(x-4),即y=-12(x-3)2+12, 所以当x=3时,y最大=12. 二、以形助数 例3已知a、b均为正数,且a+b=2,求W=a2+4+b2+1的最小值. 在本题中由求解式子的特点可以联想到构造直角三角 形利用勾股定理进行处理.如图作线段ED,在ED上截取EP,DP,过点E作AC⊥ED,且使得AE=2,过点D作DB⊥ED,且使得DB=1.这种构图后可以得到两个直角三角形,所以可以使用勾股定理得到AP=a2+4,BP=(2-a)2+1,所以本题中

用数形结合法巧解最值问题

用数形结合法巧解最值问题 胡龙林 数形结合涉及两方面的问题,一是将图形性质转化成数量关系问题,二是将数量 关系问题转化成图形性质问题,都是中学数学普遍而重要的问,利用后者求函数 的最值可获得简捷解法。现行高中数学教材解析几何中简单线性规划内容,教材重点在于图解法求解目标函数的最值,它更好地体现了数形结合的思想方法,也引发了我对数形结合这思想方法的一点思考。数形结合不仅把抽象的问题直观 化,简化解题过程,提高学生的解题能力,而且可拓宽解题思路,提高学生思维的灵活题性和创造性。 1利用数轴上的截距解函数最值 截距是指函数与所有坐标轴交点的坐标之差, 可取正数也可取负数或0.求形如)()(x g x f y ±=的函数最值, 可以把)(),(x g x f 当作是变量, 即令)(),(x g u x f v ==, 方程0),(=v u F 一般表示一条曲线, 则y 可以当作是y u v +±=的直线在纵坐标轴上的截距, 因此截距的最值也即是函数的最值.]1[ 例1 已知数y x ,满足03422=+-+x y x , 求y x +的最值. 解 令,b y x =+则.b x y +-= 因为1)2(22=+-y x 的圆心为)0,2(, 以及它到直线b x y +-=的距离为1, 所以111| 12|22=+-?b , 可得22±=b . 于是 ,22max +=b .22min -=b 例2 求函数3424322+---+=t t t t S 的最值. 解 令?????-+=+-=, 43,34222t t y t t x 有x y S -=又 ).0,0(,1624433422222≥≥=+??????-+=+-=y x y x t t y t t x 因此S 可看成是直线系S x y +=和椭圆16 242 2=+y x 在第一象限相交直线在轴上的截距(如图所示), 可得

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

数形结合在小学数学中的应用

数形结合在小学数学中的应用

数形结合在小学数学中的应用 【内容提要】数形结合思想是一个重要的思想方法,在小学和中学,无论是在教师的课堂教学,对数学概念的理解,还是学生思维和解题能力的培养等方面,数形结合都为其奠定了坚实的基础。本课题主要通过分析自己亲身体会的中小学数学问题,发现数形结合思想在初等数学中的应用,加深对数形结合的理解。 【关键词】数形结合思想,数学应用 【正文】数与形一直以来都是数学的主题,即使如今的数学有着庞大的分支,仍不可磨灭它的影响力。华罗庚先生的打油诗:“数无形,少直观;形无数,少入微”向我们展现了数与形密不可分的关系。简单的说,数与形就是抽象与形象的表现,数形结合更加有利于学生对知识的理解,单纯的数使知识缺乏直观性,同样的如果只有形就少了几分严密性。然而,数形结合思想就是将本是相互独立的两方面结合起来,做到我中有你,你中有我。数形结合思想在小学和中学数学中有着许多巧妙的应用,比如在最初学习计数时,为了加深小朋友们对数字的记忆,教师常常会用形象的图形或者实物与数字对应;计数是学习数学的基础,教师往往会利用生活中的物品,例如铅笔、糖果、苹果等辅助数数、运算;每个班级都会对学生进行标号,也就是学号,久而久之,当某人说一个数时,你会联想到这个人;复杂的数学题考验你强大的逻辑思维,代数和几何是中学的两大基础,代数中加入具体形象的图像,帮助理清题意,拓展思路,几何中渗透代数,发散思维,解决问题等等。 数形结合思想在小学数学的应用,我们学习数形结合并不单单为了解题,更应该将它上升为一种思想,学习数学的转向灯。数形结合思想已经贯穿数学学习的全部,小学是数学萌芽的阶段,在这个阶段,小学生的大脑并没有完全发育,他们对数的理解往往要依靠生活中他自己比较熟悉的事物,也就是“形”。如今“怎样开发小学生的数学思维能力”已经是近几年小学数学教育者一直思考的问题。我们可以发现近几年在小学数学课本中的每一个概念教学,教师都通过各种实物、事例或者图形逐步引导学生观察、分析、比较从中揭示其本质,

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2 =++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10)k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202 解,得;解,得()()I x II x 0220≤<-≤<

利用数形结合处理数学问题的技巧

利用数形结合处理数学问题的技巧 摘要 数形结合在代数解题中有广泛应用,是数学研究的常用方法,它的思想可以把抽象的代数问题具体化,把数量关系与空间图形结合起来,既能分析其代数意义,又能揭示其几何意义。它包含“以形助数”和“以数辅形”两个方面。下面将通过一些典型例题,探索解题中应用数形结合的技巧和方法。 关键词:数形结合思想方法技巧典型例题 正文: 数与形是数学中最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数辅形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。“以形助数”就是把某些复杂的数学问题通过几何图形很直观的看出来,这样就把问题直观具体化。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。

初中数学中的数形结合思想修订稿

初中数学中的数形结合 思想 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

浅谈初中数学中的数形结合思想在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。

如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。 二、由形思数数形结合。解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。这类问题在初中数学中运用的也比较多,如: 1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小和线段的大小。 2.用有序实数对描述点在平面直角坐标系内的位置。 3.用方程、不等式或者函数解决几何量的问题。 4.用数来描述点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,直线与直线的位置关系。 其实在解有关的数形结合问题并不是单纯的由数思形或者有形思数的问题,一般都是综合运用题。利用数形结合解有关的问题时要注意一下几个问题: 1. 注意数与形转化前后的一致性;

初中数学中的数形结合思想精修订

初中数学中的数形结合 思想 标准化管理部编码-[99968T-6889628-J68568-1689N]

浅谈初中数学中的数形结合思想 在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。 如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。

浅谈数形结合思想在解题中的应用

浅谈数形结合思想在解题中的应用 摘 要:本文主要探讨了数形结合思想在中学学生思维中的形成过程以及在中学数学的几方面的应用,如集合、函数、解方程与不等式、解析几何以及三角函数. 关健词:数形结合;数学思想 所谓数形结合,就是根据数与形之间的对应关系,来解决一类数学问题的一种思想方法.数形结合的实质是将抽象的数学语言与直观的图像结合起来,也就是代数与图形之间的相互转化,使代数问题几何化,几何问题代数化.同时把握好数形结合思想,有助于中学生空间思维的形成. 数形结合是数学解题中常用的思想方法,无论是在平时的数学应用中,还是在高考都起到了重要的指导作用.因此中学生掌握好数形结合思想是有重要意义的. 既然如此,那中学生要如何掌握这种思想方法呢?在哪些地方可以用数形结合呢?本文就围绕这两个方面展开,进行谈讨. 一、如何在中学生的思维中建立数形结合思想 这部分内容是在我们老师在平时的授课过程中完成的.首先,就是在我们平时老师的授课时,对于一些概念的几何意义要让学生彻底理解,要让学生达到能要自己的大脑中根据几何意义把图形画出来的效果,同时也能在不同的条件下准确地将图形画出.其次,是在平时练习中,凡是能用数形结合思想来解决的问题,老师都应提出并引导学生用这种思维方法去解决,从而加深学生对相应知识的掌握,进一步步在学生的思维中建立数形结合的思想模型.最后,就是在学生平时自己做练习时,若出现了此类问题的,则要求学生试着用数形结合思想方法来解决问题,从而更进一步地在学生思维中树立数形结合思想. 二、下面就分析数形结合思想在几个知识面上的应用. 1. 数形结合思想解决集合问题上的应用 此类问题在平时的练习中都会出现,而数形结合思想却是解题中所使用的重要思想,往往能够提高我们做题的速度和正确率.对于选择题中的集合问题往往我们都用数轴和维恩图结合”数”来解决;而对于后面的解答题,常常都会出现较为复杂的图形,但都会借助坐标轴、图形以及题意,即数形结合来解决问题.如: 例1:(2005年天津高考)设集合S={}8|{},3|2||+<<=>-a x a x T x x R T S = ,则a 的取值范围是( ) A -3-1 解析: 因为 32>-x

相关文档
最新文档